Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biopolymers ; 115(5): e23601, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38779866

RESUMEN

Starch-based films offer the advantages of biodegradability, edibility, barrier properties, flexibility, and adaptability. This study compared the physicochemical properties of starch-based films by adding raw fish collagen and hydroxypropylmethylcellulose (HPMC). The tensile properties were evaluated, and the interaction with water was analyzed. Barrier properties, such as water vapor and oxygen permeability, were examined, and optical properties, such as gloss and good internal transmittance, were evaluated. The films were evaluated as coatings on Andean blackberries (Rubus glaucus Benth) for 2 weeks at 85% RH and 25°C. The results showed that the inclusion of collagen caused a reduction in the tensile strength and elastic modulus of the films. Also, the formulation with the highest collagen concentration (F7) exhibited the lowest weight loss and water vapor permeability, also it had the highest collagen concentration and showed the highest reduction in Xw and WAC, with values of 0.048 and 0.65 g water/g dry film, respectively. According to analyzing the optical properties, F1 presented the highest bright-ness and transmittance values, with 18GU and 82 nm values, respectively. In general, the films and coatings are alternatives to traditional packaging materials to prolong the shelf life of these fruits.


Asunto(s)
Colágeno , Derivados de la Hipromelosa , Permeabilidad , Rubus , Almidón , Resistencia a la Tracción , Colágeno/química , Rubus/química , Almidón/química , Derivados de la Hipromelosa/química , Animales , Embalaje de Alimentos , Vapor
2.
Carbohydr Polym ; 316: 121029, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37321726

RESUMEN

Hydroxypropyl methylcellulose (HPMC) belongs to the cellulose ether family that has hydroxyl groups substituted by hydrophobic methyl groups (DS) and hydrophilic hydroxypropyl groups (MS). Herein, the interactions between water molecules and cryogels prepared with HPMC in the presence and absence of a linear nonionic surfactant, as well as CaO2 microparticles, which react with water producing O2, were systematically investigated by sorption experiments and Time-Domain Nuclear Magnetic Resonance. Regardless of the DS and MS, most water molecules presented transverse relaxation time t2 typical of intermediate water and a small population of more tightly bound water. HPMC cryogels with the highest DS of 1.9 presented the slowest swelling rate of 0.519 ± 0.053 gwater/(g.s) and the highest contact angle values 85.250o ± 0.004o, providing the best conditions for a slow reaction between CaO2 and water. The presence of surfactant favored hydrophobic interactions that allowed the polar head of the surfactant to be exposed to the medium, resulting in a higher swelling rate and lower contact angle values. The HPMC with the highest MS presented the fastest swelling rate and the lowest contact angle. These findings are relevant for the formulations and reactions, where tuning the swelling kinetics is crucial for the final application.


Asunto(s)
Criogeles , Agua , Agua/química , Derivados de la Hipromelosa/química , Humectabilidad , Estructura Molecular , Metilcelulosa/química , Tensoactivos
3.
J Sci Food Agric ; 103(6): 3041-3049, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36545692

RESUMEN

BACKGROUND: Adding resistant starch (RS) to bread formulations is a promising way of increasing fiber content of white bread. However, the partial replacement of wheat flour (WF) by RS can lead to a decrease in technological quality. The objective of this study was to analyze the performance of hydroxypropylmethylcellulose and carboxymethylcellulose as improvers of wheat bread with a high level of replacement (30%) with maize RS. The levels of the modified celluloses were 1% and 1.5% (WF + RS basis), and a formulation without modified celluloses was used as control. Proofing time, loaf volume, crumb characteristics (porosity, texture), and bread staling parameters (hardness increase, moisture loss), among other attributes, were analyzed, and principal component analysis was applied to compare samples. RESULTS: The use of both modified celluloses was effective in improving the quality of breads. Specific volume and crumb porosity were enhanced, particularly at the 1.5% level. Breads with modified celluloses also allowed a higher retention of water and a better preservation of mechanical properties during storage. The principal component analysis projection graph for the first two principal components showed that samples with modified celluloses were clustered by the level of hydrocolloid addition rather than by the type of hydrocolloid used, although all the samples with modified celluloses were close to each other and distant from the control sample without hydrocolloids. CONCLUSION: The quality decrease resulting from the replacement of WF by a high level of RS can be greatly compensated by the use of structuring agents such as hydroxypropylmethylcellulose and carboxymethylcellulose. © 2022 Society of Chemical Industry.


Asunto(s)
Almidón Resistente , Pan , Carboximetilcelulosa de Sodio/análisis , Carboximetilcelulosa de Sodio/química , Triticum/química , Coloides , Almidón/química , Derivados de la Hipromelosa/química
4.
Food Chem ; 346: 128925, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33418416

RESUMEN

Mango is a tropical fruit presenting intense postharvest metabolism. In storage at room temperature, it presents a short shelf life due to the high respiratory rate, and consequent ripening, which limits the marketing period in distant regions. This study evaluated the effect of edible coatings of hydroxypropyl methylcellulose and beeswax in concentrations of 10, 20, and 40% in 'Palmer' mangoes stored for 15 days at 21 °C. The coatings controlled ripening, maintaining peel and pulp colors, firmness, soluble solids (SS), titratable acidity (TA), SS/TA ratio, sugars, ascorbic acid, phenolic compounds, flavonoids, ß-carotene, and antioxidant activity. Also, they reduced weight loss, oxidative stress, and the anthracnose (Colletotrichum gloeosporioides) incidence, without inducing alcohol dehydrogenase activity, which suggests that coated fruit did not ferment. Treatment with 20% beeswax was the most suitable for industrial applications, increasing in six days the mangoes shelf life.


Asunto(s)
Películas Comestibles , Conservación de Alimentos/métodos , Derivados de la Hipromelosa/química , Derivados de la Hipromelosa/farmacología , Mangifera/química , Ceras/química , Colletotrichum/efectos de los fármacos , Color , Frutas/química , Frutas/efectos de los fármacos , Mangifera/microbiología
5.
Int J Biol Macromol ; 164: 489-498, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32693130

RESUMEN

This study aimed to understand the effect of silver nanoparticles (AgNPs) on physiochemical properties of hydroxypropyl methylcellulose (HPMC) film-forming solutions (FFS) and nanocomposite films (NCF), as well as the efficacy of these materials to control the development of anthracnose caused by Colletotrichum gloeosporioides in papaya (Carica papaya L.). FFS were characterized by pH, particle size distribution, and rheology. In addition, thickness, morphology, water contact angle, barrier, chemical, crystallinity, thermal, and mechanical properties from NCF were investigated. The minimum inhibitory concentration of AgNPs against C. gloeosporioides was determined by in vitro test. FFS with 0.25 wt% of AgNPs were used as coatings in papayas inoculated with C. gloeosporioides. Finally, the physicochemical parameters were investigated during their storing up to 7 days at 10 °C, followed by 7 days at 20 °C. The presence of AgNPs impacted the thickness, morphology, moisture content, chemical bonds, crystalline structure, and thermal properties of films. Coatings with 0.25 wt% of AgNPs reduced the incidence and severity of C. gloeosporioides and avoided the weight loss of papayas during storing. The ripening of papaya occurred naturally, showing that the coating only delayed this process. Thus, HPMC-AgNPs coating can be an alternative to extend the papaya shelf life.


Asunto(s)
Antifúngicos/farmacología , Carica/microbiología , Colletotrichum/efectos de los fármacos , Derivados de la Hipromelosa/química , Plata/farmacología , Antifúngicos/química , Carica/efectos de los fármacos , Colletotrichum/patogenicidad , Películas Comestibles , Almacenamiento de Alimentos , Frutas/química , Nanopartículas del Metal , Pruebas de Sensibilidad Microbiana , Nanocompuestos , Enfermedades de las Plantas/prevención & control , Plata/química
6.
Carbohydr Polym ; 240: 116268, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32475558

RESUMEN

Poloxamer 407 (polox407) is widely studied as thermogelling polymer, transitioning to a gel state when warmed Polox407 forms weak hydrogels with rapid dissolution in excess solvent. This study reports the development of binary systems composed of polox407 and hydroxypropyl methylcellulose (HPMC) or sodium carboxymethylcellulose (NaCMC) aiming to improve the rheological and mechanical properties of the hydrogel. The interaction between polox407 and cellulose derivatives was studied, and their interaction with biological surfaces predicted. The carbohydrates affected the mechanical and rheological behavior of polox407 in different ways, dependent on polymer type, concentration, and temperature. Tsol/gel and rheological interaction parameters were useful to select the most suitable formulations for topical or local application. Most of the binary systems exhibited plastic behavior, thixotropy and viscoelastic properties. Appropriate formulations were identified for local application, such as 17.5/3; 17.5/4; 20/3 and 20/4 (%, w/w) for polox407/HPMC; and 17.5/1; 17.5/1.5; 20/1 and 20/1.5 (%, w/w) for polox407/NaCMC.


Asunto(s)
Carboximetilcelulosa de Sodio/química , Hidrogeles/química , Derivados de la Hipromelosa/química , Poloxámero/química , Adhesividad , Elasticidad , Reología , Temperatura
7.
Eur J Pharm Sci ; 131: 167-176, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30790703

RESUMEN

The present study developed and characterized microparticles formulations containing acyclovir and curcumin co-encapsulated in order to overcome the biopharmaceutical limitations and increase the antiviral effect of both drugs. The microparticles were prepared by a spray drying methodology following the ratio 1:3 (drug:polymer), which were made by hydroxypropylmethylcellulose (HPMC) and/or Eudragit® RS100 (EUD). The MP-1 formulation was composed of HPMC and EUD (1:1), MP-2 formulation was composed only of HPMC and MP-3 formulation was composed only of EUD. All formulations showed yielding around 50% and acceptable powder flowability. Drug content determination around 82.1-96.8% and 81.8-87% for acyclovir and curcumin, respectively. The microparticles had spherical shape, size within 11.5-15.3 µm, unimodal distribution and no chemical interactions among the components of the formulations. Of particular importance, the polymeric composition considerably influenced on the release profile of the drugs. The in vitro release experiment demonstrated that the microencapsulation provided a sustained release of acyclovir as well as increased the solubility of curcumin. Besides, mathematical modeling indicated that the experimental fit biexponential equation. Importantly, drugs microencapsulation promoted superior antiviral effect against BoVH-1 virus in comparison to their free form, which could be attributed to the improvement in the aforementioned physicochemical parameters. Therefore, these formulations could be promising technological drug carriers for acyclovir and curcumin, which highlight the great offering a potential alternative treatment for viral herpes.


Asunto(s)
Aciclovir , Antivirales , Curcumina , Portadores de Fármacos , Resinas Acrílicas/administración & dosificación , Resinas Acrílicas/química , Aciclovir/administración & dosificación , Aciclovir/química , Animales , Antivirales/administración & dosificación , Antivirales/química , Bovinos , Línea Celular , Curcumina/administración & dosificación , Curcumina/química , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/química , Composición de Medicamentos , Liberación de Fármacos , Sinergismo Farmacológico , Herpesvirus Bovino 1/efectos de los fármacos , Derivados de la Hipromelosa/administración & dosificación , Derivados de la Hipromelosa/química
8.
Molecules ; 24(2)2019 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-30634411

RESUMEN

The market trend for pitaya is increasing, although the preservation of the quality of this fruit after the harvest is challenging due to microbial decay, dehydration, and oxidation. In this work, the application of antimicrobial chitosan-based coatings achieved successful postharvest preservation of pitaya (Stenocereus pruinosus) during storage at 10 ± 2 °C with a relative humidity of 80 ± 5%. The solution of cross-linked chitosan with hydroxypropylmethylcellulose with entrapped Neem oil (16 g·L-1) displayed the best postharvest fruit characteristics. The reduction of physiological weight loss and fungal contamination, with an increased redness index and release of azadirachtin from the microencapsulated oil, resulted in up to a 15 day shelf life for this fruit. This postharvest procedure has the potential to increase commercial exploitation of fresh pitaya, owing to its good taste and high content of antioxidants.


Asunto(s)
Antifúngicos/farmacología , Quitosano/farmacología , Almacenamiento de Alimentos/métodos , Derivados de la Hipromelosa/química , Antifúngicos/química , Cactaceae/química , Cactaceae/efectos de los fármacos , Cactaceae/microbiología , Quitosano/química , Reactivos de Enlaces Cruzados/química , Conservación de Alimentos/métodos , Frutas/química , Frutas/efectos de los fármacos , Frutas/microbiología , Glicéridos/química , Limoninas/análisis , Terpenos/química
9.
Int J Pharm ; 556: 181-191, 2019 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-30553009

RESUMEN

Vaginal candidiasis is considered a frequent opportunistic mucosal infection and the second most common cause of vaginitis after bacterial vaginosis. In this work, different vaginal films based on chitosan, hydroxypropyl methylcellulose and blends of these polymers containing tioconazole, were developed and thoroughly characterized to improve the conventional therapeutics of vaginal candidiasis. Mechanical properties, swelling, adhesiveness, morphology, antifungal activity, hemocompatibility and cytotoxicity were evaluated. The drug solid state in the films was analyzed by thermal and X-ray diffraction analysis. Films showed homogeneous surfaces and presented similar mechanical properties and adhesiveness. Time-kill studies displayed that films were more active than both tioconazole pure drug and traditional tioconazole ovule against Candida albicans, which is probably related to the fact that tioconazole is in amorphous state inside the films. Although all formulations proved to be hemocompatible, films based only on chitosan exhibited a certain degree of cytotoxicity and therefore they should be avoided. The system based on chitosan-hydroxypropyl methylcellulose with 40% PEG 400 as plasticizer presented fast antimicrobial activity as well as the lowest swelling. Additionally, this formulation did not produce substantial hemolytic and cytotoxic effects, indicating that films based on chitosan-hydroxypropyl methylcellulose could be a promising alternative dosage form for the treatment of vaginal candidiasis.


Asunto(s)
Antifúngicos/administración & dosificación , Quitosano/química , Derivados de la Hipromelosa/química , Imidazoles/administración & dosificación , Adhesividad , Antifúngicos/química , Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Candidiasis Vulvovaginal/tratamiento farmacológico , Línea Celular Tumoral , Química Farmacéutica/métodos , Portadores de Fármacos/química , Femenino , Humanos , Imidazoles/química , Imidazoles/farmacología , Plastificantes/química , Polietilenglicoles/química , Difracción de Rayos X
10.
Eur J Pharm Sci ; 119: 179-188, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-29665401

RESUMEN

Several beneficial effects on the skin have been reported for coumestrol (COU), such as protection against photoaging and improvement of skin elasticity and thickness in postmenopausal women. However no reports on the effect of COU on wound healing were found. Nevertheless, COU has low aqueous solubility, which is a crucial limitation for biological tests. The present study was designed as a two-step experiment to evaluate the wound healing effect of COU. First, we used fibroblasts and the experimental in vitro artificial wound model, scratch assay, to compare the effects of COU free, dissolved in dimethyl sulfoxide (DMSO) or Dulbecco's modified Eagle's medium (DMEM), or associated with hydroxypropyl-ß-cyclodextrin (HPßCD). The 50 µM (66.1%) and 10 µM (56.3%) COU/HPßCD association induced cell proliferation and migration in inflicted wounds. Subsequently, the in vivo wound healing experimental model (Wistar rats) revealed that COU/HPßCD incorporated into hypromellose (HPMC) hydrogel had similar efficacy in wound healing in comparison to the positive control (Dersani®), with the advantage that 50% wound healing was achieved within a shorter period. In summary, the results successfully demonstrated, for the first time, the wound healing effect of COU/HPßCD incorporated into HPMC hydrogel and describe the feasibility of the biological tests with the use of HPßCD instead DMSO.


Asunto(s)
2-Hidroxipropil-beta-Ciclodextrina/administración & dosificación , Antiinflamatorios/administración & dosificación , Cumestrol/administración & dosificación , Hidrogeles/administración & dosificación , Derivados de la Hipromelosa/administración & dosificación , Cicatrización de Heridas/efectos de los fármacos , 2-Hidroxipropil-beta-Ciclodextrina/química , Animales , Antiinflamatorios/química , Cumestrol/química , Hidrogeles/química , Derivados de la Hipromelosa/química , Masculino , Fitoestrógenos/administración & dosificación , Fitoestrógenos/química , Ratas Wistar , Piel/efectos de los fármacos , Piel/lesiones
11.
Recent Pat Drug Deliv Formul ; 12(1): 65-74, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29345599

RESUMEN

AIMS AND BACKGROUND: The design and development of an effective medicine are, however, often faced with a number of challenges. One of them is the close relationship of drug's bioavailability with solubility, dissolution rate and permeability. The use of curcumin's (CUR) therapeutic potential is limited by its poor water solubility and low chemical stability. The purpose was to evaluate the effect of polymer and solid dispersion (SD) preparation techniques to enhance the aqueous solubility, dissolution rate and stability of the CUR. The recent patents on curcumin SD were reported as (i) curcumin with polyvinylpyrrolidone (CN20071 32500 20071214, WO2006022012 and CN20151414227 20150715), (ii) curcumin-zinc/polyvinylpyrrolidone (CN20151414227 20150715), (iii) curcumin-poloxamer 188 (CN2008171177 20080605), (iv) curcumin SD prepared by melting method (CN20161626746-20160801). MATERIALS AND METHODS: SD obtained by co-preciptation or microwave fusion and the physical mixture of CUR with Poloxamer-407 (P-407), Hydroxypropylmetylcellulose-K4M (HPMC K4M) and Polyvinylpyrrolidone-K30 (PVP-K30) were prepared at the ratios of 1:2; 1:1 and 2:1. The samples were evaluated by solubility, stability, dissolution rate and characterized by SEM, PXRD, DSC and FTIR. RESULTS: The solubility, stability (pH 7.0) and dissolution rate were significantly greater for SD (CUR:P-407 1:2). The PXRD,SEM and DSC indicated a change in the crystalline state of CUR. The enhancement of solubility was dependent on a combination of factors including the weight ratio, preparation techniques and carrier properties. The drug release data fitted well with the Weibull equation, indicating that the drug release was controlled by diffusion, polymer relaxation and erosion occurring simultaneously. CONCLUSION: Thus, these SDs, specifically CUR:P-407 1:2 w/w, can overcome the barriers of poor bioavailability to reap many beneficial properties.


Asunto(s)
Curcumina/administración & dosificación , Curcumina/química , Preparaciones de Acción Retardada , Liberación de Fármacos , Compuestos Epoxi/química , Óxido de Etileno/química , Patentes como Asunto , Polímeros/química , Cristalización , Estabilidad de Medicamentos , Derivados de la Hipromelosa/química , Poloxámero/química , Povidona/química , Solubilidad
12.
Molecules ; 22(9)2017 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-28891943

RESUMEN

α,ß Amyrin (ABAM) is a natural mixture of pentacyclic triterpenes that has shown a variety of pharmacological properties, including anti-inflammatory effect. ABAM is isolated from Burseraceae oilresins, especially from the Protium species, which is commonly found in the Brazilian Amazon. This work aimed to develop solid dispersions (SD) of ABAM with the following hydrophilic polymers: polyvinylpyrrolidone (PVP-K30), polyethylene glycol (PEG-6000) and hydroxypropylmethylcellulose (HPMC). The SDs were prepared by physical mixture (PM), kneading (KND) and rotary evaporation (RE) methods. In order to verify any interaction between ABAM and the hydrophilic polymers, physicochemical characterization was performed by Fourier transform infrared (FTIR), scanning electron microscopy (SEM), powder X-ray diffraction (XRD), thermogravimetry (TG) and differential scanning calorimetry (DSC) analysis. Furthermore, an in vitro anti-inflammatory assay was performed with ABAM alone and as SDs with the hydrophilic polymers. The results from the characterization analysis show that the SDs were able to induce changes in the physicochemical properties of ABAM, which suggests interaction with the polymer matrix. In vitro anti-inflammatory assay showed that the SDs improved the anti-inflammatory activity of ABAM and showed no cytotoxicity. In conclusion, this study showed the potential use of SDs as an efficient tool for improving the stability and anti-inflammatory activity of ABAM without cytotoxicity.


Asunto(s)
Antiinflamatorios no Esteroideos/química , Burseraceae/química , Lipopolisacáridos/antagonistas & inhibidores , Óxido Nítrico/antagonistas & inhibidores , Ácido Oleanólico/análogos & derivados , Antiinflamatorios no Esteroideos/aislamiento & purificación , Antiinflamatorios no Esteroideos/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Humanos , Derivados de la Hipromelosa/química , Inflamación , Lipopolisacáridos/farmacología , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Óxido Nítrico/biosíntesis , Ácido Oleanólico/química , Ácido Oleanólico/aislamiento & purificación , Ácido Oleanólico/farmacología , Aceites de Plantas/química , Polietilenglicoles/química , Povidona/química , Resinas de Plantas/química , Suspensiones
13.
Colloids Surf B Biointerfaces ; 156: 388-396, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28551573

RESUMEN

Magnetic scaffolds with different charge densities were prepared using magnetic nanoparticles (MNP) and xanthan gum (XG), a negatively charged polysaccharide, or hydroxypropyl methylcellulose (HPMC), an uncharged cellulose ether. XG chains were crosslinked with citric acid (cit), a triprotic acid, whereas HPMC chains were crosslinked either with cit or with oxalic acid (oxa), a diprotic acid. The scaffolds XG-cit, HPMC-cit and HPMC-oxa were characterized by scanning electron microscopy (SEM), inductively coupled plasma atomic emission spectroscopy (ICP-AES), superconducting quantum interference device (SQUID) magnetometry, contact angle and zeta-potential measurements. In addition, the flux of Ca2+ ions through the scaffolds was monitored by using a potentiometric microsensor. The adhesion and proliferation of murine fibroblasts (NIH/3T3) on XG-cit, XG-cit-MNP, HPMC-cit, HPMC-cit-MNP, HPMC-oxa and HPMC-oxa-MNP were evaluated by MTT assay. The magnetic scaffolds presented low coercivity (<25Oe). The surface energy values determined for all scaffolds were similar, ranging from 43mJm-2 to 46mJm-2. However, the polar component decreased after MNP incorporation and the dispersive component of surface energy increased in average 1mJm-2 after MNP incorporation. The permeation of Ca2+ ions through XG-cit-MNP was significantly higher in comparison with that on XG-cit and HPMC-cit scaffolds, but through HPMC-cit-MNP, HPMC-oxa and HPMC-oxa-MNP scaffolds it was negligible within the timescale of the experiment. The adhesion and proliferation of fibroblasts on the scaffolds followed the trend: XG-cit-MNP>XG-cit>HPMC-cit, HPMC-cit-MNP, HPMC-oxa, HPMC-oxa-MNP. A model was proposed to explain the cell behavior stimulated by the scaffold charge, MNP and Ca2+ ions permeation.


Asunto(s)
Calcio/metabolismo , Derivados de la Hipromelosa/farmacología , Campos Magnéticos , Nanopartículas de Magnetita/química , Polisacáridos Bacterianos/farmacología , Andamios del Tejido/química , Animales , Calcio/química , Adhesión Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Derivados de la Hipromelosa/química , Iones/química , Iones/metabolismo , Ratones , Estructura Molecular , Células 3T3 NIH , Polisacáridos Bacterianos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA