Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.911
Filtrar
1.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 36(7): 768-773, 2024 Jul.
Artículo en Chino | MEDLINE | ID: mdl-39223895

RESUMEN

Sepsis is a common and severe infectious disease, and its associated coagulation dysfunction can cause disseminated intravascular coagulation (DIC) and organ failure, leading to a significant increase in mortality. Pyroptosis is a form of programmed cell death mediated by caspase-1 in the classical pathway and caspase-4/caspase-5/caspase-11 in the non-classical pathway, along with the effector molecule gasdermin (GSDM) family. Recent studies have shown that pyroptosis plays an important role in the development of coagulation disorders in sepsis. Pyroptosis leads to the formation of cytoplasmic membrane pores, cell swelling and membrane rupture, as well as the release and enhanced activity of procoagulant contents, strongly promoting the development of systemic coagulation activation and DIC in sepsis. Therefore, exploring the role and molecular mechanisms of pyroptosis in sepsis-related coagulation disorders is of great significance for the prevention and treatment of sepsis. This article provides a review of the mechanisms involved in pyroptosis and coagulation disorders in sepsis, as well as the role and mechanisms of pyroptosis in sepsis-associated coagulation disorders to provide new ideas for sepsis related research.


Asunto(s)
Trastornos de la Coagulación Sanguínea , Coagulación Intravascular Diseminada , Piroptosis , Sepsis , Sepsis/metabolismo , Sepsis/complicaciones , Sepsis/fisiopatología , Humanos , Trastornos de la Coagulación Sanguínea/etiología , Coagulación Intravascular Diseminada/etiología , Caspasas/metabolismo , Caspasa 1/metabolismo , Animales
2.
Sci Rep ; 14(1): 21180, 2024 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261543

RESUMEN

Minocycline (Min), as an antibiotic, possesses various beneficial properties such as anti-inflammatory, antioxidant, and anti-apoptotic effects. Despite these known qualities, the precise cardioprotective effect and mechanism of Min in protecting against sepsis-induced cardiotoxicity (SIC) remain unspecified. To address this, our study sought to assess the protective effects of Min on the heart. Lipopolysaccharide (LPS) was utilized to establish a cardiotoxicity model both in vivo and in vitro. Min was pretreated in the models. In the in vivo setting, evaluation of heart tissue histopathological injury was performed using hematoxylin and eosin (H&E) staining and TUNEL. Immunohistochemistry (IHC) was employed to evaluate the expression levels of NLRP3 and Caspase-1 in the heart tissue of mice. During in vitro experiments, the viability of H9c2 cells was gauged utilizing the CCK8 assay kit. Intracellular ROS levels in H9c2 cells were quantified using a ROS assay kit. Both in vitro and in vivo settings were subjected to measurement of oxidative stress indexes, encompassing glutathione (GSH), malondialdehyde (MDA), and superoxide dismutase (SOD) levels. Additionglly, myocardial injury markers like lactate dehydrogenase (LDH) and creatine kinase MB (CK-MB) activity were quantified using appropriate assay kits. Western blotting (WB) analysis was conducted to detect the expression levels of NOD-like receptor protein-3 (NLRP3), caspase-1, IL-18, and IL-1ß, alongside apoptosis-related proteins such as Bcl-2 and Bax, and antioxidant proteins including superoxide dismutase-1 (SOD-1) and antioxidant proteins including superoxide dismutase-1 (SOD-2), both in H9c2 cells and mouse heart tissues. In vivo, Min was effective in reducing LPS-induced inflammation in cardiac tissue, preventing cell damage and apoptosis in cardiomyocytes. The levels of LDH and CK-MB were significantly reduced with Min treatment. In vitro studies showed that Min improved the viability of H9C2 cells, reduced apoptosis, and decreased ROS levels in these cells. Further analysis indicated that Min decreased the protein levels of NLRP3, Caspase-1, IL-18, and IL-1ß, while increasing the levels of SOD-1 and SOD-2 both in vivo and in vitro. Min alleviates LPS-induced SIC by suppressing the NLRP3/Caspase-1 signalling pathway in vivo and in vitro.


Asunto(s)
Cardiotoxicidad , Caspasa 1 , Lipopolisacáridos , Minociclina , Proteína con Dominio Pirina 3 de la Familia NLR , Transducción de Señal , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Transducción de Señal/efectos de los fármacos , Lipopolisacáridos/toxicidad , Caspasa 1/metabolismo , Cardiotoxicidad/metabolismo , Cardiotoxicidad/tratamiento farmacológico , Ratones , Minociclina/farmacología , Masculino , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Línea Celular , Apoptosis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Ratones Endogámicos C57BL , Ratas
3.
Mol Pain ; 20: 17448069241285357, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39237258

RESUMEN

Background: IL-1ß plays a critical role in the pathophysiology of neuroinflammation. The presence of cleaved IL-1ß (cIL-1ß) in the neurons of the dorsal root ganglion (DRG) implicates its function in biological signaling arising from the sensory neuron. This study was conducted to analyze the role of IL-1ß in nociceptive transduction after tissue injury. Methods: A plantar incision was made in C57BL/6 mice, following which immunohistochemistry and RNA scope in situ hybridization were performed at various time points to analyze cIL-1ß, caspase-1, and IL-1 receptor 1 (IL-1R1) expression in the DRG. The effect of intrathecal administration of a caspase-1 inhibitor or regional anesthesia using local anesthetics on cIL-1ß expression and pain hypersensitivity was analyzed by immunohistochemistry and behavioral analysis. ERK phosphorylation was also analyzed to investigate the effect of IL-1ß on the activity of spinal dorsal horn neurons. Results: cIL-1ß expression was significantly increased in caspase-1-positive DRG neurons 5 min after the plantar incision. Intrathecal caspase-1 inhibitor treatment inhibited IL-1ß cleavage and pain hypersensitivity after the plantar incision. IL-1R1 was also detected in the DRG neurons, although the majority of IL-1R1-expressing neurons lacked cIL-1ß expression. Regional anesthesia using local anesthetics prevented cIL-1ß processing. Plantar incision-induced phosphorylation of ERK was inhibited by the caspase-1 inhibitor. Conclusion: IL-1ß in the DRG neuron undergoes rapid cleavage in response to tissue injury in an activity-dependent manner. Cleaved IL-1ß causes injury-induced functional activation of sensory neurons and pain hypersensitivity. IL-1ß in the primary afferent neurons is involved in physiological nociceptive signal transduction.


Asunto(s)
Ganglios Espinales , Interleucina-1beta , Ratones Endogámicos C57BL , Animales , Interleucina-1beta/metabolismo , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Masculino , Caspasa 1/metabolismo , Hiperalgesia/metabolismo , Neuronas/metabolismo , Neuronas/patología , Neuronas/efectos de los fármacos , Ratones , Fosforilación/efectos de los fármacos , Receptores Tipo I de Interleucina-1/metabolismo , Células del Asta Posterior/metabolismo , Células del Asta Posterior/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo
4.
Life Sci ; 354: 122966, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39147320

RESUMEN

Aberrant activation of the NLRP3 inflammasome is recognized to induce a chronic inflammatory response in the liver, ultimately leading to hepatic fibrosis. HSP90 is suggested to regulate NLRP3 activation and its downstream signaling. This study is the first to explore the potential therapeutic role of pimitespib in mitigating liver fibrosis in rats. The results of the study revealed that pimitespib effectively suppressed hepatic inflammation and fibrogenesis by modulating HSP90's control over the NFκB/NLRP3/caspase-1 axis. In vitro experiments demonstrated that pimitespib reduced LDH levels and increased hepatocyte survival, whereas in vivo, it prolonged the survival of rats with hepatic fibrosis. Additionally, pimitespib exhibited improvements in the function and microscopic characteristics of rat livers. Pimitespib effectively inhibited NFκB, which serves as the priming signal for NLRP3 activation. Pimitespib's inhibitory effect on NLRP3, identified as an HSP90 client protein, plays a central role in the observed anti-fibrotic effect. The simultaneous inhibition of both priming and activation signals of NLRP3 by pimitespib led to a reduction in caspase-1 activity and subsequent suppression of the N-terminal fragment of gasdermin D, ultimately constraining hepatocyte pyroptotic cell death. These diverse effects were associated with a decrease in the transcription of inflammatory mediators IL-1ß, IL-18, and TNF-α, as well as the fibrogenic mediators TGF-ß, TIMP-1, PDGF-BB, and Col1a1. Moreover, pimitespib induced the expression of HSP70, which could further contribute to the repression of fibrosis development. In summary, our findings provide an evolutionary perspective on managing liver fibrosis, positioning pimitespib as a promising candidate for anti-inflammatory and antifibrotic therapy.


Asunto(s)
Caspasa 1 , Proteínas HSP90 de Choque Térmico , Cirrosis Hepática , FN-kappa B , Proteína con Dominio Pirina 3 de la Familia NLR , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ratas , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Cirrosis Hepática/tratamiento farmacológico , Proteínas HSP90 de Choque Térmico/metabolismo , FN-kappa B/metabolismo , Masculino , Caspasa 1/metabolismo , Transducción de Señal , Ratas Sprague-Dawley , Inflamasomas/metabolismo , Sulfonamidas/farmacología , Hepatocitos/metabolismo , Hepatocitos/patología , Hepatocitos/efectos de los fármacos
5.
Int J Immunopathol Pharmacol ; 38: 3946320241272550, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39101927

RESUMEN

OBJECTIVE: To explore the effect of miR-370-3p on LPS triggering, in particular its involvement in disease progression by targeting the TLR4-NLRP3-caspase-1 cellular pyroptosis pathway in macrophages. METHODS: Human macrophage RAW264.7 was divided into 6 groups: control, LPS, LPS + inhibitor-NC, LPS + miR-370-3p inhibitor, LPS + mimics-NC and LPS + miR-370-3p mimics. RT-qPCR was used to detect the expression level of miR-370-3p and analyzed comparatively. CCK-8 and flow cytometry assays were used to detect cell viability and apoptosis. ELISA assay was used to detect the levels of IL-1ß and TNF-α in the supernatant of the cells. The WB assay was used to detect TLR4, NLRP3, Caspase-1 and GSDMD levels. RESULTS: After LPS induction, macrophage miR-370-3p levels decreased, cell viability decreased, and apoptosis increased. At the same time, the levels of TLR4, NLRP3, Caspase-1 and GSDMD increased in the cells, and the levels of IL-1ß and TNF-α increased in the cell supernatant. Compared with the LPS group, the significantly higher expression level of miR-370-3p in the cells of the LPS + miR-370-3p mimics group was accompanied by significantly higher cell viability, significantly lower apoptosis rate, significantly lower levels of TLR4, NLRP3, Caspase-1, and GSDMD in the cells, and significantly lower levels of IL-1ß and TNF-α in the cell supernatant. CONCLUSION: MiR-370-3p may be involved in anti-infective immune responses by targeting and inhibiting the macrophage TLR4-NLRP3-caspase-1 cellular pyroptosis pathway.


Asunto(s)
Caspasa 1 , Lipopolisacáridos , Macrófagos , MicroARNs , Proteína con Dominio Pirina 3 de la Familia NLR , Piroptosis , Receptor Toll-Like 4 , MicroARNs/genética , MicroARNs/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/genética , Lipopolisacáridos/farmacología , Macrófagos/metabolismo , Macrófagos/inmunología , Macrófagos/efectos de los fármacos , Humanos , Caspasa 1/metabolismo , Caspasa 1/genética , Ratones , Células RAW 264.7 , Animales , Transducción de Señal , Interleucina-1beta/metabolismo , Supervivencia Celular/efectos de los fármacos , Infecciones Bacterianas/inmunología
6.
Zhongguo Gu Shang ; 37(7): 684-8, 2024 Jul 25.
Artículo en Chino | MEDLINE | ID: mdl-39104069

RESUMEN

OBJECTIVE: To investigate the changes and clinical significance of NOD like receptor protein 3 (NLRP3) inflammasomes and related factors in patients with spinal fractures complicated with acute spinal cord injury (SCI). METHODS: Eighty-six spinal fracture patients complicated with acute SCI admitted to hospital from June 2019 to March 2022 were selected as SCI group, There were 48 males and 38 females, with an average age of (43.48±6.58) years old. And 100 healthy volunteers who underwent physical examination during the same time were selected as control group, including 56 males patients and 44 females patients, with an average age of (45.13±6.43) years old. Peripheral blood mononuclear cell (PBMC) were collected, and the mRNA expressions of NLRP3 and Caspase-1 were detected. Serum was collected and the levels of interleukin (IL)- 1ß, IL-18 were detected. According to Frankel's grade, the SCI group was divided into complete injury patients and incomplete injury patients, and according to the Japanese Orthopedic Society (JOA) grade, the SCI group was divided into good prognosis group and poor prognosis group. The difference of NLRP3, Caspase-1, IL-1ß, IL-18 among groups were compared, the influencing factors for poor prognosis in SCI patients was analyzed by Logistic regression. RESULTS: The mRNA expression levels of NLRP3 (1.41±0.33) and Caspase-1 (1.44±0.35) in PBMC and the levels of IL-1ß(45.34±13.22) pg·ml-1, IL-18(40.95±8.77) pg·ml-1 in serum of SCI group were higher than those of the control group[(1.00±0.19), (1.00±0.16), (16.58±4.24) pg·ml-1, (12.57±3.68) pg·ml-1] (P<0.05). The mRNA expression levels of NLRP3(1.63±0.34) and Caspase-1 (1.67±0.27) in PBMC and the levels of IL-1ß(51.09±11.10) pg·ml-1, IL-18 (47.65±7.93) pg·ml-1 in serum of patients with complete injury in the SCI group were higher than those of patients with incomplete injury [(1.31±0.27), (1.34±0.33), (42.85±13.36) pg·ml-1, (38.05±7.48) pg·ml-1](P<0.05). The mRNA expression levels of NLRP3 (1.66±0.31) and Caspase-1 (1.72±0.31)in PBMC and the levels of IL-1ß(51.21±11.31) pg·ml-1, IL-18 (45.70±7.25) pg·ml-1 in serum, the proportion of complete injury(21 patients), and the proportion of spinal cord edema or bleeding of patients(15 patients) with poor prognosis in the SCI group were higher than those of patients with good prognosis[(1.28±0.26), (1.37±0.36), (42.79±13.25) pg·ml-1、(38.90±8.63) pg·ml-1, 5、20 cases](P<0.05). Complete injury and the mRNA expression of NLRP3 in PBMC were the influencing factors for poor prognosis in the SCI group (P<0.05). CONCLUSION: The activation of NLRP3 inflammasomes in patients with spinal fractures complicated with acute SCI is associated with worsening injury and poor prognosis, and NLRP3 expression can serve as a marker for evaluating prognosis.


Asunto(s)
Caspasa 1 , Inflamasomas , Interleucina-18 , Interleucina-1beta , Proteína con Dominio Pirina 3 de la Familia NLR , Traumatismos de la Médula Espinal , Fracturas de la Columna Vertebral , Humanos , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Masculino , Femenino , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/sangre , Adulto , Persona de Mediana Edad , Interleucina-18/sangre , Interleucina-1beta/sangre , Interleucina-1beta/genética , Caspasa 1/sangre , Fracturas de la Columna Vertebral/sangre , Fracturas de la Columna Vertebral/complicaciones , Leucocitos Mononucleares/metabolismo , Pronóstico , Relevancia Clínica
7.
Immunohorizons ; 8(8): 586-597, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39186692

RESUMEN

Neutrophil extracellular traps (NETs) function to control infectious agents as well as to propagate inflammatory response in a variety of disease conditions. DNA damage associated with chromatin decondensation and NACHT domain-leucine-rich repeat-and pyrin domain-containing protein 3 (NLRP3) inflammasome activation have emerged as crucial events in NET formation, but the link between the two processes is unknown. In this study, we demonstrate that poly(ADP-ribose) polymerase-1 (PARP-1), a key DNA repair enzyme, regulates NET formation triggered by NLRP3 inflammasome activation in neutrophils. Activation of mouse neutrophils with canonical NLRP3 stimulants LPS and nigericin induced NET formation, which was significantly abrogated by pharmacological inhibition of PARP-1. We found that PARP-1 is required for NLRP3 inflammasome assembly by regulating post-transcriptional levels of NLRP3 and ASC dimerization. Importantly, this PARP-1-regulated NLRP3 activation for NET formation was independent of inflammasome-mediated pyroptosis, because caspase-1 and gasdermin D processing as well as IL-1ß transcription and secretion remained intact upon PARP-1 inhibition in neutrophils. Accordingly, pharmacological inhibition or genetic ablation of caspase-1 and gasdermin D had no effect on NLRP3-mediated NET formation. Mechanistically, PARP-1 inhibition increased p38 MAPK activity, which was required for downmodulation of NLRP3 and NETs, because concomitant inhibition of p38 MAPK with PARP-1 restored NLRP3 activation and NET formation. Finally, mice undergoing bacterial peritonitis exhibited increased survival upon treatment with PARP-1 inhibitor, which correlated with increased leukocyte influx and improved intracellular bacterial clearance. Our findings reveal a noncanonical pyroptosis-independent role of NLRP3 in NET formation regulated by PARP-1 via p38 MAPK, which can be targeted to control NETosis in inflammatory diseases.


Asunto(s)
Trampas Extracelulares , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Neutrófilos , Poli(ADP-Ribosa) Polimerasa-1 , Piroptosis , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Trampas Extracelulares/metabolismo , Ratones , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Inflamasomas/metabolismo , Neutrófilos/metabolismo , Neutrófilos/inmunología , Ratones Endogámicos C57BL , Nigericina/farmacología , Ratones Noqueados , Peritonitis/metabolismo , Peritonitis/inmunología , Lipopolisacáridos/farmacología , Caspasa 1/metabolismo
8.
Int J Biol Macromol ; 278(Pt 4): 134987, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39181359

RESUMEN

Noisy tinnitus is a common auditory system disease characterized by persistent tinnitus symptoms. The TLR4/NF - κ B/NLRP3 signaling pathway plays an important role in neuroinflammatory response. Select 6 control and 6 noise exposed mice for transcriptome sequencing analysis in the hippocampus, conduct high-throughput data analysis, identify differentially expressed genes, and screen for pathways. Auditory brainstem response (ABR) detection was performed to understand the hearing changes, and the modeling effect was evaluated using the GPIAS% inhibition experiment of auditory startle reflex. Morphological observation of the basement membrane was performed to determine whether the inner hair cells were damaged. Immunohistochemistry and immunofluorescence were used to determine the activation of microglia in the hippocampus of noise induced tinnitus mice. Finally, qPCR and Western Blot were used to detect the expression of TLR4, NF kB, NLRP3, caspase-1, and IL-1 ß in the hippocampus of each group of mice. Through high-throughput data analysis, it was found that there was no significant difference in the auditory threshold of the three groups of mice; After 2 h of exposure to 100 dB SPL noise, the GPIAS% of mice decreased significantly compared to before exposure, and membrane construction was successful. After 7 days, the GPIAS% of the drug intervention group increased. After noise exposure, mice developed tinnitus, and hippocampus neuroinflammation. Roflupram can inhibit neuroinflammation and improve tinnitus through the TLR4/NF kB/NLRP3/caspase-1/IL-1 ß signaling pathway.


Asunto(s)
Caspasa 1 , Interleucina-1beta , FN-kappa B , Proteína con Dominio Pirina 3 de la Familia NLR , Ruido , Transducción de Señal , Acúfeno , Receptor Toll-Like 4 , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Receptor Toll-Like 4/metabolismo , Ratones , Transducción de Señal/efectos de los fármacos , Caspasa 1/metabolismo , FN-kappa B/metabolismo , Interleucina-1beta/metabolismo , Acúfeno/tratamiento farmacológico , Acúfeno/metabolismo , Acúfeno/patología , Ruido/efectos adversos , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/patología , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Masculino , Modelos Animales de Enfermedad , Sulfonamidas
9.
J Med Chem ; 67(17): 15873-15891, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39159426

RESUMEN

Caspase-1 plays a central role in innate immunity, as its activation by inflammasomes induces the production of proinflammatory cytokines and pyroptosis. However, specific inhibition of the enzymatic activity of this protease is not effective in suppressing inflammation, owing to its enzyme-independent function. Herein, we identified a cyclohexenyl isothiocyanate compound (CIB-1476) that potently inhibited caspase-1 activity and suppressed the assembly and activation of the NLRP3 inflammasome and gasdermin-D-mediated pyroptosis. Mechanistically, CIB-1476 directly targeted pro-caspase-1 as an irreversible covalent inhibitor by binding to Cys285 and Cys397, resulting in more durable anti-inflammatory effects in the suppression of enzyme-dependent IL-1ß production and enzyme-independent nuclear factor κB activation. Chemoproteomic profiling demonstrated the engagement of CIB-1476 with caspase-1. CIB-1476 showed potent therapeutic effects by suppressing inflammasome activation in mice, which was abolished in Casp1-/- mice. These results warrant further development of CIB-1476 along with its analogues as a novel strategy for caspase-1 inhibitors.


Asunto(s)
Caspasa 1 , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Piroptosis , Piroptosis/efectos de los fármacos , Caspasa 1/metabolismo , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Inflamasomas/metabolismo , Ratones , Humanos , Ratones Endogámicos C57BL , Inhibidores de Caspasas/farmacología , Inhibidores de Caspasas/química , Isotiocianatos/farmacología , Isotiocianatos/química , Ratones Noqueados , Descubrimiento de Drogas
10.
Fish Shellfish Immunol ; 153: 109837, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39147179

RESUMEN

NLRP3 has an important role in the immune response and viral infection as an essential inflammasome component. However, it is unclear whether the grouper immune system is regulated by NLRP3 inflammasome. In this study, we cloned the NLRP3 gene from Epinephelus coioides. Ec-NLRP3 encodes 893 amino acids and contains two major structural domains, the NACHT domain (69-234aa) and the LRR domain (477-893aa). Tissue distribution analysis showed that Ec-NLRP3 was expressed in all tissues tested, with the spleen exhibiting the highest expression. Additionally, after being infected with SGIV, the expression of the Ec-NLRP3 gene was significantly increased. The results of subcellular localization revealed that Ec-NLRP3 was distributed throughout GS cells. In addition, Ec-NLRP3 co-localized with Ec-ASC and was observed as a cytosolic speck. Ec-NLRP3 overexpression significantly inhibited SGIV infection, which was further inhibited by co-overexpression of Ec-NLRP3 and Ec-ASC. Further studies revealed that overexpression of Ec-NLRP3 significantly upregulated caspase-1 activity, and co-overexpression of Ec-NLRP3 and Ec-ASC further upregulated caspase-1 activity. In addition, inhibition of Caspase-1 activity with VX-765 significantly increased the infection of SGIV. Furthermore, the NLRP3 inflammasome activator Nigericin was able to inhibit the infection of SGIV significantly. The above findings suggest that Ec-NLRP3 inhibits SGIV infection by upregulating caspase-1 activity.


Asunto(s)
Lubina , Caspasa 1 , Enfermedades de los Peces , Proteínas de Peces , Regulación de la Expresión Génica , Proteína con Dominio Pirina 3 de la Familia NLR , Filogenia , Alineación de Secuencia , Regulación hacia Arriba , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Enfermedades de los Peces/inmunología , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Proteínas de Peces/química , Lubina/inmunología , Lubina/genética , Alineación de Secuencia/veterinaria , Regulación de la Expresión Génica/inmunología , Caspasa 1/genética , Caspasa 1/inmunología , Caspasa 1/metabolismo , Secuencia de Aminoácidos , Infecciones por Virus ADN/inmunología , Infecciones por Virus ADN/veterinaria , Inmunidad Innata/genética , Perfilación de la Expresión Génica/veterinaria , Iridoviridae
11.
Cell Rep ; 43(8): 114609, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39116210

RESUMEN

The NLRP3 inflammasome is dysregulated in autoinflammatory disorders caused by inherited mutations and contributes to the pathogenesis of several chronic inflammatory diseases. In this study, we discovered that disulfiram, a safe US Food and Drug Administration (FDA)-approved drug, specifically inhibits the NLRP3 inflammasome but not the NLRC4 or AIM2 inflammasomes. Disulfiram suppresses caspase-1 activation, ASC speck formation, and pyroptosis induced by several stimuli that activate NLRP3. Mechanistically, NLRP3 is palmitoylated at cysteine 126, a modification required for its localization to the trans-Golgi network and inflammasome activation, which was inhibited by disulfiram. Administration of disulfiram to animals inhibited the NLRP3, but not NLRC4, inflammasome in vivo. Our study uncovers a mechanism by which disulfiram targets NLRP3 and provides a rationale for using a safe FDA-approved drug for the treatment of NLRP3-associated inflammatory diseases.


Asunto(s)
Disulfiram , Inflamasomas , Lipoilación , Proteína con Dominio Pirina 3 de la Familia NLR , United States Food and Drug Administration , Disulfiram/farmacología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamasomas/metabolismo , Animales , Humanos , Ratones , Lipoilación/efectos de los fármacos , Ratones Endogámicos C57BL , Estados Unidos , Caspasa 1/metabolismo , Células HEK293 , Aprobación de Drogas , Piroptosis/efectos de los fármacos
12.
Int Immunopharmacol ; 140: 112815, 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39088921

RESUMEN

OBJECTIVE: The purpose of the present study was to potential effects of forsythiaside A (FA) on Sjogren's syndrome (SS). METHODS: Enzyme linked immunosorbent assay for detecting cytokines and Western blotting was used for detecting related protein expression. RESULTS: FA effectively reduced the secretion of inflammatory cytokines, the expression of Caspase-1 and NLRP3 proteins and the expression of p65 in SS. FA also effectively inhibited the high expression of Grp78 in SS. When Grp78 expression was silenced, it effectively reduced the secretion of inflammatory cytokines, the expression of Caspase-1 and NLRP3 proteins and the expression of p65 in the nucleus in SS. FA effectively inhibit the secretion of inflammatory cytokines induced by overexpression of Grp78, the expression of Caspase-1 and NLRP3 proteins and the expression of p65 in the nucleus in SS. CONCLUSION: FA induces the degradation of Grp78 protein, regulates the NF-κB signaling pathway in SS and inhibited NLRP3 inflammasome activation and reduced the release of inflammatory cytokines to alleviate SS.


Asunto(s)
Chaperón BiP del Retículo Endoplásmico , Proteínas de Choque Térmico , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Síndrome de Sjögren , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Humanos , Chaperón BiP del Retículo Endoplásmico/metabolismo , Inflamasomas/metabolismo , Síndrome de Sjögren/inmunología , Síndrome de Sjögren/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Femenino , Transducción de Señal , Citocinas/metabolismo , Caspasa 1/metabolismo , Persona de Mediana Edad , Masculino , Factor de Transcripción ReIA/metabolismo , FN-kappa B/metabolismo
13.
Sci Rep ; 14(1): 19420, 2024 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-39169211

RESUMEN

Cardiovascular complications pose a significant burden in type 2 diabetes mellitus (T2DM), driven by the intricate interplay of chronic hyperglycemia, insulin resistance, and lipid metabolism disturbances. Myocardial ischemia/reperfusion (MI/R) injury during cardiopulmonary bypass (CPB) exacerbates cardiac vulnerability. This study aims to probe the role of Caspase-1-dependent pyroptosis in global ischemia/reperfusion injury among T2DM rats undergoing CPB, elucidating the mechanisms underlying heightened myocardial injury in T2DM. This study established a rat model of T2DM and compared Mean arterial pressure (MAP), heart rate (HR), and hematocrit (Hct) between T2DM and normal rats. Myocardial cell morphology, infarction area, mitochondrial ROS and caspase-1 levels, NLRP3, pro-caspase-1, caspase-1 p10, GSDMD expressions, plasma CK-MB, cTnI, IL-1ß, and IL-18 levels were assessed after reperfusion in both T2DM and normal rats. The role of Caspase-1-dependent pyroptosis in myocardial ischemia/reperfusion injury during CPB in T2DM rats was examined using the caspase-1 inhibitor VX-765 and the ROS scavenger NAC. T2DM rats demonstrated impaired glucose tolerance but stable hemodynamics during CPB, while showing heightened vulnerability to MI/R injury. This was marked by substantial lipid deposition, disrupted myocardial fibers, and intensified cellular apoptosis. The activation of caspase-1-mediated pyroptosis and increased reactive oxygen species (ROS) production further contributed to tissue damage and the ensuing inflammatory response. Notably, myocardial injury was mitigated by inhibiting caspase-1 through VX-765, which also attenuated the inflammatory cascade. Likewise, NAC treatment reduced oxidative stress and partially suppressed ROS-mediated caspase-1 activation, resulting in diminished myocardial injury. This study proved that Caspase-1-dependent pyroptosis significantly contributes to the inflammation and injury stemming from global MI/R in T2DM rats under CPB, which correlate with the surplus ROS generated by oxidative stress during reperfusion.


Asunto(s)
Puente Cardiopulmonar , Caspasa 1 , Diabetes Mellitus Tipo 2 , Daño por Reperfusión Miocárdica , Piroptosis , Especies Reactivas de Oxígeno , Animales , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/etiología , Daño por Reperfusión Miocárdica/patología , Puente Cardiopulmonar/efectos adversos , Caspasa 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Ratas , Masculino , Especies Reactivas de Oxígeno/metabolismo , para-Aminobenzoatos/farmacología , Ratas Sprague-Dawley , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicaciones , Interleucina-18/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Dipéptidos
14.
Front Immunol ; 15: 1386939, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39100670

RESUMEN

Objective: This study aimed to evaluate the role of absent in melanoma 2 (AIM2) inflammasome-mediated pyroptosis in the pathogenesis of acute gouty arthritis (AGA) and asymptomatic hyperuricemia(AHU). Methods: A cohort of 30 AGA patients, 30 AHU individuals, and 30 healthy controls (HC) was assembled. Demographic and biochemical data, along with blood samples, were collected. Serum double-stranded DNA (dsDNA) levels were quantified using a fluorescent assay. Transcriptomic and proteomic analysis of AIM2, Caspase-1, GSDMD, IL-1ß, and IL-18 in peripheral blood mononuclear cells was performed using qRT-PCR and Western blot. Enzyme-linked immunosorbent assay (ELISA) was employed to measure serum IL-1ß and IL-18. Spearman correlation analysis was utilized to assess relationships between variables. Results: Both AGA and AHU groups demonstrated elevated metabolic indicators and serum levels of dsDNA, IL-1ß, and IL-18 compared to the HC group. AGA patients exhibited higher inflammatory markers than the AHU group. In the AGA group, there was a significant increase in the mRNA and protein levels of AIM2, Caspase-1, GSDMD, IL-1ß, and IL-18 (P<0.05 to P<0.001). The AHU group showed higher AIM2, Caspase-1, GSDMD, and IL-18 mRNA levels than the HC group (P<0.001 to P<0.01), with a non-significant increase in AIM2, GSDMD, and IL-1ß proteins (P>0.05). In contrast, Caspase-1 and IL-18 proteins were significantly higher in the AHU group (P<0.05). Notable correlations were observed between AIM2 protein expression and levels of Caspase-1 and GSDMD in both AGA and AHU groups. In the AGA group, AIM2 protein correlated with IL-1ß, but not in the AHU group. The AIM2 protein in the AHU group was positively associated with IL-18, with no such correlation in the AGA group. Conclusion: AIM2 inflammasome may play a role in the inflammatory processes of AGA and AHU and that its activation may be related to the pyroptosis pathway.


Asunto(s)
Artritis Gotosa , Proteínas de Unión al ADN , Hiperuricemia , Inflamasomas , Piroptosis , Humanos , Masculino , Inflamasomas/metabolismo , Artritis Gotosa/inmunología , Artritis Gotosa/sangre , Artritis Gotosa/metabolismo , Persona de Mediana Edad , Hiperuricemia/sangre , Hiperuricemia/inmunología , Femenino , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Adulto , Interleucina-18/sangre , Anciano , Estudios de Casos y Controles , Biomarcadores/sangre , Caspasa 1/metabolismo
15.
Biomed Pharmacother ; 177: 117121, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39002443

RESUMEN

OBJECTIVES: Celastrol has widespread therapeutic applications in various pathological conditions, including chronic inflammation. Previous studies have demonstrated the potent cardioprotective effects of celastrol. Nevertheless, limited attention has been given to its potential in reducing ventricular arrhythmias (VAs) following myocardial infarction (MI). Hence, this study aimed to elucidate the potential mechanisms underlying the regulatory effects of celastrol on VAs and cardiac electrophysiological parameters in rats after MI. METHODS: Sprague-Dawley rats were divided at random: the sham, MI, and MI + celastrol groups. The left coronary artery was occluded in the MI and MI + Cel groups. Electrocardiogram, heart rate variability (HRV), ventricular electrophysiological parameters analysis, histology staining of ventricles, Enzyme-linked immunosorbent assay (ELISA), western blotting and Quantitative real-time polymerase chain reaction (qRT-PCR) were performed to elucidate the underlying mechanism of celastrol. Besides, H9c2 cells were subjected to hypoxic conditions to create an in vitro model of MI and then treated with celastrol for 24 hours. Nigericin was used to activate the NLRP3 inflammasome. RESULTS: Compared with that MI group, cardiac electrophysiology instability was significantly alleviated in the MI + celastrol group. Additionally, celastrol improved HRV, upregulated the levels of Cx43, Kv.4.2, Kv4.3 and Cav1.2, mitigated myocardial fibrosis, and inhibited the NLRP3 inflammasome pathway. In vitro conditions also supported the regulatory effects of celastrol on the NLRP3 inflammasome pathway. CONCLUSIONS: Celastrol could alleviate the adverse effects of VAs after MI partially by promoting autonomic nerve remodeling, ventricular electrical reconstruction and ion channel remodeling, and alleviating ventricular fibrosis and inflammatory responses partly by through inhibiting the NLRP3/Caspase-1/IL-1ß pathway.


Asunto(s)
Antiarrítmicos , Arritmias Cardíacas , Caspasa 1 , Insuficiencia Cardíaca , Interleucina-1beta , Infarto del Miocardio , Proteína con Dominio Pirina 3 de la Familia NLR , Triterpenos Pentacíclicos , Ratas Sprague-Dawley , Transducción de Señal , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Triterpenos Pentacíclicos/farmacología , Caspasa 1/metabolismo , Antiarrítmicos/farmacología , Transducción de Señal/efectos de los fármacos , Masculino , Ratas , Interleucina-1beta/metabolismo , Arritmias Cardíacas/tratamiento farmacológico , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Triterpenos/farmacología , Enfermedad Crónica , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Línea Celular , Frecuencia Cardíaca/efectos de los fármacos , Modelos Animales de Enfermedad
16.
J Tradit Chin Med ; 44(4): 680-687, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39066528

RESUMEN

OBJECTIVE: To explore the mechanism by which Tongqiao Yizhi granule (, TQYZKL) intervenes pyroptosis to treat vascular dementia (VaD) in a rat model. METHODS: The rat model of VaD was established by two-vessel occlusion (2VO). The rats were randomly divided into Sham group, Model group, Nimodipine group, TQYZKL (6.2 g?kg-1?d-1), TQYZKL (12.4 g?kg-1?d-1), TQYZKL (24.8 g?kg-1?d-1). The Morris water maze (MWM) test was carried out to test the learning and memory function; Hematoxylin-eosin staining and transmission electron microscopy (TEM) to observe the pathological damage in the hippocampus; Tunel fluorescence staining to detect neuronal pyroptosis in the hippocampus. The expression levels of pyroptosis-related proteins, namely Golgi peripheral membrane protein p65 (P65), nucleotide oligomerization domain-like receptors 3 (NLRP3), caspase-1 and Gasdermin D (GSDMD), were detected using Western blotting and reverse transcription polymerase chain reaction. Moreover, the serum levels of interleukin-1ß (IL-1ß) and interleukin-18 (IL-18) were determined through the enzyme-linked immunosorbent assay. RESULTS: The study revealed that TQYZKL effectively improved the ability of VaD ratsto learn and memorize, relieved the pathological damage in the hippocampus, restored neuronal morphology, and reduced the expression of pyroptosis-related proteins P65, NLRP3, caspase-1, GSDMD-N, IL-18 and IL-1ß (P < 0.05). CONCLUSION: TQYZKL inhibits neuronal pyroptosis in the hippocampus of VaD rats by regulating nuclear factor kappa-B/NLRP3/caspase-1 signaling pathway, thus exerting a therapeutic effect on VaD in the rats.


Asunto(s)
Caspasa 1 , Demencia Vascular , Medicamentos Herbarios Chinos , Hipocampo , FN-kappa B , Proteína con Dominio Pirina 3 de la Familia NLR , Piroptosis , Animales , Piroptosis/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Ratas , Demencia Vascular/tratamiento farmacológico , Demencia Vascular/metabolismo , Demencia Vascular/genética , Caspasa 1/metabolismo , Caspasa 1/genética , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/farmacología , Masculino , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , FN-kappa B/metabolismo , FN-kappa B/genética , Ratas Sprague-Dawley , Humanos , Transducción de Señal/efectos de los fármacos
17.
Int Immunopharmacol ; 140: 112761, 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39079349

RESUMEN

Myocardial ischaemia-reperfusion injury (MIRI) caused by the treatment of acute myocardial infarction (AMI) is the primary cause of severe ventricular remodelling, heart failure (HF), and high mortality. In recent studies, research on the role of necroptosis in MIRI has focused on cardiomyocytes, but new biomarkers and immunocyte mechanisms of necroptosis are rarely studied. In the present study, weighted gene co-expression network analysis (WGCNA) algorithms were used to establish a weighted gene co-expression network, and Casp1, Hpse, Myd88, Ripk1, and Tpm3 were identified as biological markers of necroptosis using least absolute shrinkage, selection operator (LASSO) regression and support vector machine (SVM) feature selection algorithms. The role and discriminatory power of these five genes in MIRI had never been studied. Single-cell and cell-talk analyses showed that hub genes of necroptosis were focused on macrophages, which mediate the functions of monocytes, fibroblasts, haematopoietic stem cells, and cardiomyocytes, primarily through the TNF/TNFRSF1A interaction. The polarisation and functional activation of macrophages were affected by the MIF signalling network (MIF CD74/CXCR4 and MIF CD74/CD44) of other cells. The results of the immune infiltration assay showed that the five genes involved in necroptosis were significantly related to the infiltration and functional activity of M2 macrophages. TWS-119 is predicted to be a molecular drug that targets key MIRI genes. A mouse model was established to confirm the expression of five hub genes, and ventricular remodelling increased with time after ischaemia-reperfusion injury (IRI). Therefore, Casp1, Hpse, Myd88, Ripk1, and Tpm3 may be key genes regulating necroptosis and polarisation in macrophages, and causing ventricular remodelling.


Asunto(s)
Redes Reguladoras de Genes , Macrófagos , Ratones Endogámicos C57BL , Daño por Reperfusión Miocárdica , Necroptosis , Análisis de la Célula Individual , Animales , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/inmunología , Macrófagos/inmunología , Ratones , Masculino , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Caspasa 1/genética , Caspasa 1/metabolismo , Modelos Animales de Enfermedad , Humanos , Perfilación de la Expresión Génica , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/inmunología , Antígenos de Diferenciación de Linfocitos B , Antígenos de Histocompatibilidad Clase II
18.
J Sex Med ; 21(8): 652-662, 2024 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-38972660

RESUMEN

BACKGROUND: Diabetes mellitus commonly causes endothelial cell and smooth muscle cell death in penile cavernous tissue. AIM: The study sought to study the mode of cell death in the penile cavernous tissue in type 1 diabetic rats. METHODS: A total of 36 Sprague Dawley rats 10 weeks of age were randomly divided into 2 groups: a normoglycemic group and type 1 diabetic group (intraperitoneal injection of Streptozotocin (STZ), 60 mg/kg). We randomly selected 6 rats from each group for tests at the end of 11, 14, and 18 weeks of age, respectively. All rats were able to eat and drink freely. The ratio of maximum intracavernous pressure to mean arterial pressure, concentration of serum testosterone, level of nitric oxide in the penile cavernosum, and expression of active caspase-1 (pyroptosis) and active caspase-3 (apoptosis) were determined. OUTCOMES: At the end of weeks 4 and 8 of type 1 diabetes, the proportions of endothelial cells and smooth muscle cells undergoing apoptosis and pyroptosis in penile cavernous tissue are different. RESULTS: The ratio of maximum intracavernous pressure to mean arterial pressure and nitric oxide levels were significantly lower in the 4- and 8-week diabetic groups than in the normoglycemic group (P < .01). Penile endothelial cell pyroptosis (5.67 ± 0.81%), smooth muscle cell apoptosis (23.72 ± 0.48%), total cell pyroptosis (9.67 ± 0.73%), and total apoptosis (10.52 ± 1.45%) were significantly greater in the 4-week diabetic group than in the normoglycemic group (P < .01). The proportion of endothelial cell pyroptosis (24.4 ± 3.69%), endothelial cell apoptosis (22.13 ± 2.43%), total cell pyroptosis (14.75 ± 0.93%), and total apoptosis (14.82 ± 1.08%) in the penile tissues of the 8-week diabetic group were significantly greater than those in the normoglycemic group (P < .01).The 8-week survival proportions of diabetic endothelial cells (38.86 ± 8.85%) and smooth muscle cells (44.46 ± 2.94%) was significantly lower than the 4-week survival proportions of endothelial cells (93.17 ± 8.07%) and smooth muscle cells (75.12 ± 4.76%) (P < .05). CLINICAL TRANSLATION: Inhibition of cell death by different methods at different stages may be the key to the treatment of type 1 diabetes-induced erectile dysfunction. STRENGTHS AND LIMITATIONS: The effect of type 1 diabetes on other types of cell death in penile cavernous tissue needs further study. CONCLUSION: The mode of death of endothelial cells in the cavernous tissue of the penis in the early stage in diabetic rats is dominated by pyroptosis, and the death of smooth muscle cells is dominated by apoptosis. Endothelial cell and smooth muscle cell death are not consistent at different stages of diabetes progression.


Asunto(s)
Apoptosis , Caspasa 3 , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Óxido Nítrico , Pene , Ratas Sprague-Dawley , Masculino , Animales , Pene/patología , Diabetes Mellitus Experimental/fisiopatología , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/complicaciones , Ratas , Diabetes Mellitus Tipo 1/fisiopatología , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/patología , Caspasa 3/metabolismo , Apoptosis/fisiología , Óxido Nítrico/metabolismo , Piroptosis/fisiología , Testosterona/sangre , Caspasa 1/metabolismo , Células Endoteliales/patología , Muerte Celular
19.
J Ethnopharmacol ; 334: 118566, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39002823

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Trifolium alexandrinum L. (TA), has traditionally been used in folk medicine for its anti-inflammatory properties against hyperuricemia and gout. However, the specific mechanisms of action of TA have not been thoroughly studied. AIM OF THE WORK: This study aimed to evaluate the protective effects of irradiated (TR25) and non-irradiated (TR0) Trifolium alexandrinum L. aqueous extract (TAAE), along with two isolated compounds, caffeine (CAF) and saponin (SAP), in a rat model of acute gouty arthritis (GA). MATERIALS AND METHODS: The GA model was established by injecting a monosodium urate (MSU) suspension into the knee joint. Synovial tissue pathology was assessed, and levels of TNF-α, IL-6, IL-1ß, NF-κB, mTOR, AKT1, PI3K, NLRP3, and ASC were measured by ELISA. mRNA expression of ERK1, JNK, and p-38 MAPK was detected using qRT-PCR, and Caspase-1 protein expression was assessed by immunohistochemical analysis. Knee swelling, uric acid levels, liver and kidney function, and oxidative stress markers were also evaluated. RESULTS: TAAE analysis identified 170 compounds, with 73 successfully identified using LC-HR-MS/MS, including caffeine citrate and theasapogenol B glycoside as the main constituents. The studied materials demonstrated significant protective effects against GA. TR25 administration significantly mitigated knee joint circumference compared to other treatments. It demonstrated potential in alleviating hyperuricemia, renal and hepatic impairments induced by MSU crystals. TR25 also alleviated oxidative stress and reduced levels of IL1ß, IL-6, TNF-α, and NF-κB. Weak Caspase-1 immune-positive staining was observed in the TR25 group. TR25 decreased NLRP3 and ASC expression, reducing inflammatory cytokine levels in GA. It effectively inhibited the PI3K, AKT, and mTOR signaling pathways, promoting autophagy. Additionally, TR25 suppressed ERK1, JNK, and p-38 MAPK gene expression in synovial tissue. These effects were attributed to various components in TAAE, such as flavonoids, phenolic acids, tannins, alkaloids, and triterpenes. CONCLUSION: Importantly, irradiation (25 KGy) enhanced the antioxidant effects and phtchemical contents of TAAE. Additionally, TR0, TR25, CAF, and SAP exhibited promising protective effects against GA, suggesting their therapeutic potential for managing this condition. These effects were likely mediated through modulation of the NLRP3/ASC/Caspase-1 and ERK/JNK/p-38 MAPK signaling pathways, as well as regulation of the PI3K/AKT/mTOR pathway. Further research is warranted to fully elucidate the underlying mechanisms and optimize their clinical applications.


Asunto(s)
Artritis Gotosa , FN-kappa B , Proteína con Dominio Pirina 3 de la Familia NLR , Extractos Vegetales , Animales , Artritis Gotosa/tratamiento farmacológico , Artritis Gotosa/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Extractos Vegetales/uso terapéutico , Masculino , FN-kappa B/metabolismo , Ratas , Ratas Sprague-Dawley , Caspasa 1/metabolismo , Transducción de Señal/efectos de los fármacos , Antiinflamatorios/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ácido Úrico
20.
Int Immunopharmacol ; 139: 112708, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39033661

RESUMEN

BACKGROUND: Our previous studies have demonstrated a strong relationship betweenCutibacterium acnes(C. acnes), oxidative stress, and acne inflammation. Syringic acid (SA) is a plant widely used for its antimicrobial, anti-inflammatory, and antioxidant activities, but lacking data on acne. This study aims to investigate the effect and mechanism of SA on acne inflammation induced by C. acnes in vitro and in vivo. METHODS: After using the SA to expose HaCaT keratinocytes, we reevaluated the effect of the SA on cell viability, cell apoptosis, ROS, CAT, SOD, and other inflammatory variables in the heat-killed C. acnes-treated HaCaT cells. Next, to induce mice with acne inflammation, ICR mice were given an intradermal injection of live C. acnes into their right ears. The effect of SA on this inflammation was then examined. Moreover, we explored the mechanism of SA on PPARγ/Nrf2 and NLRP3/caspase-1/IL-1ß pathways by ELISA, immunofluorescence microscopy, and western blot assay. RESULTS: Heat-killed C. acnes triggered remarkable cell apoptosis, ROS production, interleukin (IL)-1ß, IL-18, IL-6, and TNF-α release, reduced SOD and CAT activity, and upregulated the expression of proteins in HaCaT cells, including up-regulating IL-1ß, PPARγ, Nrf2, HO-1, NQO1, NLRP3, and caspase-1, whereas SA inhibited these effects by partially impairing PPARγ activation. In addition, PPARγ silencing decreased C. acnes-induced IL-1ß secretion and the production of intracellular ROS, down-regulating the expression of Nrf2. Nrf2 activator (SFN) enhanced anti-inflammatory activity through antioxidant mechanisms, boosting intracellular ROS production, reducing SOD and CAT activity, and promoting the increase in ROS, HO-1, NQO1, and IL-1ß levels, while PPARγ inhibitor (GW662) effectively inhibited this effect in heat-killed C. acnes-treated cells. Finally, SA also exhibited notable improvements in ear redness, swelling, and the expression of PPARγ, NLRP3, and IL-1ß in vivo. CONCLUSIONS: SA inhibited C. acnes-induced inflammation via regulating the NLRP3/caspase-1/IL-1ß signaling axis by activating the PPARγ/Nrf2-antioxidant pathway, suggesting a new treatment possibility for acne vulgaris.


Asunto(s)
Acné Vulgar , Antiinflamatorios , Caspasa 1 , Ácido Gálico , Interleucina-1beta , Queratinocitos , Ratones Endogámicos ICR , Factor 2 Relacionado con NF-E2 , Proteína con Dominio Pirina 3 de la Familia NLR , PPAR gamma , Transducción de Señal , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Humanos , Factor 2 Relacionado con NF-E2/metabolismo , PPAR gamma/metabolismo , Animales , Caspasa 1/metabolismo , Queratinocitos/efectos de los fármacos , Queratinocitos/inmunología , Transducción de Señal/efectos de los fármacos , Interleucina-1beta/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Acné Vulgar/tratamiento farmacológico , Acné Vulgar/microbiología , Acné Vulgar/inmunología , Ratones , Ácido Gálico/análogos & derivados , Ácido Gálico/farmacología , Ácido Gálico/uso terapéutico , Células HaCaT , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Inflamación/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Línea Celular , Propionibacterium acnes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA