Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21.991
Filtrar
2.
Oper Neurosurg (Hagerstown) ; 27(4): 431-439, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39283098

RESUMEN

BACKGROUND AND OBJECTIVES: Frameless deep brain stimulation (DBS) offers advantages in terms of patient comfort and reduced operative time. However, the need for bony fiducial markers for localization remains a drawback due to the time-consuming and uncomfortable procedure. An alternative localization method involves the direct tracking of an intraoperative 3-dimensional scanner. This study aims to assess the accuracy of the NexFrame frameless DBS system in conjunction with the O-Arm (Medtronic Inc.), both with and without fiducial markers. METHODS: The locations of 100 DBS leads were determined, with 50 cases using fiducial-free localization and 50 involving fiducial markers. The coordinates were compared with the expected intraoperative targets. Absolute errors in the X, Y, and Z coordinates (ΔX, ΔY, and ΔZ) were calculated, along with the vector error (Euclidean) (vector error ). RESULTS: The vector error averaged 1.61 ± 0.49 mm (right) and 1.52 ± 0.60 mm (left) for the group without fiducial bone markers and 1.66 ± 0.69 (right) and 1.44 ± 0.65 mm (left) for the other cohort (P = .76 right; P = .67 left). Absolute errors in the X, Y, and Z coordinates for the fiducial-free group were 0.88 ± 0.55, 0.79 ± 0.45, and 0.79 ± 0.57 mm (right) and 0.72 ± 0.37, 0.78 ± 0.56, and 0.77 ± 0.71 mm (left). For the group with fiducial markers, these errors were 0.87 ± 0.72, 0.92 ± 0.39, and 0.86 ± 0.50 mm (right) and 0.75 ± 0.33, 0.80 ± 0.51, and 0.73 ± 0.64 mm (left) with no statistically significant difference. CONCLUSION: Our analysis of the accuracy of NexFrame DBS, both with and without fiducial markers, using an intraoperative navigable cone-beam computed tomography, demonstrates that both techniques provide sufficient and equivalent 3-dimensional accuracy.


Asunto(s)
Estimulación Encefálica Profunda , Marcadores Fiduciales , Neuronavegación , Humanos , Estimulación Encefálica Profunda/instrumentación , Estimulación Encefálica Profunda/métodos , Masculino , Femenino , Neuronavegación/métodos , Neuronavegación/instrumentación , Persona de Mediana Edad , Anciano , Imagenología Tridimensional/métodos , Adulto , Electrodos Implantados
3.
Neurosurgery ; 95(4): 941-948, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39283114

RESUMEN

BACKGROUND AND OBJECTIVES: Treatment-resistant depression is a leading cause of disability. Our center's trial for neurosurgical intervention for treatment-resistant depression involves a staged workup for implantation of a personalized, closed-loop neuromodulation device for refractory depression. The first stage ("stage 1") of workup involves implantation of 10 stereoelectroencephalography (SEEG) electrodes bilaterally into 5 anatomically defined brain regions and involves a specialized preoperative imaging and planning workup and a frame-based operating protocol. METHODS: We rely on diffusion tractography when planning stereotactic targets for 3 of 5 anatomic areas. We outline the rationale and fiber tracts that we focus on for targeting amygdala, ventral striatum and ventral capsule, and subgenual cingulate. We also outline frame-based stereotactic considerations for implantation of SEEG electrodes. EXPECTED OUTCOMES: Our method has allowed us to safely target all 5 brain areas in 3 of 3 trial participants in this ongoing study, with adequate fiber bundle contact in each of the 3 areas targeted using tractography. Furthermore, we ultimately used tractography data from our stage 1 workup to guide targeting near relevant fiber bundles for stage 2 (implantation of a responsive neuromodulation device). On completion of our data set, we will determine the overlap between volume of tissue activated for all electrodes and areas of interest defined by anatomy and tractography. DISCUSSION: Our protocol outlined for SEEG electrode implantation incorporates tractography and frame-based stereotaxy.


Asunto(s)
Trastorno Depresivo Resistente al Tratamiento , Electrodos Implantados , Electroencefalografía , Técnicas Estereotáxicas , Humanos , Trastorno Depresivo Resistente al Tratamiento/terapia , Trastorno Depresivo Resistente al Tratamiento/cirugía , Trastorno Depresivo Resistente al Tratamiento/diagnóstico por imagen , Electroencefalografía/métodos , Imagen de Difusión Tensora/métodos , Estimulación Encefálica Profunda/métodos , Pacientes Internos
4.
Elife ; 122024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39259198

RESUMEN

Lesion studies have historically been instrumental for establishing causal connections between brain and behavior. They stand to provide additional insight if integrated with multielectrode techniques common in systems neuroscience. Here, we present and test a platform for creating electrolytic lesions through chronically implanted, intracortical multielectrode probes without compromising the ability to acquire neuroelectrophysiology. A custom-built current source provides stable current and allows for controlled, repeatable lesions in awake-behaving animals. Performance of this novel lesioning technique was validated using histology from ex vivo and in vivo testing, current and voltage traces from the device, and measurements of spiking activity before and after lesioning. This electrolytic lesioning method avoids disruptive procedures, provides millimeter precision over the extent and submillimeter precision over the location of the injury, and permits electrophysiological recording of single-unit activity from the remaining neuronal population after lesioning. This technique can be used in many areas of cortex, in several species, and theoretically with any multielectrode probe. The low-cost, external lesioning device can also easily be adopted into an existing electrophysiology recording setup. This technique is expected to enable future causal investigations of the recorded neuronal population's role in neuronal circuit function, while simultaneously providing new insight into local reorganization after neuron loss.


Over the past three decades, the field of neuroscience has made significant leaps in understanding how the brain works. This is largely thanks to microelectrode arrays, devices which are surgically implanted into the outermost layer of the brain known as the cortex. Once inserted, these devices can precisely monitor the electrical activity of a few hundred neurons while also stimulating neurons to reversibly modulate their activity. However, current microelectrode arrays are missing a key function: they cannot irreversibly inactivate neurons over long-time scales. This ability would allow researchers to understand how networks of neurons adapt and re-organize after injury or during neurodegenerative diseases where brain cells are progressively lost. To address this limitation, Bray, Clarke, et al. developed a device capable of creating consistent amounts of neuron loss, while retaining the crucial ability to record electrical activity following a lesion. Calibration tests in sheep and pigs provided the necessary parameters for this custom circuit, which was then verified as safe in non-human primates. These experiments demonstrated that the device could effectively cause neuron loss without compromising the recording capabilities of the microelectrode array. By seamlessly integrating neuron inactivation with monitoring of neuronal activity, scientists can now investigate the direct effects of such damage and subsequent neural reorganization. This device could help neuroscientists to explore neural repair and rehabilitation after brain cell loss, which may lead to better treatments for neurodegenerative diseases. In addition, this technique could offer insights into the interactions between neural circuits that drive behavior, enhancing our understanding of the complex mechanisms underlying how the brain works.


Asunto(s)
Neuronas , Animales , Neuronas/fisiología , Electrodos Implantados , Electrólisis/métodos , Ratas , Electrofisiología/métodos , Electrofisiología/instrumentación , Potenciales de Acción/fisiología
6.
J Neural Eng ; 21(4)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39151464

RESUMEN

Objective.For medically-refractory epilepsy patients, stereoelectroencephalography (sEEG) is a surgical method using intracranial electrode recordings to identify brain networks participating in early seizure organization and propagation (i.e. the epileptogenic zone, EZ). If identified, surgical EZ treatment via resection, ablation or neuromodulation can lead to seizure-freedom. To date, quantification of sEEG data, including its visualization and interpretation, remains a clinical and computational challenge. Given elusiveness of physical laws or governing equations modelling complex brain dynamics, data science offers unique insight into identifying unknown patterns within high-dimensional sEEG data. We apply here an unsupervised data-driven algorithm, dynamic mode decomposition (DMD), to sEEG recordings from five focal epilepsy patients (three with temporal lobe, and two with cingulate epilepsy), who underwent subsequent resective or ablative surgery and became seizure free.Approach.DMD obtains a linear approximation of nonlinear data dynamics, generating coherent structures ('modes') defining important signal features, used to extract frequencies, growth rates and spatial structures. DMD was adapted to produce dynamic modal maps (DMMs) across frequency sub-bands, capturing onset and evolution of epileptiform dynamics in sEEG data. Additionally, we developed a static estimate of EZ-localized electrode contacts, termed the higher-frequency mode-based norm index (MNI). DMM and MNI maps for representative patient seizures were validated against clinical sEEG results and seizure-free outcomes following surgery.Main results.DMD was most informative at higher frequencies, i.e. gamma (including high-gamma) and beta range, successfully identifying EZ contacts. Combined interpretation of DMM/MNI plots best identified spatiotemporal evolution of mode-specific network changes, with strong concordance to sEEG results and outcomes across all five patients. The method identified network attenuation in other contacts not implicated in the EZ.Significance.This is the first application of DMD to sEEG data analysis, supporting integration of neuroengineering, mathematical and machine learning methods into traditional workflows for sEEG review and epilepsy surgical decision-making.


Asunto(s)
Electrocorticografía , Humanos , Masculino , Femenino , Adulto , Electrocorticografía/métodos , Electroencefalografía/métodos , Algoritmos , Electrodos Implantados , Red Nerviosa/fisiopatología , Epilepsia Refractaria/cirugía , Epilepsia Refractaria/fisiopatología , Epilepsia/fisiopatología , Epilepsia/cirugía , Epilepsia/diagnóstico , Técnicas Estereotáxicas , Adulto Joven
7.
Biosens Bioelectron ; 264: 116664, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39159588

RESUMEN

Implantable devices for brain-machine interfaces and managing neurological disorders have experienced rapid growth in recent years. Although functional implants offer significant benefits, issues related to transient trauma and long-term biocompatibility and safety are of significant concern. Acute inflammatory reaction in the brain tissue caused by microimplants is known to be an issue but remains poorly studied. This study presents the use of titanium oxynitride (TiNO) nanofilm with defined surface plasmon resonance (SPR) properties for point-of-care characterizing of acute inflammatory responses during robot-controlled micro-neuro-implantation. By leveraging surface-enriched oxynitride, TiNO nanofilms can be biomolecular-functionalized through silanization. This label-free TiNO-SPR biosensor exhibits a high sensitivity toward the inflammatory cytokine interleukin-6 with a detection limit down to 6.3 fg ml-1 and a short assay time of 25 min. Additionally, intraoperative monitoring of acute inflammatory responses during microelectrode implantation in the mice brain has been accomplished using the TiNO-SPR biosensors. Through intraoperative cerebrospinal fluid sampling and point-of-care plasmonic biosensing, the rhythm of acute inflammatory responses induced by the robot-controlled brain microelectrodes implantation has been successfully depicted, offering insights into intraoperative safety assessment of invasive brain-machine interfaces.


Asunto(s)
Resonancia por Plasmón de Superficie , Titanio , Animales , Titanio/química , Ratones , Técnicas Biosensibles , Encefalitis/etiología , Microelectrodos , Interleucina-6/análisis , Interleucina-6/líquido cefalorraquídeo , Encéfalo , Interfaces Cerebro-Computador , Diseño de Equipo , Electrodos Implantados/efectos adversos , Humanos
8.
Acta Neurochir (Wien) ; 166(1): 328, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39107666

RESUMEN

PURPOSE: In the absence of an intraoperative CT or MRI setup, post-implantation confirmation of electrode position in deep brain stimulation (DBS) requires patient transportation to the radiology unit, prolonging surgery time. This project aims to validate intraoperative 3D fluoroscopy (3DF), a widely available tool in Neurosurgical units, as a method to determine final electrode position. METHODS: We performed a retrospective study including 64 patients (124 electrodes) who underwent DBS at our institution. Intraoperative 3DF after electrode implantation and postoperative volumetric CT were acquired. The Euclidean coordinates of the electrode tip displayed in both imaging modalities were determined and inter-method deviations were assessed. Pneumocephalus was quantified and its potential impact in determining the electrode position analyzed. Finally, 3DF and CT-imposed exposure to radiation was compared. RESULTS: The difference between the electrode tip estimated by 3DF and CT was 0.85 ± 0.03 mm, and not significantly different (p = 0.11 for the distance to MCP assessed by both methods), but was, instead, highly correlated (p = 0.91; p < 0.0001). Even though pneumocephalus was larger in 3DF (6.89 ± 1.76 vs 5.18 ± 1.37 mm3 in the CT group, p < 0.001), it was not correlated with the difference in electrode position measured by both techniques (p = 0.17; p = 0.06). Radiation exposure from 3DF is significantly lower than CT (0.36 ± 0.03 vs 2.08 ± 0.05 mSv; p < 0.0001). CONCLUSIONS: Intraoperative 3DF is comparable to CT in determining the final DBS electrode position. Being a method with fewer radiation exposure, less expensive, faster and that avoids patient transportation outside the operation room, it is a valid tool to replace postoperative CT.


Asunto(s)
Estimulación Encefálica Profunda , Electrodos Implantados , Imagenología Tridimensional , Humanos , Estimulación Encefálica Profunda/métodos , Fluoroscopía/métodos , Estudios Retrospectivos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Imagenología Tridimensional/métodos , Tomografía Computarizada por Rayos X/métodos , Adulto
9.
Nat Commun ; 15(1): 6774, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39117721

RESUMEN

Without intervention, cardiac arrhythmias pose a risk of fatality. However, timely intervention can be challenging in environments where transporting a large, heavy defibrillator is impractical, or emergency surgery to implant cardiac stimulation devices is not feasible. Here, we introduce an injectable cardiac stimulator, a syringe loaded with a nanoparticle solution comprising a conductive polymer and a monomer that, upon injection, forms a conductive structure around the heart for cardiac stimulation. Following treatment, the electrode is cleared from the body, eliminating the need for surgical extraction. The mixture adheres to the beating heart in vivo without disrupting its normal rhythm. The electrofunctionalized injectable cardiac stimulator demonstrates a tissue-compatible Young's modulus of 21 kPa and a high conductivity of 55 S/cm. The injected electrode facilitates electrocardiogram measurements, regulates heartbeat in vivo, and rectifies arrhythmia. Conductive functionality is maintained for five consecutive days, and no toxicity is observed at the organism, organ, or cellular levels.


Asunto(s)
Arritmias Cardíacas , Animales , Arritmias Cardíacas/terapia , Arritmias Cardíacas/fisiopatología , Conductividad Eléctrica , Corazón/fisiología , Nanopartículas/química , Electrocardiografía , Humanos , Ratones , Frecuencia Cardíaca , Polímeros/química , Masculino , Inyecciones , Módulo de Elasticidad , Terapia por Estimulación Eléctrica/instrumentación , Terapia por Estimulación Eléctrica/métodos , Electrodos Implantados
10.
N Engl J Med ; 391(7): 609-618, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39141853

RESUMEN

BACKGROUND: Brain-computer interfaces can enable communication for people with paralysis by transforming cortical activity associated with attempted speech into text on a computer screen. Communication with brain-computer interfaces has been restricted by extensive training requirements and limited accuracy. METHODS: A 45-year-old man with amyotrophic lateral sclerosis (ALS) with tetraparesis and severe dysarthria underwent surgical implantation of four microelectrode arrays into his left ventral precentral gyrus 5 years after the onset of the illness; these arrays recorded neural activity from 256 intracortical electrodes. We report the results of decoding his cortical neural activity as he attempted to speak in both prompted and unstructured conversational contexts. Decoded words were displayed on a screen and then vocalized with the use of text-to-speech software designed to sound like his pre-ALS voice. RESULTS: On the first day of use (25 days after surgery), the neuroprosthesis achieved 99.6% accuracy with a 50-word vocabulary. Calibration of the neuroprosthesis required 30 minutes of cortical recordings while the participant attempted to speak, followed by subsequent processing. On the second day, after 1.4 additional hours of system training, the neuroprosthesis achieved 90.2% accuracy using a 125,000-word vocabulary. With further training data, the neuroprosthesis sustained 97.5% accuracy over a period of 8.4 months after surgical implantation, and the participant used it to communicate in self-paced conversations at a rate of approximately 32 words per minute for more than 248 cumulative hours. CONCLUSIONS: In a person with ALS and severe dysarthria, an intracortical speech neuroprosthesis reached a level of performance suitable to restore conversational communication after brief training. (Funded by the Office of the Assistant Secretary of Defense for Health Affairs and others; BrainGate2 ClinicalTrials.gov number, NCT00912041.).


Asunto(s)
Esclerosis Amiotrófica Lateral , Interfaces Cerebro-Computador , Disartria , Habla , Humanos , Masculino , Persona de Mediana Edad , Esclerosis Amiotrófica Lateral/complicaciones , Esclerosis Amiotrófica Lateral/rehabilitación , Calibración , Equipos de Comunicación para Personas con Discapacidad , Disartria/rehabilitación , Disartria/etiología , Electrodos Implantados , Microelectrodos , Cuadriplejía/etiología , Cuadriplejía/rehabilitación
11.
N Engl J Med ; 391(7): 619-626, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39141854

RESUMEN

The durability of communication with the use of brain-computer interfaces in persons with progressive neurodegenerative disease has not been extensively examined. We report on 7 years of independent at-home use of an implanted brain-computer interface for communication by a person with advanced amyotrophic lateral sclerosis (ALS), the inception of which was reported in 2016. The frequency of at-home use increased over time to compensate for gradual loss of control of an eye-gaze-tracking device, followed by a progressive decrease in use starting 6 years after implantation. At-home use ended when control of the brain-computer interface became unreliable. No signs of technical malfunction were found. Instead, the amplitude of neural signals declined, and computed tomographic imaging revealed progressive atrophy, which suggested that ALS-related neurodegeneration ultimately rendered the brain-computer interface ineffective after years of successful use, although alternative explanations are plausible. (Funded by the National Institute on Deafness and Other Communication Disorders and others; ClinicalTrials.gov number, NCT02224469.).


Asunto(s)
Esclerosis Amiotrófica Lateral , Atrofia , Interfaces Cerebro-Computador , Femenino , Humanos , Persona de Mediana Edad , Esclerosis Amiotrófica Lateral/complicaciones , Esclerosis Amiotrófica Lateral/diagnóstico por imagen , Esclerosis Amiotrófica Lateral/rehabilitación , Atrofia/diagnóstico por imagen , Atrofia/etiología , Atrofia/prevención & control , Encéfalo/diagnóstico por imagen , Equipos de Comunicación para Personas con Discapacidad , Factores de Tiempo , Insuficiencia del Tratamiento , Electrodos Implantados
12.
Nat Commun ; 15(1): 7523, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39214981

RESUMEN

Implantable devices interfacing with peripheral nerves exhibit limited longevity and resolution. Poor nerve-electrode interface quality, invasive surgical placement and development of foreign body reaction combine to limit research and clinical application of these devices. Here, we develop cuff implants with a conformable design that achieve high-quality and stable interfacing with nerves in chronic implantation scenarios. When implanted in sensorimotor nerves of the arm in awake rats for 21 days, the devices record nerve action potentials with fascicle-specific resolution and extract from these the conduction velocity and direction of propagation. The cuffs exhibit high biocompatibility, producing lower levels of fibrotic scarring than clinically equivalent PDMS silicone cuffs. In addition to recording nerve activity, the devices are able to modulate nerve activity at sub-nerve resolution to produce a wide range of paw movements. When used in a partial nerve ligation rodent model, the cuffs identify and characterise changes in nerve C fibre activity associated with the development of neuropathic pain in freely-moving animals. The developed implantable devices represent a platform enabling new forms of fine nerve signal sensing and modulation, with applications in physiology research and closed-loop therapeutics.


Asunto(s)
Potenciales de Acción , Nervios Periféricos , Animales , Nervios Periféricos/fisiología , Ratas , Potenciales de Acción/fisiología , Masculino , Electrodos Implantados , Neuralgia/fisiopatología , Neuralgia/terapia , Ratas Sprague-Dawley , Prótesis e Implantes , Conducción Nerviosa/fisiología
13.
Pain Physician ; 27(5): E611-E618, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39087974

RESUMEN

BACKGROUND: Spinal cord stimulation is an established technique wherein diverse electrode types are strategically implanted within the spinal epidural space for neuromodulation. Traditional percutaneous puncture cylindrical electrodes (PEs) are predominantly implanted by interventionalists utilizing a percutaneous technique under the monitor of radiation, which is a nonvisualized procedure. OBJECTIVE: Our study aimed to assess the feasibility of percutaneous endoscope-assisted visualized implantation approach for PEs, delineating its specific merits and demerits compared to the traditional method. STUDY DESIGN: Laboratory study with Institutional Review Board Number B2023-056SETTING: Clinical Anatomy Research Center, Fudan University. METHODS: Eight freshly procured adult cadavers (4 women and 4 men) were operated on in this study. They were divided into either Group A or Group B, each encompassing 4 cadavers. Group A was subjected to endoscope-assisted PEs implantation, whereas Group B followed the conventional PEs implantation route.In both groups the operative time of introducer needles placement (OTNP), total operative time (TOT), fluoroscopy time of introducer needles placement (FTNP), and total fluoroscopy time (TFT) were documented and analyzed. Furthermore, the precise positioning of the PEs and any ensuing complications were systematically examined. RESULTS: Both Group A and Group B successfully executed all predetermined surgical steps. A total of 16 PEs were implanted (dual electrodes in each cadaver): 8 using the percutaneous endoscope-assisted visualized approach (Group A) and 8 via the traditional methodology (Group B). Group A's mean ± SD durations for OTNP, TOT, FTNP, and TFT were 10.25 ± 1.03 minutes, 31.63 ± 5.87 minutes, 4.58 ± 1.35 seconds, and 43.73 ± 14.46 seconds, respectively. In contrast, Group B exhibited mean ± SD times of 11.55 ± 2.81 minutes, 44.75 ± 7.85 minutes, 23.53 ± 4.16 seconds, and 66.30 ± 6.35 seconds for the same metrics. No discernible statistical difference in OTNP and TOT emerged between the groups. However, Group A demonstrated reduced durations for both FTNP and TFT compared to Group B. The optimal position of the PEs was verified via fluoroscopy, with no recorded instances of dura rupture. These outcomes suggest that this endoscope-assisted technique neither increases surgical time nor compromises efficacy. Instead, it leads to a marked reduction in fluoroscopic duration relative to the traditional methodology. LIMITATIONS: Anatomical study on a human cadaver, the quantity of cadavers, and the procedure's steep learning curve. CONCLUSION: With the assistance of percutaneous spinal endoscopy, introducer needles can be punctured through the ligamentum flavum at the anticipated interlaminar window locus under direct visualization, improving the convenience of the puncture and reducing fluoroscopic exposure. It is a viable alternative for surgeons from diverse training backgrounds to implant PEs, particularly benefiting those well-versed in endoscopic spine surgery techniques.


Asunto(s)
Cadáver , Electrodos Implantados , Estudios de Factibilidad , Estimulación de la Médula Espinal , Humanos , Estimulación de la Médula Espinal/métodos , Estimulación de la Médula Espinal/instrumentación , Femenino , Masculino , Endoscopía/métodos , Endoscopía/instrumentación
14.
Acta Neurochir (Wien) ; 166(1): 318, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39090257

RESUMEN

BACKGROUND AND PURPOSE: Deep brain stimulation (DBS) is a surgical procedure that has been used to treat a variety of neurological disorders including Parkinson's disease, essential tremor, and dystonia. While DBS is generally considered safe and effective, surgical site infections (SSIs) are a potential complication that can lead to significant morbidity and mortality. Our objective was to investigate the use of antibiotic-impregnated envelopes (AIEs) encasing implantable pulse generators (IPGs) to reduce the rate of infection at IPG sites and the costs. METHODS: We conducted a retrospective analysis at a single center encompassing all procedures involving the placement of Implantable Pulse Generators (IPG), including both initial insertions and replacement surgeries. The study period spanned from January 2017 to May 2024. Starting in 2020, the routine utilization of AIE became standard practice at our institute for both primary DBS implantation and IPG replacements. Surgical techniques remained consistent, pre- and post-operative antibiotic protocols were standardized throughout the study period and all cases were undertaken by a single surgeon. RESULTS: 178 patients were included and the overall incidence of IPG SSIs was found to be 1.7% (1 infection in 58 patients; 20 primary IPG/38 IPG replacements) among those who received an AIE compared to 5% (6 infections in 120 patients; 36 primary IPG/84 replacement IPG) in patients where no AIE was utilized. This resulted in an odds ratio for infection that was 2.9 times higher in the absence of AIE. The decrease in infection rates was observed in both primary and replacement IPG implants. Notably, over 80% of patients with IPG infection required surgical intervention. The use of AIE further resulted in significant cost savings. CONCLUSION: To our knowledge, this is the largest series reporting the efficacy of Antibiotic impregnated envelope (AIE) in modifying infection rates associated with both initial and replacement Deep Brain Stimulation (DBS) Implantable Pulse Generators (IPGs). The implementation of AIEs led to a decrease in the occurrence of IPG-related infections, observed across both primary implantations and replacement surgeries, with associated economic benefits.


Asunto(s)
Antibacterianos , Estimulación Encefálica Profunda , Infección de la Herida Quirúrgica , Humanos , Estimulación Encefálica Profunda/métodos , Infección de la Herida Quirúrgica/prevención & control , Infección de la Herida Quirúrgica/epidemiología , Estudios Retrospectivos , Antibacterianos/administración & dosificación , Antibacterianos/uso terapéutico , Masculino , Persona de Mediana Edad , Femenino , Anciano , Electrodos Implantados , Profilaxis Antibiótica/métodos , Adulto
15.
Ter Arkh ; 96(7): 675-682, 2024 Jul 30.
Artículo en Ruso | MEDLINE | ID: mdl-39106510

RESUMEN

AIM: To evaluate the efficacy and safety of the advanced technique for positioning the endocardial electrodes of a cardiac contractility modulation (CCM) device. MATERIALS AND METHODS: The CCM system was implanted in 100 patients, of which 60 CCM electrodes were positioned in the most optimal zones of myocardial perfusion, in particular, in the zone of the minor focal-scar/fibrotic lesion (the Summed Rest Score of 0 to 1-2, the intensity of the radiopharmaceutical at least 30%), and in 40 patients according to the standard procedure. Before the implantation of the CCM system, 60 patients underwent tomography (S-SPECT) of the myocardium with 99mTc-methoxy-isobutyl-isonitrile at rest to determine the most optimal electrode positioning zones and 100 patients underwent transthoracic echocardiography at baseline and after 12 months to assess the effectiveness of surgical treatment. RESULTS: Improved ventricular electrode positioning technique is associated with the best reverse remodeling of the left ventricular myocardium, especially in patients with ischemic chronic heart failure, with less radiation exposure to the surgeon and the patient, and without electrode-related complications. CONCLUSION: At the preoperative stage, it is recommended to perform a synchronized single-photon emission computed tomography of the myocardium with 99mTc-methoxy-isobutyl-isonitrile at rest before implantation of the CCM device to assess the presence of scar zones/myocardial fibrosis in the anterior and inferior septal regions of the interventricular septum of the left ventricle, followed by implantation of ventricular electrodes in the zone of the minor scar/fibrous lesion, which will allow to achieve optimal stimulation parameters, increase the effectiveness of CCM therapy, reduce the radiation exposure on medical personnel and the patient during surgery.


Asunto(s)
Fibrilación Atrial , Insuficiencia Cardíaca , Humanos , Masculino , Femenino , Persona de Mediana Edad , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/terapia , Fibrilación Atrial/fisiopatología , Fibrilación Atrial/terapia , Fibrilación Atrial/cirugía , Anciano , Resultado del Tratamiento , Electrodos Implantados , Volumen Sistólico/fisiología , Tomografía Computarizada de Emisión de Fotón Único/métodos , Ecocardiografía/métodos , Contracción Miocárdica/fisiología
16.
J Vis Exp ; (209)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39141557

RESUMEN

Chronic electrophysiological recordings in rodents have significantly improved our understanding of neuronal dynamics and their behavioral relevance. However, current methods for chronically implanting probes present steep trade-offs between cost, ease of use, size, adaptability, and long-term stability. This protocol introduces a novel chronic probe implant system for mice called the DREAM (Dynamic, Recoverable, Economical, Adaptable, and Modular), designed to overcome the trade-offs associated with currently available options. The system provides a lightweight, modular and cost-effective solution with standardized hardware elements that can be combined and implanted in straightforward steps and explanted safely for recovery and multiple reuse of probes, significantly reducing experimental costs. The DREAM implant system integrates three hardware modules: (1) a microdrive that can carry all standard silicon probes, allowing experimenters to adjust recording depth across a travel distance of up to 7 mm; (2) a three-dimensional (3D)-printable, open-source design for a wearable Faraday cage covered in copper mesh for electrical shielding, impact protection, and connector placement, and (3) a miniaturized head-fixation system for improved animal welfare and ease of use. The corresponding surgery protocol was optimized for speed (total duration: 2 h), probe safety, and animal welfare. The implants had minimal impact on animals' behavioral repertoire, were easily applicable in freely moving and head-fixed contexts, and delivered clearly identifiable spike waveforms and healthy neuronal responses for weeks of post-implant data collection. Infections and other surgery complications were extremely rare. As such, the DREAM implant system is a versatile, cost-effective solution for chronic electrophysiology in mice, enhancing animal well-being, and enabling more ethologically sound experiments. Its design simplifies experimental procedures across various research needs, increasing accessibility of chronic electrophysiology in rodents to a wide range of research labs.


Asunto(s)
Electrodos Implantados , Electrofisiología , Animales , Ratones , Electrofisiología/instrumentación , Electrofisiología/métodos , Conducta Animal/fisiología , Fenómenos Electrofisiológicos , Análisis Costo-Beneficio
17.
Otol Neurotol ; 45(8): 870-877, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39142309

RESUMEN

HYPOTHESIS: Evaluation of the Slim Modiolar (SM) electrode in temporal bones (TB) will elucidate the electrode's insertion outcomes. BACKGROUND: The SM electrode was designed for atraumatic insertion into the scala tympani, for ideal perimodiolar positioning and with a smaller caliber to minimize interference with cochlear biological processes. METHODS: The SM electrode was inserted into TBs via a cochleostomy. First, the axial force of insertion was measured. Next, TBs were inserted under fluoroscopy to study insertion dynamics, followed by histologic evaluation of electrode placement and cochlear trauma. A subset of TBs were inserted with the Contour Advance (CA) electrode for comparison. RESULTS: Sixteen of 22 insertions performed to measure the axial force of insertion had flat or near zero insertion force profiles. Six insertions had increased insertion forces, which were attributed to improper sheath depth before electrode insertion. Under real-time fluoroscopy, 23 of 25 TBs had uneventful insertion and good perimodiolar placement. There was 1 scala vestibuli insertion due to suboptimal cochleostomy position and 1 tip roll over related to premature electrode deployment. When compared with the CA electrode, 14 of 15 insertions with the SM electrode resulted in a more perimodiolar electrode position. No evidence of trauma was found in histologic evaluation of the 24 TBs with scala tympani insertions. CONCLUSION: TB evaluation revealed that the SM electrode exerts minimal insertion forces on cochlear structures, produces no histologic evidence of trauma, and reliably assumes the perimodiolar position. Nonstandard cochleostomy location, improper sheath insertion depth, or premature deployment of the electrode may lead to suboptimal outcomes.


Asunto(s)
Cóclea , Implantación Coclear , Implantes Cocleares , Hueso Temporal , Hueso Temporal/cirugía , Humanos , Implantación Coclear/métodos , Implantación Coclear/instrumentación , Cóclea/cirugía , Cóclea/diagnóstico por imagen , Rampa Timpánica/cirugía , Electrodos Implantados
18.
Oper Neurosurg (Hagerstown) ; 27(3): 295-302, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39145662

RESUMEN

BACKGROUND AND OBJECTIVES: Despite the well-established efficacy of deep brain stimulation (DBS) of the subthalamic nucleus (STN) for Parkinson's Disease (PD), there remains a subset of patients with only a moderate improvement in symptoms even with appropriate lead placement and optimal programming. In patients with persistent tremor or dyskinesias, one consideration is the addition of a second "rescue lead" to provide dual stimulation to primary and secondary targets to address the refractory component. This study aimed to assess all "rescue lead" cases from our institution and characterize the patients and their outcomes. METHODS: Records of all patients with PD treated at our institution between 2005 and 2023 were retrospectively reviewed. Clinical data of all patients treated with a second rescue lead to supplement a positive but inadequate initial DBS response were collected and reviewed. RESULTS: Of 670 patients with PD treated at our institution during the study period, 7 were managed with a rescue lead. All 7 were initially treated with STN DBS with a partial improvement in underlying symptoms, had confirmed appropriate lead placement, and underwent thorough programming. Four patients underwent rescue with a globus pallidus interna lead for persistent dyskinesias, all with subsequent improvement in their dyskinesias. Three patients had persistent tremors that were treated with a rescue ventrointermediate thalamus stimulation with subsequent improvement in tremor scores. There were no operative complications, and all patients tolerated dual stimulation. CONCLUSION: For a small subset of patients with PD with persistent dyskinesias or tremors after STN DBS despite optimized lead parameters and adequate lead placement, rescue lead placement offers an effective treatment option.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Estimulación Encefálica Profunda/métodos , Enfermedad de Parkinson/terapia , Masculino , Femenino , Persona de Mediana Edad , Anciano , Estudios Retrospectivos , Resultado del Tratamiento , Electrodos Implantados , Globo Pálido , Temblor/terapia , Temblor/etiología
20.
J Neural Eng ; 21(4)2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39029495

RESUMEN

Objective. Previous preclinical and clinical studies have demonstrated that pudendal nerve is a promising target for restoring bladder control. The spatial proximity between the pudendal nerve and its accompanying blood vessels in the pudendal canal provides an opportunity for endovascular neurostimulation, which is a less invasive approach compared to conventional chronically implanted electrodes. In this study, we investigated the feasibility of excitatory stimulation and kilohertz-frequency block of the compound pudendal nerve in sheep using a stent-mounted electrode array.Approach. In a set of acute animal experiments, a commercially available hexapolar electrode catheter was introduced in the unilateral internal pudendal artery to deliver bipolar electrical stimulation of the adjacent compound pudendal nerve. The catheter electrode was replaced with a custom-made stent-mounted electrode array and the stimulation sessions were repeated. Global electromyogram activity of the pelvic floor and related sphincter muscles was recorded with a monopolar electrode placed within the urethra concurrently.Main results. We demonstrated the feasibility of endovascular stimulation of the pudendal nerve with both electrode types. The threshold current of endovascular stimulation was influenced by electrode-nerve distance and electrode orientation. Increasing the axial inter-electrode distance significantly decreased threshold current. Endovascular kilohertz-frequency nerve block was possible with the electrode catheter.Significance. The present study demonstrated that endovascular stimulation of the pudendal nerve with the stent-mounted electrode array may be a promising less invasive alternative to conventional implantable electrodes, which has important clinical implications in the treatment of urinary incontinence. Endovascular blocking of pudendal nerve may provide an alternative solution to the bladder-sphincter dyssynergia problem in bladder management for people with spinal cord injury.


Asunto(s)
Electrodos Implantados , Procedimientos Endovasculares , Nervio Pudendo , Stents , Animales , Nervio Pudendo/fisiología , Ovinos , Procedimientos Endovasculares/métodos , Procedimientos Endovasculares/instrumentación , Femenino , Terapia por Estimulación Eléctrica/métodos , Terapia por Estimulación Eléctrica/instrumentación , Estimulación Eléctrica/métodos , Estimulación Eléctrica/instrumentación , Electromiografía/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA