Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37.335
Filtrar
1.
Methods Mol Biol ; 2848: 135-150, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39240521

RESUMEN

Mammals do not possess the ability to spontaneously repair or regenerate damaged retinal tissue. In contrast to teleost fish which are capable of retina regeneration through the action of Müller glia, mammals undergo a process of reactive gliosis and scarring that inhibits replacement of lost neurons. Thus, it is important to discover novel methods for stimulating mammalian Müller glia to dedifferentiate and produce progenitor cells that can replace lost retinal neurons. Inducing an endogenous regenerative pathway mediated by Müller glia would provide an attractive alternative to stem cell injections or gene therapy approaches. Extracellular vesicles (EVs) are now recognized to serve as a novel form of cell-cell communication through the transfer of cargo from donor to recipient cells or by the activation of signaling cascades in recipient cells. EVs have been shown to promote proliferation and regeneration raising the possibility that delivery of EVs could be a viable treatment for visual disorders. Here, we provide protocols to isolate EVs for use in retina regeneration experiments.


Asunto(s)
Vesículas Extracelulares , Regeneración , Retina , Animales , Vesículas Extracelulares/metabolismo , Retina/metabolismo , Retina/citología , Retina/fisiología , Células Ependimogliales/metabolismo , Células Ependimogliales/citología , Ratones , Comunicación Celular , Proliferación Celular , Regeneración Nerviosa/fisiología
2.
Results Probl Cell Differ ; 73: 73-86, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39242375

RESUMEN

Plasmodesmata are conduits in plant cell walls that allow neighboring cells to communicate and exchange resources. Despite their central importance to plant development and physiology, our understanding of plasmodesmata is relatively limited compared to other subcellular structures. In recent years, technical advances in electron microscopy, mass spectrometry, and phylogenomics have illuminated the structure, composition, and evolution of plasmodesmata in diverse plant lineages. In parallel, forward genetic screens have revealed key signaling pathways that converge to regulate plasmodesmatal transport, including chloroplast-derived retrograde signaling, phytohormone signaling, and metabolic regulation by the conserved eukaryotic Target of Rapamycin kinase. This review summarizes our current knowledge of the structure, evolution, and regulation of plasmodesmatal transport in plants.


Asunto(s)
Pared Celular , Plantas , Plasmodesmos , Plasmodesmos/metabolismo , Pared Celular/metabolismo , Plantas/metabolismo , Transporte Biológico , Evolución Biológica , Transducción de Señal/fisiología , Comunicación Celular/fisiología
3.
Results Probl Cell Differ ; 73: 147-154, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39242378

RESUMEN

Intercellular communication is indispensable across multicellular organisms, and any aberration in this process can give rise to significant anomalies in developmental and homeostatic processes. Thus, a comprehensive understanding of its mechanisms is imperative for addressing human health-related concerns. Recent advances have expanded our understanding of intercellular communication by elucidating additional signaling modalities alongside established mechanisms. Notably, cellular protrusion-mediated long-range communication, characterized by physical contact through thin and elongated cellular protrusions between cells involved in signal transmission and reception, has emerged as a significant intercellular signaling paradigm. This chapter delves into the exploration of a signaling cellular protrusion termed 'airinemes,' discovered in the zebrafish skin. It covers their identified signaling roles and the cellular and molecular mechanisms that underpin their functionality.


Asunto(s)
Comunicación Celular , Pez Cebra , Animales , Comunicación Celular/fisiología , Humanos , Transducción de Señal/fisiología
4.
Results Probl Cell Differ ; 73: 155-171, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39242379

RESUMEN

Tunneling nanotubes (TNTs) are open-ended, membrane-encased extensions that connect neighboring cells. They have diameters up to 1 µm but are able to expand to convey large cargos. Lengths vary depending on the distance of the cells but have been reported to be capable of extending beyond 300 µm. They have actin cytoskeletons that are essential for their formation, and may or may not have microtubule networks. It is thought that thin TNTs lack microtubules, while thicker TNTs have microtubular highways that use motor proteins to convey materials, including proteins, mitochondria, and nanoparticles between cells. Specifically, the presence of dynein and myosin support trafficking of cargo in both directions. The purpose of these connections is to enable cells to work as a unit or to extend cell life by diluting cytotoxic agents or acquiring biological material needed to survive.


Asunto(s)
Comunicación Celular , Microtúbulos , Nanotubos , Microtúbulos/metabolismo , Humanos , Animales , Comunicación Celular/fisiología , Estructuras de la Membrana Celular
5.
Results Probl Cell Differ ; 73: 173-201, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39242380

RESUMEN

Communication among cells is vital in multicellular organisms. Various structures and mechanisms have evolved over time to achieve the intricate flow of material and information during this process. One such way of communication is through tunnelling membrane nanotubes (TNTs), which were initially described in 2004. These TNTs are membrane-bounded actin-rich cellular extensions, facilitating direct communication between distant cells. They exhibit remarkable diversity in terms of structure, morphology, and function, in which cytoskeletal proteins play an essential role. Biologically, TNTs play a crucial role in transporting membrane components, cell organelles, and nucleic acids, and they also present opportunities for the efficient transmission of bacteria and viruses, furthermore, may contribute to the dissemination of misfolded proteins in certain neurodegenerative diseases. Convincing results of studies conducted both in vitro and in vivo indicate that TNTs play roles in various biomedical processes, including cell differentiation, tissue regeneration, neurodegenerative diseases, immune response and function, as well as tumorigenesis.


Asunto(s)
Comunicación Celular , Humanos , Animales , Transporte Biológico , Comunicación Celular/fisiología , Nanotubos , Estructuras de la Membrana Celular
6.
Results Probl Cell Differ ; 73: 203-227, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39242381

RESUMEN

Tunneling nanotubes (TNTs) have emerged as intriguing structures facilitating intercellular communications across diverse cell types, which are integral to several biological processes, as well as participating in various disease progression. This review provides an in-depth analysis of TNTs, elucidating their structural characteristics and functional roles, with a particular focus on their significance within the brain environment and their implications in neurological and neurodegenerative disorders. We explore the interplay between TNTs and neurological diseases, offering potential mechanistic insights into disease progression, while also highlighting their potential as viable therapeutic targets. Additionally, we address the significant challenges associated with studying TNTs, from technical limitations to their investigation in complex biological systems. By addressing some of these challenges, this review aims to pave the way for further exploration into TNTs, establishing them as a central focus in advancing our understanding of neurodegenerative disorders.


Asunto(s)
Encéfalo , Comunicación Celular , Enfermedades Neurodegenerativas , Humanos , Encéfalo/fisiología , Animales , Comunicación Celular/fisiología , Nanotubos/química , Estructuras de la Membrana Celular
7.
Results Probl Cell Differ ; 73: 229-247, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39242382

RESUMEN

The retina transforms light into electrical signals, which are sent to the brain via the optic nerve to form our visual perception. This complex signal processing is performed by the retinal neuron and requires a significant amount of energy. Since neurons are unable to store energy, they must obtain glucose and oxygen from the bloodstream to produce energy to match metabolic needs. This process is called neurovascular coupling (NVC), and it is based on a precise mechanism that is not totally understood. The discovery of fine tubular processes termed tunnelling nanotubes (TNTs) set a new type of cell-to-cell communication. TNTs are extensions of the cellular membrane that allow the transfer of material between connected cells. Recently, they have been reported in the brain and retina of living mice, where they connect pericytes, which are vascular mural cells that regulate vessel diameter. Accordingly, these TNTs were termed interpericyte tunnelling nanotubes (IPTNTs), which showed a vital role in blood delivery and NVC. In this chapter, we review the involvement of TNTs in NVC and discuss their implications in retinal neurodegeneration.


Asunto(s)
Comunicación Celular , Retina , Animales , Humanos , Retina/fisiología , Comunicación Celular/fisiología , Pericitos/fisiología , Nanotubos , Ratones , Acoplamiento Neurovascular/fisiología , Vasos Retinianos/fisiología , Estructuras de la Membrana Celular
8.
Results Probl Cell Differ ; 73: 249-297, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39242383

RESUMEN

The landscape of exosome research has undergone a significant paradigm shift, with a departure from early conceptions of exosomes as vehicles for cellular waste disposal towards their recognition as integral components of cellular communication with therapeutic potential. This chapter presents an exhaustive elucidation of exosome biology, detailing the processes of exosome biogenesis, release, and uptake, and their pivotal roles in signal transduction, tissue repair, regeneration, and intercellular communication. Additionally, the chapter highlights recent innovations and anticipates future directions in exosome research, emphasizing their applicability in clinical settings. Exosomes have the unique ability to navigate through tissue spaces to enter the circulatory system, positioning them as key players in tissue repair. Their contributory role in various processes of tissue repair, although in the nascent stages of investigation, stands out as a promising area of research. These vesicles function as a complex signaling network for intracellular and organ-level communication, critical in both pathological and physiological contexts. The chapter further explores the tissue-specific functionality of exosomes and underscores the advancements in methodologies for their isolation and purification, which have been instrumental in expanding the scope of exosome research. The differential cargo profiles of exosomes, dependent on their cellular origin, position them as prospective diagnostic biomarkers for tissue damage and regenerative processes. Looking ahead, the trajectory of exosome research is anticipated to bring transformative changes to biomedical fields. This includes advancing diagnostic and prognostic techniques that utilize exosomes as non-invasive biomarkers for a plethora of diseases, such as cancer, neurodegenerative, and cardiovascular conditions. Additionally, engineering exosomes through alterations of their native content or surface properties presents a novel frontier, including the synthesis of artificial or hybrid variants with enhanced functional properties. Concurrently, the ethical and regulatory frameworks surrounding exosome research, particularly in clinical translation, will require thorough deliberation. In conclusion, the diverse aspects of exosome research are coalescing to redefine the frontiers of diagnostic and therapeutic methodologies, cementing its importance as a discipline of considerable consequence in the biomedical sciences.


Asunto(s)
Comunicación Celular , Exosomas , Exosomas/metabolismo , Humanos , Comunicación Celular/fisiología , Animales , Cicatrización de Heridas/fisiología , Transducción de Señal/fisiología
9.
Results Probl Cell Differ ; 73: 353-373, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39242386

RESUMEN

Tunneling nanotubes (TNTs) are thin, membranous protrusions that connect cells and allow for the transfer of various molecules, including proteins, organelles, and genetic material. TNTs have been implicated in a wide range of biological processes, including intercellular communication, drug resistance, and viral transmission. In cancer, they have been investigated more deeply over the past decade for their potentially pivotal role in tumor progression and metastasis. TNTs, as cell contact-dependent protrusions that form at short and long distances, enable the exchange of signaling molecules and cargo between cancer cells, facilitating communication and coordination of their actions. This coordination induces a synchronization that is believed to mediate the TNT-directed evolution of drug resistance by allowing cancer cells to coordinate, including through direct expulsion of chemotherapeutic drugs to neighboring cells. Despite advances in the overall field of TNT biology since the first published report of their existence in 2004 (Rustom A, Saffrich R, Markovic I, Walther P, Gerdes HH, Science. 303:1007-10, 2004), the mechanisms of formation and components vital for the function of TNTs are complex and not yet fully understood. However, several factors have been implicated in their regulation, including actin polymerization, microtubule dynamics, and signaling pathways. The discovery of TNT-specific components that are necessary and sufficient for their formation, maintenance, and action opens a new potential avenue for drug discovery in cancer. Thus, targeting TNTs may offer a promising therapeutic strategy for cancer treatment. By disrupting TNT formation or function, it may be possible to inhibit tumor growth and metastasis and overcome drug resistance.


Asunto(s)
Resistencia a Antineoplásicos , Neoplasias , Humanos , Animales , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Comunicación Celular , Nanotubos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Estructuras de la Membrana Celular
10.
Results Probl Cell Differ ; 73: 301-326, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39242384

RESUMEN

Cell-to-cell interactions are essential for proper development, homeostasis, and complex syncytia/organ formation and function. Intercellular communication are mediated by multiple mechanisms including soluble mediators, adhesion molecules and specific mechanisms of cell to cell communication such as Gap junctions (GJ), tunneling nanotubes (TNT), and exosomes. Only recently, has been discovered that TNTs and exosomes enable the exchange of large signaling molecules, RNA, viral products, antigens, and organelles opening new avenues of research and therapeutic approaches. The focus of this review is to summarize these recent findings in physiologic and pathologic conditions.


Asunto(s)
Comunicación Celular , Neoplasias , Humanos , Neoplasias/inmunología , Neoplasias/metabolismo , Comunicación Celular/fisiología , Animales , Uniones Comunicantes/metabolismo , Exosomas/metabolismo
11.
Results Probl Cell Differ ; 73: 435-474, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39242389

RESUMEN

Viruses are vehicles to exchange genetic information and proteins between cells and organisms by infecting their target cells either cell-free, or depending on cell-cell contacts. Several viruses like certain retroviruses or herpesviruses transmit by both mechanisms. However, viruses have also evolved the properties to exchange proteins between cells independent of viral particle formation. This exchange of viral proteins can be directed to target cells prior to infection to interfere with restriction factors and intrinsic immunity, thus, making the target cell prone to infection. However, also bystander cells, e.g. immune cell populations, can be targeted by viral proteins to dampen antiviral responses. Mechanistically, viruses exploit several routes of cell-cell communication to exchange viral proteins like the formation of extracellular vesicles or the formation of long-distance connections like tunneling nanotubes. Although it is known that viral nucleic acids can be transferred between cells as well, this chapter concentrates on viral proteins of human pathogenic viruses covering all Baltimore classes and summarizes our current knowledge on intercellular transport of viral proteins between cells.


Asunto(s)
Proteínas Virales , Humanos , Proteínas Virales/metabolismo , Animales , Transporte Biológico , Virus/inmunología , Virus/metabolismo , Comunicación Celular
12.
Results Probl Cell Differ ; 73: 327-352, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39242385

RESUMEN

Among multiple pathways of intercellular communication operative in multicellular organisms, the trafficking of extracellular vesicles (EVs) and particles (EP) represents a unique mode of cellular information exchange with emerging roles in health and disease, including cancer. A distinctive feature of EV/EP-mediated cell-cell communication is that it involves simultaneous short- or long-range transfer of numerous molecular constituents (cargo) from donor to recipient cells. EV/EP uptake by donor cells elicits signalling or metabolic responses, or else leads to EV-re-emission or degradation. EVs are heterogeneous membranous structures released from cells via increasingly defined mechanisms involving either formation of multivesicular endosomes (exosomes) or budding from the plasma membrane (ectosomes). EPs (exomeres, supermeres) are membraneless complex particles, smaller than EVs and of less defined biogenesis and function. EVs/EPs carry complex assemblies of proteins, lipids and nucleic acids (RNA, DNA), which they shuttle into intercellular milieu, body fluids and recipient cells, via surface contact, fusion and different forms of internalization (endocytosis, micropinocytosis). While the physiological functions of EVs/EPs communication pathways continue to be investigated, their roles in cancer are increasingly well-defined. For example, EVs are involved in the transmission of cancer-specific molecular cargo, including mutant, oncogenic, transforming, or regulatory macromolecules to indolent, or normal cells, sometimes triggering their quasi-transformation-like states, or phenotypic alterations. Conversely, a reciprocal and avid uptake of stromal EVs by cancer cells may be responsible for modulating their oncogenic repertoire, as exemplified by the angiocrine effects of endothelial EVs influencing cancer cell stemness. EV exchanges during cancer progression have also been implicated in the formation of tumour stroma, angiogenesis and non-angiogenic neovascularization processes, immunosuppression, colonization of metastatic organ sites (premetastatic niche), paraneoplastic and systemic pathologies (thrombosis, diabetes, hepatotoxicity). Thus, an EV/EP-mediated horizontal transfer of cellular content emerges as a new dimension in cancer pathogenesis with functional, diagnostic, and therapeutic implications.


Asunto(s)
Comunicación Celular , Vesículas Extracelulares , Neoplasias , Humanos , Neoplasias/metabolismo , Vesículas Extracelulares/metabolismo , Comunicación Celular/fisiología , Animales , Transporte Biológico
13.
Results Probl Cell Differ ; 73: 419-434, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39242388

RESUMEN

Tunneling nanotubes (TNTs) are cellular connections, which represent a novel route for cell-to-cell communication. Strong evidence points to a role for TNTs in the intercellular transfer of signals, molecules, organelles, and pathogens, involving them in many cellular functions. In myeloid cells (e.g., monocytes/macrophages, dendritic cells, and osteoclasts), intercellular communication via TNT contributes to their differentiation and immune functions, by favoring material and pathogen transfer, as well as cell fusion. This chapter addresses the complexity of the definition and characterization of TNTs in myeloid cells, the different processes involved in their formation, their existence in vivo, and finally their function(s) in health and infectious diseases, with the example of HIV-1 infection.


Asunto(s)
Comunicación Celular , Células Mieloides , Humanos , Comunicación Celular/fisiología , Animales , Infecciones por VIH/inmunología , VIH-1/fisiología , Estructuras de la Membrana Celular , Nanotubos
14.
Results Probl Cell Differ ; 73: 375-417, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39242387

RESUMEN

Multicellular organisms require cell-to-cell communication to maintain homeostasis and thrive. For cells to communicate, a network of filamentous, actin-rich tunneling nanotubes (TNTs) plays a pivotal role in facilitating efficient cell-to-cell communication by connecting the cytoplasm of adjacent or distant cells. Substantial documentation indicates that diverse cell types employ TNTs in a sophisticated and intricately organized fashion for both long and short-distance communication. Paradoxically, several pathogens, including viruses, exploit the structural integrity of TNTs to facilitate viral entry and rapid cell-to-cell spread. These pathogens utilize a "surfing" mechanism or intracellular transport along TNTs to bypass high-traffic cellular regions and evade immune surveillance and neutralization. Although TNTs are present across various cell types in healthy tissue, their magnitude is increased in the presence of viruses. This heightened induction significantly amplifies the role of TNTs in exacerbating disease manifestations, severity, and subsequent complications. Despite significant advancements in TNT research within the realm of infectious diseases, further studies are imperative to gain a precise understanding of TNTs' roles in diverse pathological conditions. Such investigations are essential for the development of novel therapeutic strategies aimed at leveraging TNT-associated mechanisms for clinical applications. In this chapter, we emphasize the significance of TNTs in the life cycle of viruses, showcasing the potential for a targeted approach to impede virus-host cell interactions during the initial stages of viral infections. This approach holds promise for intervention and prevention strategies.


Asunto(s)
Comunicación Celular , Humanos , Animales , Nanotubos/química , Internalización del Virus , Estructuras de la Membrana Celular
15.
Results Probl Cell Differ ; 73: 131-146, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39242377

RESUMEN

Trogocytosis, an active cellular process involving the transfer of plasma membrane and attached cytosol during cell-to-cell contact, has been observed prominently in CD4 T cells interacting with antigen-presenting cells carrying antigen-loaded major histocompatibility complex (MHC) class II molecules. Despite the inherent absence of MHC class II molecules in CD4 T cells, they actively acquire these molecules from encountered antigen-presenting cells, leading to the formation of antigen-loaded MHC class II molecules-dressed CD4 T cells. Subsequently, these dressed CD4 T cells engage in antigen presentation to other CD4 T cells, revealing a dynamic mechanism of immune communication. The transferred membrane proteins through trogocytosis retain their surface localization, thereby altering cellular functions. Concurrently, the donor cells experience a loss of membrane proteins, resulting in functional changes due to the altered membrane properties. This chapter provides a focused exploration into trogocytosis-mediated transfer of immune regulatory molecules and its consequential impact on diverse immune responses.


Asunto(s)
Células Presentadoras de Antígenos , Linfocitos T CD4-Positivos , Trogocitosis , Humanos , Animales , Comunicación Celular , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Células Presentadoras de Antígenos/citología , Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/metabolismo
16.
Traffic ; 25(9): e12951, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39238078

RESUMEN

Mitochondria, the dynamic organelles responsible for energy production and cellular metabolism, have the metabolic function of extracting energy from nutrients and synthesizing crucial metabolites. Nevertheless, recent research unveils that intercellular mitochondrial transfer by tunneling nanotubes, tumor microtubes, gap junction intercellular communication, extracellular vesicles, endocytosis and cell fusion may regulate mitochondrial function within recipient cells, potentially contributing to disease treatment, such as nonalcoholic steatohepatitis, glioblastoma, ischemic stroke, bladder cancer and neurodegenerative diseases. This review introduces the principal approaches to intercellular mitochondrial transfer and examines its role in various diseases. Furthermore, we provide a comprehensive overview of the inhibitors and activators of intercellular mitochondrial transfer, offering a unique perspective to illustrate the relationship between intercellular mitochondrial transfer and diseases.


Asunto(s)
Mitocondrias , Humanos , Mitocondrias/metabolismo , Animales , Comunicación Celular , Vesículas Extracelulares/metabolismo , Transporte Biológico , Endocitosis/fisiología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/terapia
17.
Front Immunol ; 15: 1423784, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39238645

RESUMEN

Diabetic nephropathy, a common and severe complication of diabetes, is the leading cause of end-stage renal disease, ultimately leading to renal failure and significantly affecting the prognosis and lives of diabetics worldwide. However, the complexity of its developmental mechanisms makes treating diabetic nephropathy a challenging task, necessitating the search for improved therapeutic targets. Intercellular communication underlies the direct and indirect influence and interaction among various cells within a tissue. Recently, studies have shown that beyond traditional communication methods, tunnel nanotubes, exosomes, filopodial tip vesicles, and the fibrogenic niche can influence pathophysiological changes in diabetic nephropathy by disrupting intercellular communication. Therefore, this paper aims to review the varied roles of intercellular communication in diabetic nephropathy, focusing on recent advances in this area.


Asunto(s)
Comunicación Celular , Nefropatías Diabéticas , Exosomas , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/metabolismo , Humanos , Animales , Exosomas/metabolismo
18.
Pathol Res Pract ; 262: 155576, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39232286

RESUMEN

Cancer-associated fibroblasts are the most important cellular component of the tumor microenvironment, controlling cancer progression and therapeutic response. These cells in the tumor microenvironment regulate tumor progression and development as oncogenic or tumor suppressor agents. However, the mechanisms by which CAFs communicate with cancer cells remain to investigate. Here, we review evidence that extracellular vesicles, particularly exosomes, serve as vehicles for the intercellular transfer of bioactive cargos, notably microRNAs and long non-coding RNAs, from CAFs to cancer cells. We try to highlight molecular pathways of non-coding RNAs and the interaction among these molecules. Together, these findings elucidate a critical exosome-based communication axis by which CAFs create mostly a supportive pro-tumorigenic microenvironment and highlight therapeutic opportunities for disrupting this intercellular crosstalk.


Asunto(s)
Fibroblastos Asociados al Cáncer , Progresión de la Enfermedad , Exosomas , Neoplasias , Microambiente Tumoral , Humanos , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Exosomas/metabolismo , Exosomas/genética , Neoplasias/patología , Neoplasias/genética , Neoplasias/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Animales , Comunicación Celular , MicroARNs/genética , MicroARNs/metabolismo , ARN no Traducido/genética , ARN no Traducido/metabolismo
19.
Life Sci Alliance ; 7(11)2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39237366

RESUMEN

Intercellular protein-protein interactions (PPIs) have pivotal roles in biological functions and diseases. Membrane proteins are therefore a major class of drug targets. However, studying such intercellular PPIs is challenging because of the properties of membrane proteins. Current methods commonly use purified or modified proteins that are not physiologically relevant and hence might mischaracterize interactions occurring in vivo. Here, we describe Cell-Int: a cell interaction assay for studying plasma membrane PPIs. The interaction signal is measured through conjugate formation between two populations of cells each expressing either a ligand or a receptor. In these settings, membrane proteins are in their native environment thus being physiologically relevant. Cell-Int has been applied to the study of diverse protein partners, and enables to investigate the inhibitory potential of blocking antibodies, as well as the retargeting of fusion proteins for therapeutic development. The assay was also validated for screening applications and could serve as a platform for identifying new protein interactors.


Asunto(s)
Comunicación Celular , Membrana Celular , Proteínas de la Membrana , Unión Proteica , Mapeo de Interacción de Proteínas , Humanos , Proteínas de la Membrana/metabolismo , Mapeo de Interacción de Proteínas/métodos , Membrana Celular/metabolismo , Animales , Células HEK293 , Bioensayo/métodos
20.
Nat Commun ; 15(1): 7010, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39237549

RESUMEN

Kidney injury disrupts the intricate renal architecture and triggers limited regeneration, together with injury-invoked inflammation and fibrosis. Deciphering the molecular pathways and cellular interactions driving these processes is challenging due to the complex tissue structure. Here, we apply single cell spatial transcriptomics to examine ischemia-reperfusion injury in the mouse kidney. Spatial transcriptomics reveals injury-specific and spatially-dependent gene expression patterns in distinct cellular microenvironments within the kidney and predicts Clcf1-Crfl1 in a molecular interplay between persistently injured proximal tubule cells and their neighboring fibroblasts. Immune cell types play a critical role in organ repair. Spatial analysis identifies cellular microenvironments resembling early tertiary lymphoid structures and associated molecular pathways. Collectively, this study supports a focus on molecular interactions in cellular microenvironments to enhance understanding of injury, repair and disease.


Asunto(s)
Comunicación Celular , Microambiente Celular , Riñón , Regeneración , Daño por Reperfusión , Transcriptoma , Animales , Ratones , Regeneración/genética , Daño por Reperfusión/metabolismo , Daño por Reperfusión/genética , Daño por Reperfusión/patología , Riñón/metabolismo , Riñón/patología , Ratones Endogámicos C57BL , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/patología , Masculino , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Análisis de la Célula Individual , Fibrosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA