Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 398
Filtrar
1.
BMC Gastroenterol ; 24(1): 308, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261771

RESUMEN

BACKGROUND: The netrin-1/CD146 pathway regulates colorectal cancer (CRC) liver metastasis, angiogenesis, and vascular development. However, few investigations have yet examined the biological function of netrin-1/CD146 complex in CRC. In this work, we investigated the relationship between the netrin-1/CD146 axis and S100 proteins in sentinel lymph node, and revealed a possible new clue for vascular metastasis of CRC. METHODS: The expression levels of netrin-1 and CD146 proteins in CRC, as well as S100A8 and S100A9 proteins in the sentinel lymph nodes were determined by immunohistochemistry. Using GEPIA and UALCAN, we analyzed netrin-1 and CD146 gene expression in CRC, their association with CRC stage, and their expression levels and prognosis in CRC patients. RESULTS: The expression level of netrin-1 in N1a+1b (CRC lymphatic metastasis groups, exculded N1c) was positively increased with N0 (p = 0.012). The level of netrin-1 protein was positively correlated with CD146 protein (p < 0.05). The level of S100A9 protein was positively correlated with CD146 protein (r = 0.492, p = 0.007). Moreover, netrin-1 expression was obviously correlated with S100A9 expression in the N1 stage (r = 0.867, p = 0.000). CD146 level was correlated with S100A9 level in the N2 stage (r = 0.731, p = 0.039). CD146 mRNA expression was higher in normal colorectal tissues than in CRC (p < 0.05). Netrin-1 and CD146 expression were not significantly associated with the tumor stages and prognosis of patients with CRC (p > 0.05). CONCLUSIONS: The netrin-1/CD146 and netrin-1/S100A9 axis in CRC tissues might related with early stage of lymph node metastasis, thus providing potential novel channels for blocking lymphatic metastasis and guiding biomarker discovery in CRC patients.


Asunto(s)
Antígeno CD146 , Calgranulina B , Neoplasias Colorrectales , Metástasis Linfática , Netrina-1 , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Calgranulina A/genética , Calgranulina A/metabolismo , Calgranulina B/genética , Calgranulina B/metabolismo , Antígeno CD146/genética , Antígeno CD146/metabolismo , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Ganglios Linfáticos/patología , Ganglios Linfáticos/metabolismo , Metástasis Linfática/genética , Metástasis Linfática/patología , Estadificación de Neoplasias , Netrina-1/metabolismo , Netrina-1/genética , Pronóstico
2.
PLoS One ; 19(9): e0309455, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39231178

RESUMEN

Hemorrhage, a condition that accompanies most physical trauma cases, remains an important field of study, a field that has been extensively studied in the immunological context for myeloid and lymphoid cells, but not as much for erythroid cells. In this study, we studied the immunological response of murine erythroid cells to acute blood loss using flow cytometry, NanoString immune transcriptome profiling, and BioPlex cytokine secretome profiling. We observed that acute blood loss forces the differentiation of murine erythroid cells in both bone marrow and spleen and that there was an up-regulation of several immune response genes, in particular pathogen-associated molecular pattern sensing gene Clec5a in post-acute blood loss murine bone marrow erythroid cells. We believe that the up-regulation of the Clec5a gene in bone marrow erythroid cells could help bone marrow erythroid cells detect and eliminate pathogens with the help of reactive oxygen species and antimicrobial proteins calprotectin and cathelicidin, the genes of which (S100a8, S100a9, and Camp) dominate the expression in bone marrow erythroid cells of mice.


Asunto(s)
Diferenciación Celular , Quimiocina CCL3 , Células Eritroides , Antígenos Comunes de Leucocito , Animales , Ratones , Células Eritroides/metabolismo , Células Eritroides/citología , Quimiocina CCL3/metabolismo , Quimiocina CCL3/genética , Antígenos Comunes de Leucocito/metabolismo , Lectinas Tipo C/metabolismo , Lectinas Tipo C/genética , Ratones Endogámicos C57BL , Calgranulina A/metabolismo , Calgranulina A/genética , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/citología , Calgranulina B/metabolismo , Calgranulina B/genética , Masculino
3.
J Agric Food Chem ; 72(33): 18489-18496, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39106077

RESUMEN

Intestinal barrier hemostasis is the key to health. As a resveratrol analogue, pterostilbene (PT) has been reported to prevent dextran sodium sulfate (DSS)-induced intestinal barrier dysfunction mainly associated with the intestinal NF-κB signaling pathway. However, the exact underlying mechanisms are not yet well-defined yet. In this study, we performed RNA-sequencing analysis and unexpectedly found that alarmin S100A8 sensitively responded to DSS-induced intestinal injury. Accordingly, histologic assessments suggested that the high expression of S100A8 was accompanied by increased intestinal infiltration of macrophages, upregulated intestinal epithelial Toll-like receptor 4 (TLR-4), and activated NF-κB signaling pathway. Interestingly, the above phenomena were effectively counteracted upon the addition of PT. Furthermore, by using a coculture system of macrophage THP-1 cells and HT-29 colon cells, we identified macrophage-secreted S100A8 activated intestinal epithelial NF-κB signaling pathway through TLR-4. Taken together, these findings suggested that PT ameliorated DSS-induced intestinal barrier injury through suppression of the macrophage S100A8-intestinal epithelial TLR-4-NF-κB signaling cascade.


Asunto(s)
Calgranulina A , Sulfato de Dextran , Mucosa Intestinal , Ratones Endogámicos C57BL , FN-kappa B , Transducción de Señal , Estilbenos , Receptor Toll-Like 4 , Sulfato de Dextran/efectos adversos , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Animales , Transducción de Señal/efectos de los fármacos , Humanos , Ratones , Calgranulina A/genética , Calgranulina A/metabolismo , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Estilbenos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/inmunología , Masculino , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Colitis/genética
4.
Mol Cell Neurosci ; 130: 103957, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39111720

RESUMEN

BACKGROUND: Microglia is the primary source of inflammatory factors during migraine attacks. This study aims to investigate the role of microglia related genes (MRGs) in migraine attacks. METHODS: The RNA sequencing results of migraineurs and the panglaodb database were used to obtain differentially expressed genes (DEGs) in migraine related to microglia. A migraine rat model was established for validating and localizing of the MRGs, and subsequent screening for target genes was conducted. A shRNA was designed to interference the expression of target genes and administered into the trigeminal ganglion (TG) of rats. Pain sensitivity in rats was evaluated via the hot water tail-flick (HWTF) and formalin-induced pain (FIP) experiments. ELISA was used to quantify the levels of inflammatory cytokines and CGRP. WB and immunofluorescence assays were applied to detect the activation of microglia. RESULTS: A total of five DEGs in migraine related to microglia were obtained from RNA sequencing and panglaodb database. Animal experiments showed that these genes expression were heightened in the TG and medulla oblongata (MO) of migraine rats. The gene S100A8 co-localized with microglia in both TG and MO. The HWTF and FIP experiments demonstrated that interference with S100A8 alleviated the sense of pain in migraine rats. Moreover, the levels of TNFα, IL-1ß, IL-6, and CGRP in the TG and MO of rats in the model rats were increased, and the expression of microglia markers IBA-1, M1 polarization markers CD86 and iNOS was upregulated. Significantly, interference with S100A8 reversed these indicators. CONCLUSION: Interference with S100A8 in microglia increased the pain threshold during migraine attacks, and inhibited neuroinflammation and microglia activation.


Asunto(s)
Calgranulina A , Microglía , Trastornos Migrañosos , Enfermedades Neuroinflamatorias , Ratas Sprague-Dawley , Animales , Microglía/metabolismo , Trastornos Migrañosos/metabolismo , Trastornos Migrañosos/genética , Ratas , Masculino , Calgranulina A/metabolismo , Calgranulina A/genética , Enfermedades Neuroinflamatorias/metabolismo , Ganglio del Trigémino/metabolismo , Modelos Animales de Enfermedad
5.
J Mol Med (Berl) ; 102(9): 1117-1133, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38995368

RESUMEN

Fatty liver, which is induced by abnormal lipid metabolism, is one of the most common causes of chronic liver disease globally and causes liver fibrosis. During this process, bone marrow-derived mesenchymal stromal cells (BMSCs) and hepatic stellate cells (HSCs) migrate toward the injured liver and participate in fibrogenesis by transdifferentiating into myofibroblasts. S100A8/A9 is a powerful inducer of cell migration and is involved in liver injury. But there are few reports about the effects of S100A8/A9 on BMSC/HSC migration. In the current study, we found that S100A8/A9 expression was increased during fatty liver injury/fibrogenesis. Moreover, S100A8/A9 expression had a positive correlation with fibrosis marker gene expressions in the injured liver. S100A8/A9 was mainly produced by neutrophils in the fibrotic liver. In vitro, neutrophil-secreted S100A8/A9 promoted BMSC/HSC migration via remodeling of microfilaments. Using specific siRNA and inhibitor, we proved that S100A8/A9-induced BMSC/HSC migration is dependent on TLR4/Rho GTPases signaling. Moreover, S100A8/A9 knock-down alleviated liver injury and fibrogenesis in vivo, while injection of S100A9 neutralizing antibody performed similar roles. We proved that S100A8/A9 was involved in liver injury and fibrogenesis via inducing BMSC/HSC migration. Our research reveals a new mechanism underlying BMSC/HSC migration in liver fibrosis and suggests S100A8/A9 as a potential therapeutic target of liver fibrosis. KEY MESSAGES: S100A8/A9 is secreted by neutrophils and increased in fatty liver injury. Neutrophil-secreted S100A8/A9 is a mediator of BMSC/HSC migration in vitro. S100A8/A9-induced BMSC/HSC migration is dependent on TLR4/Rho GTPases signaling. S100A8/A9 blockade alleviates liver injury and fibrogenesis in vivo.


Asunto(s)
Calgranulina A , Calgranulina B , Movimiento Celular , Cirrosis Hepática , Miofibroblastos , Neutrófilos , Receptor Toll-Like 4 , Animales , Masculino , Ratones , Calgranulina A/metabolismo , Calgranulina A/genética , Calgranulina B/metabolismo , Calgranulina B/genética , Hígado Graso/metabolismo , Hígado Graso/patología , Células Estrelladas Hepáticas/metabolismo , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Células Madre Mesenquimatosas/metabolismo , Ratones Endogámicos C57BL , Miofibroblastos/metabolismo , Neutrófilos/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Transducción de Señal , Receptor Toll-Like 4/metabolismo , Humanos
6.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167358, 2024 10.
Artículo en Inglés | MEDLINE | ID: mdl-39025374

RESUMEN

Radiation-induced pulmonary fibrosis (RIPF) is a frequently encountered late complication in patients undergoing radiation therapy, presenting a substantial risk to patient mortality and quality of life. The pathogenesis of RIPF remains unclear, and current treatment options are limited in efficacy. High-dose vitamin C has demonstrated potential when used in conjunction with other adjuvant therapies due to potent anticancer properties. However, the potential relationship between high-dose vitamin C and RIPF has not yet been explored in existing literature. In our study, the RIPF model and the LLC tumor model were used as two animal models to explore how high-dose vitamin C can improve RIPF without hampering the antitumour efficacy of radiotherapy. The impact of high-dose vitamin C on RIPF was assessed through various assays, including micro-CT, HE staining, Masson staining, and immunohistochemistry. Our results indicated that administering high-dose vitamin C 2 days before radiation and continuing for a duration of 6 weeks significantly inhibited the progression of RIPF. In order to explore the mechanism by which high-dose vitamin C attenuates RIPF, we utilized RNA-seq analysis of mouse lung tissue in conjunction with publicly available databases. Our findings indicated that high-dose vitamin C inhibits the differentiation of fibroblasts into myofibroblasts by targeting S100A8 and S100A9 derived from neutrophils. Additionally, the combination of high-dose vitamin C and radiation demonstrated enhanced inhibition of tumor growth in a murine LLC tumor model. These results revealed that the combination of radiotherapy and high-dose vitamin C may offer a promising therapeutic approach for the clinical management of thoracic tumors and the prevention of RIPF.


Asunto(s)
Ácido Ascórbico , Calgranulina A , Calgranulina B , Fibrosis Pulmonar , Animales , Ácido Ascórbico/farmacología , Ácido Ascórbico/uso terapéutico , Ácido Ascórbico/administración & dosificación , Ratones , Calgranulina A/metabolismo , Calgranulina A/genética , Fibrosis Pulmonar/prevención & control , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/etiología , Fibrosis Pulmonar/tratamiento farmacológico , Calgranulina B/metabolismo , Calgranulina B/genética , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Humanos , Masculino
7.
Exp Dermatol ; 33(7): e15145, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39046322

RESUMEN

Acne vulgaris, rosacea, and hidradenitis suppurativa are enduring inflammatory skin conditions that frequently manifest with akin clinical attributes, posing a considerable challenge for their distinctive diagnosis. While these conditions do exhibit certain resemblances, they also demonstrate distinct underlying pathophysiological mechanisms and treatment modalities. Delving into both the molecular parallels and disparities among these three disorders can yield invaluable insights for refined diagnostics, effective management, and targeted therapeutic interventions. In this report, we present a comparative analysis of transcriptomic data across these three diseases, elucidating differentially expressed genes and enriched pathways specific to each ailment, as well as those shared among them. Specifically, we identified multiple zinc-binding proteins (SERPINA1, S100A7, S100A8, S100A9 and KRT16) as consistently highly upregulated genes across all three diseases. Our hypothesis suggests that these proteins could bind and sequester zinc, potentially leading to localized zinc deficiency and heightened inflammation. We identified high-dose dietary zinc as a promising therapeutic approach and confirmed its effectiveness through validation in an acne mouse model.


Asunto(s)
Acné Vulgar , Perfilación de la Expresión Génica , Hidradenitis Supurativa , Rosácea , Zinc , Acné Vulgar/tratamiento farmacológico , Acné Vulgar/genética , Zinc/uso terapéutico , Zinc/metabolismo , Rosácea/tratamiento farmacológico , Rosácea/genética , Hidradenitis Supurativa/tratamiento farmacológico , Hidradenitis Supurativa/genética , Animales , Ratones , Humanos , Proteína A7 de Unión a Calcio de la Familia S100/metabolismo , Proteína A7 de Unión a Calcio de la Familia S100/genética , Calgranulina A/genética , Calgranulina A/metabolismo , Calgranulina B/genética , Calgranulina B/metabolismo , Transcriptoma , Proteínas S100/genética , Proteínas S100/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Modelos Animales de Enfermedad , Regulación hacia Arriba
9.
Cell Death Dis ; 15(6): 462, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38942784

RESUMEN

S100a8/a9, largely released by polymorphonuclear neutrophils (PMNs), belongs to the S100 family of calcium-binding proteins and plays a role in a variety of inflammatory diseases. Although S100a8/a9 has been reported to trigger endothelial cell apoptosis, the mechanisms of S100a8/a9-induced endothelial dysfunction during sepsis require in-depth research. We demonstrate that high expression levels of S100a8/a9 suppress Ndufa3 expression in mitochondrial complex I via downregulation of Nrf1 expression. Mitochondrial complex I deficiency contributes to NAD+-dependent Sirt1 suppression, which induces mitochondrial disorders, including excessive fission and blocked mitophagy, and mtDNA released from damaged mitochondria ultimately activates ZBP1-mediated PANoptosis in endothelial cells. Moreover, based on comprehensive scRNA-seq and bulk RNA-seq analyses, S100A8/A9hi neutrophils are closely associated with the circulating endothelial cell count (a useful marker of endothelial damage), and S100A8 is an independent risk factor for poor prognosis in sepsis patients.


Asunto(s)
Calgranulina A , Calgranulina B , Mitocondrias , Neutrófilos , Sepsis , Calgranulina A/metabolismo , Calgranulina A/genética , Neutrófilos/metabolismo , Sepsis/patología , Sepsis/metabolismo , Sepsis/genética , Humanos , Calgranulina B/metabolismo , Calgranulina B/genética , Mitocondrias/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Complejo I de Transporte de Electrón/deficiencia , Complejo I de Transporte de Electrón/genética , Células Endoteliales/metabolismo , Células Endoteliales/patología , Animales , Ratones , Masculino , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Mitofagia , Ratones Endogámicos C57BL , Apoptosis
10.
Cell Mol Life Sci ; 81(1): 232, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38780644

RESUMEN

Ubiquitin-proteasome system dysfunction triggers α-synuclein aggregation, a hallmark of neurodegenerative diseases, such as Parkinson's disease (PD). However, the crosstalk between deubiquitinating enzyme (DUBs) and α-synuclein pathology remains unclear. In this study, we observed a decrease in the level of ubiquitin-specific protease 14 (USP14), a DUB, in the cerebrospinal fluid (CSF) of PD patients, particularly females. Moreover, CSF USP14 exhibited a dual correlation with α-synuclein in male and female PD patients. To investigate the impact of USP14 deficiency, we crossed USP14 heterozygous mouse (USP14+/-) with transgenic A53T PD mouse (A53T-Tg) or injected adeno-associated virus (AAV) carrying human α-synuclein (AAV-hα-Syn) in USP14+/- mice. We found that Usp14 deficiency improved the behavioral abnormities and pathological α-synuclein deposition in female A53T-Tg or AAV-hα-Syn mice. Additionally, Usp14 inactivation attenuates the pro-inflammatory response in female AAV-hα-Syn mice, whereas Usp14 inactivation demonstrated opposite effects in male AAV-hα-Syn mice. Mechanistically, the heterodimeric protein S100A8/A9 may be the downstream target of Usp14 deficiency in female mouse models of α-synucleinopathies. Furthermore, upregulated S100A8/A9 was responsible for α-synuclein degradation by autophagy and the suppression of the pro-inflammatory response in microglia after Usp14 knockdown. Consequently, our study suggests that USP14 could serve as a novel therapeutic target in PD.


Asunto(s)
Calgranulina A , Calgranulina B , Ratones Transgénicos , Enfermedad de Parkinson , Ubiquitina Tiolesterasa , alfa-Sinucleína , Animales , Femenino , Humanos , Masculino , Ratones , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Calgranulina A/metabolismo , Calgranulina A/genética , Calgranulina B/metabolismo , Calgranulina B/genética , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/deficiencia
11.
Cell Signal ; 120: 111199, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38697446

RESUMEN

Thromboangiitis obliterans (TAO) is characterized by inflammation and obstruction of small-and medium-sized distal arteries, with limited pharmacotherapies and surgical interventions. The precise pathogenesis of TAO remains elusive. By utilizing the technology of tandem mass tags (TMT) for quantitative proteomics and leveraging bioinformatics tools, a comparative analysis of protein profiles was conducted between normal and TAO rats to identify key proteins driving TAO development. The results unveiled 1385 differentially expressed proteins (DEPs) in the TAO compared with the normal group-comprising 365 proteins with upregulated expression and 1020 proteins with downregulated expression. Function annotation through gene ontology indicated these DEPs mainly involved in cell adhesion, positive regulation of cell migration, and cytosol. The principal signaling pathways involved regulation of the actin cytoskeleton, vascular smooth contraction, and focal adhesion. The roles of these DEPs and associated signaling pathways serve as a fundamental framework for comprehending the mechanisms underpinning the onset and progression of TAO. Furthermore, we conducted a comprehensive evaluation of the effects of S100A8/A9 and its inhibitor, paquinimod, on smooth muscle cells (SMCs) and in TAO rats. We observed that paquinimod reduces SMCs proliferation and migration, promotes phenotype switching and alleviates vascular stenosis in TAO rats. In conclusion, our study revealed that the early activation of S100A8/A9 in the femoral artery is implicated in TAO development, targeting S100A8/A9 signaling may provide a novel approach for TAO prevention and treatment.


Asunto(s)
Calgranulina A , Calgranulina B , Proteómica , Tromboangitis Obliterante , Animales , Tromboangitis Obliterante/metabolismo , Tromboangitis Obliterante/patología , Calgranulina A/metabolismo , Calgranulina A/genética , Calgranulina B/metabolismo , Ratas , Masculino , Miocitos del Músculo Liso/metabolismo , Movimiento Celular , Espectrometría de Masas en Tándem , Proliferación Celular/efectos de los fármacos , Ratas Sprague-Dawley , Transducción de Señal
12.
Cell Rep Med ; 5(6): 101576, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38776909

RESUMEN

Chemotherapy remains the first-line treatment for advanced esophageal cancer. However, durable benefits are achieved by only a limited subset of individuals due to the elusive chemoresistance. Here, we utilize patient-derived xenografts (PDXs) from esophageal squamous-cell carcinoma to investigate chemoresistance mechanisms in preclinical settings. We observe that activated cancer-associated fibroblasts (CAFs) are enriched in the tumor microenvironment of PDXs resistant to chemotherapy. Mechanistically, we reveal that cancer-cell-derived S100A8 triggers the intracellular RhoA-ROCK-MLC2-MRTF-A pathway by binding to the CD147 receptor of CAFs, inducing CAF polarization and leading to chemoresistance. Therapeutically, we demonstrate that blocking the S100A8-CD147 pathway can improve chemotherapy efficiency. Prognostically, we found the S100A8 levels in peripheral blood can serve as an indicator of chemotherapy responsiveness. Collectively, our study offers a comprehensive understanding of the molecular mechanisms underlying chemoresistance in esophageal cancer and highlights the potential value of S100A8 in the clinical management of esophageal cancer.


Asunto(s)
Calgranulina A , Fibroblastos Asociados al Cáncer , Resistencia a Antineoplásicos , Neoplasias Esofágicas , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Fibroblastos Asociados al Cáncer/efectos de los fármacos , Humanos , Neoplasias Esofágicas/patología , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/genética , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Calgranulina A/metabolismo , Calgranulina A/genética , Animales , Ratones , Microambiente Tumoral/efectos de los fármacos , Línea Celular Tumoral , Reprogramación Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Basigina/metabolismo , Basigina/genética , Proteína de Unión al GTP rhoA/metabolismo , Proteína de Unión al GTP rhoA/genética , Carcinoma de Células Escamosas de Esófago/patología , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Carcinoma de Células Escamosas de Esófago/metabolismo , Carcinoma de Células Escamosas de Esófago/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Femenino
13.
J Am Heart Assoc ; 13(10): e028006, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38726894

RESUMEN

BACKGROUND: S100a8/9 (S100 calcium binding protein a8/9) belongs to the S100 family and has gained a lot of interest as a critical regulator of inflammatory response. Our previous study found that S100a8/9 homolog promoted aortic valve sclerosis in mice with chronic kidney disease. However, the role of S100a8/9 in pressure overload-induced cardiac hypertrophy remains unclear. The present study was to explore the role of S100a8/9 in cardiac hypertrophy. METHODS AND RESULTS: Cardiomyocyte-specific S100a9 loss or gain of function was achieved using an adeno-associated virus system, and the model of cardiac hypertrophy was established by aortic banding-induced pressure overload. The results indicate that S100a8/9 expression was increased in response to pressure overload. S100a9 deficiency alleviated pressure overload-induced hypertrophic response, whereas S100a9 overexpression accelerated cardiac hypertrophy. S100a9-overexpressed mice showed increased FGF23 (fibroblast growth factor 23) expression in the hearts after exposure to pressure overload, which activated calcineurin/NFAT (nuclear factor of activated T cells) signaling in cardiac myocytes and thus promoted hypertrophic response. A specific antibody that blocks FGFR4 (FGF receptor 4) largely abolished the prohypertrophic response of S100a9 in mice. CONCLUSIONS: In conclusion, S100a8/9 promoted the development of cardiac hypertrophy in mice. Targeting S100a8/9 may be a promising therapeutic approach to treat cardiac hypertrophy.


Asunto(s)
Calgranulina A , Calgranulina B , Factor-23 de Crecimiento de Fibroblastos , Factores de Transcripción NFATC , Regulación hacia Arriba , Animales , Masculino , Ratones , Calcineurina/metabolismo , Calgranulina A/metabolismo , Calgranulina A/genética , Calgranulina B/metabolismo , Calgranulina B/genética , Cardiomegalia/metabolismo , Cardiomegalia/patología , Modelos Animales de Enfermedad , Factor-23 de Crecimiento de Fibroblastos/metabolismo , Hipertrofia Ventricular Izquierda/genética , Hipertrofia Ventricular Izquierda/patología , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Factores de Transcripción NFATC/metabolismo , Factores de Transcripción NFATC/genética , Transducción de Señal
14.
Mucosal Immunol ; 17(4): 651-672, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38614323

RESUMEN

Excessive inflammatory responses are the main characteristic of ulcerative colitis (UC). Activation of formyl peptide receptor 1 (FPR1) has been found to promote the proliferation and migration of epithelial cells, but its role and therapeutic potential in UC remain unclear. This study observed an increased expression of FPR1 in a mouse model of colitis. Interestingly, FPR1 deficiency exacerbated UC and increased the secretion of the proinflammatory mediator from immune cells (e.g. macrophages), S100a8, a member of the damage-associated molecular patterns. Notably, the administration of the FPR agonist Cmpd43 ameliorated colon injury in a preclinical mice model of UC, likely via inhibiting phosphorylation of cyclic adenosine monophosphate-response element-binding protein and expression of CCAAT/enhancer-binding protein ß, which in turn suppressed the secretion of S100a8. In conclusion, these findings discovered a novel role of FPR1 in the development of colitis and will facilitate the development of FPR1-based pharmacotherapy to treat UC.


Asunto(s)
Proteína beta Potenciadora de Unión a CCAAT , Calgranulina A , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Modelos Animales de Enfermedad , Homeostasis , Mucosa Intestinal , Ratones Noqueados , Receptores de Formil Péptido , Transducción de Señal , Animales , Receptores de Formil Péptido/metabolismo , Receptores de Formil Péptido/genética , Ratones , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Calgranulina A/metabolismo , Calgranulina A/genética , Colitis/metabolismo , Humanos , Ratones Endogámicos C57BL , Colon/metabolismo , Colon/patología , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/inmunología , Colitis Ulcerosa/tratamiento farmacológico
15.
Microbes Infect ; 26(5-6): 105340, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38663721

RESUMEN

Our developed cell division-specific 'centrin' gene deleted Leishmania donovani (LdCen1-/-) the causative parasite of the fatal visceral-leishmaniasis (VL), exhibits a selective growth arrest at the intracellular stage and is anticipated as a live attenuated vaccine candidate against VL. LdCen1-/- immunization in animals has shown increased IFN-γ secreting CD4+ and CD8+ T cells along with protection conferred by a protective proinflammatory immune response. A label-free proteomics approach has been employed to understand the physiology of infection and predict disease interceptors during Leishmania-host interactions. Proteomic modulation after infection of human macrophage cell lines suggested elevated annexin A6, implying involvement in various biological processes such as membrane repair, transport, actin dynamics, cell proliferation, survival, differentiation, and inflammation, thereby potentiating its immunological protective capacity. Additionally, S100A8 and S100A9 proteins, known for maintaining homeostatic balance in regulating the inflammatory response, have been upregulated after infection. The inhibitory clade of serpins, known to inhibit cysteine proteases (CPs), was upregulated in host cells after 48 h of infection. This is reflected in the diminished expression of CPs in the parasites during infection. Such proteome analysis confirms LdCen1-/- efficacy as a vaccine candidate and predicts potential markers in future vaccine development strategies against infectious diseases.


Asunto(s)
Leishmania donovani , Macrófagos , Proteoma , Proteínas Protozoarias , Leishmania donovani/inmunología , Leishmania donovani/genética , Humanos , Macrófagos/inmunología , Macrófagos/parasitología , Proteínas Protozoarias/genética , Proteínas Protozoarias/inmunología , Proteínas Protozoarias/metabolismo , Línea Celular , Leishmaniasis Visceral/inmunología , Leishmaniasis Visceral/parasitología , Proteómica , Animales , Calgranulina A/metabolismo , Calgranulina A/genética , Calgranulina A/inmunología
16.
J Genet Genomics ; 51(8): 811-823, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38575111

RESUMEN

The dysfunction of innate immunity components is one of the major drivers for ulcerative colitis (UC), and increasing reports indicate that the gut microbiome serves as an intermediate between genetic mutations and UC development. Here, we find that the IL-17 receptor subunit, CMTM4, is reduced in UC patients and dextran sulfate sodium (DSS)-induced colitis. The deletion of CMTM4 (Cmtm4-/-) in mice leads to a higher susceptibility to DSS-induced colitis than in wild-type, and the gut microbiome significantly changes in composition. The causal role of the gut microbiome is confirmed with a cohousing experiment. We further identify that S100a8/9 is significantly up-regulated in Cmtm4-/- colitis, with the block of its receptor RAGE that reverses the phenotype associated with the CMTM4 deficiency. CMTM4 deficiency rather suppresses S100a8/9 expression in vitro via the IL17 pathway, further supporting that the elevation of S100a8/9 in vivo is most likely a result of microbial dysbiosis. Taken together, the results suggest that CMTM4 is involved in the maintenance of intestinal homeostasis, suppression of S100a8/9, and prevention of colitis development. Our study further shows CMTM4 as a crucial innate immunity component, confirming its important role in UC development and providing insights into potential targets for the development of future therapies.


Asunto(s)
Calgranulina A , Calgranulina B , Colitis , Sulfato de Dextran , Disbiosis , Microbioma Gastrointestinal , Proteínas con Dominio MARVEL , Animales , Femenino , Humanos , Masculino , Ratones , Calgranulina A/genética , Calgranulina A/metabolismo , Calgranulina B/genética , Calgranulina B/metabolismo , Colitis/genética , Colitis/microbiología , Colitis/inducido químicamente , Colitis/patología , Colitis Ulcerosa/microbiología , Colitis Ulcerosa/genética , Colitis Ulcerosa/patología , Colitis Ulcerosa/inmunología , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/metabolismo , Sulfato de Dextran/toxicidad , Sulfato de Dextran/efectos adversos , Modelos Animales de Enfermedad , Disbiosis/microbiología , Disbiosis/genética , Disbiosis/inmunología , Proteínas con Dominio MARVEL/genética , Proteínas con Dominio MARVEL/metabolismo , Ratones Noqueados
17.
PeerJ ; 12: e17106, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38646478

RESUMEN

Background: Allergic asthma is the most prevalent asthma phenotype and is associated with the disorders of immune cells and glycolysis. Macrophages are the most common type of immune cells in the lungs. Calprotectin (S100A8 and S100A9) are two pro-inflammatory molecules that target the Toll-like receptor 4 (TLR4) and are substantially increased in the serum of patients with severe asthma. This study aimed to determine the effects of S100A8/A9 on macrophage polarization and glycolysis associated with allergic asthma. Methods: To better understand the roles of S100A8 and S100A9 in the pathogenesis of allergic asthma, we used ovalbumin (OVA)-induced MH-S cells, and OVA-sensitized and challenged mouse models (wild-type male BALB/c mice). Enzyme-linked immunosorbent assay, quantitative real-time polymerase chain reaction, flow cytometry, hematoxylin-eosin staining, and western blotting were performed. The glycolysis inhibitor 3-bromopyruvate (3-BP) was used to observe changes in glycolysis in mice. Results: We found knockdown of S100A8 or S100A9 in OVA-induced MH-S cells inhibited inflammatory cytokines, macrophage polarization biomarker expression, and pyroptosis cell proportion, but increased anti-inflammatory cytokine interleukin (IL)-10 mRNA; also, glycolysis was inhibited, as evidenced by decreased lactate and key enzyme expression; especially, knockdown of S100A8 or S100A9 inhibited the activity of TLR4/myeloid differentiation primary response gene 88 (MyD88)/Nuclear factor kappa-B (NF-κB) signaling pathway. Intervention with lipopolysaccharides (LPS) abolished the beneficial effects of S100A8 and S100A9 knockdown. The observation of OVA-sensitized and challenged mice showed that S100A8 or S100A9 knockdown promoted respiratory function, improved lung injury, and inhibited inflammation; knockdown of S100A8 or S100A9 also suppressed macrophage polarization, glycolysis levels, and activation of the TLR4/MyD88/NF-κB signaling pathway in the lung. Conversely, S100A9 overexpression exacerbated lung injury and inflammation, promoting macrophage polarization and glycolysis, which were antagonized by the glycolysis inhibitor 3-BP. Conclusion: S100A8 and S100A9 play critical roles in allergic asthma pathogenesis by promoting macrophage perturbation and glycolysis through the TLR4/MyD88/NF-κB signaling pathway. Inhibition of S100A8 and S100A9 may be a potential therapeutic strategy for allergic asthma.


Asunto(s)
Asma , Calgranulina A , Calgranulina B , Modelos Animales de Enfermedad , Glucólisis , Macrófagos , Ratones Endogámicos BALB C , Animales , Masculino , Ratones , Asma/genética , Asma/inmunología , Asma/patología , Calgranulina A/metabolismo , Calgranulina A/genética , Calgranulina B/genética , Calgranulina B/metabolismo , Citocinas/metabolismo , Glucólisis/efectos de los fármacos , Glucólisis/genética , Macrófagos/metabolismo , Macrófagos/inmunología , Macrófagos/efectos de los fármacos , Factor 88 de Diferenciación Mieloide/metabolismo , Factor 88 de Diferenciación Mieloide/genética , FN-kappa B/metabolismo , Ovalbúmina , Transducción de Señal/genética , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/genética
18.
Blood Adv ; 8(11): 2777-2789, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38522092

RESUMEN

ABSTRACT: Megakaryocytes (MKs), integral to platelet production, predominantly reside in the bone marrow (BM) and undergo regulated fragmentation within sinusoid vessels to release platelets into the bloodstream. Inflammatory states and infections influence MK transcription, potentially affecting platelet functionality. Notably, COVID-19 has been associated with altered platelet transcriptomes. In this study, we investigated the hypothesis that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection could affect the transcriptome of BM MKs. Using spatial transcriptomics to discriminate subpopulations of MKs based on proximity to BM sinusoids, we identified ∼19 000 genes in MKs. Machine learning techniques revealed that the transcriptome of healthy murine BM MKs exhibited minimal differences based on proximity to sinusoid vessels. Furthermore, at peak SARS-CoV-2 viremia, when the disease primarily affected the lungs, MKs were not significantly different from those from healthy mice. Conversely, a significant divergence in the MK transcriptome was observed during systemic inflammation, although SARS-CoV-2 RNA was never detected in the BM, and it was no longer detectable in the lungs. Under these conditions, the MK transcriptional landscape was enriched in pathways associated with histone modifications, MK differentiation, NETosis, and autoimmunity, which could not be explained by cell proximity to sinusoid vessels. Notably, the type I interferon signature and calprotectin (S100A8/A9) were not induced in MKs under any condition. However, inflammatory cytokines induced in the blood and lungs of COVID-19 mice were different from those found in the BM, suggesting a discriminating impact of inflammation on this specific subset of cells. Collectively, our data indicate that a new population of BM MKs may emerge through COVID-19-related pathogenesis.


Asunto(s)
Médula Ósea , COVID-19 , Megacariocitos , SARS-CoV-2 , Transcriptoma , COVID-19/patología , COVID-19/virología , COVID-19/genética , COVID-19/metabolismo , Megacariocitos/metabolismo , Megacariocitos/virología , Animales , SARS-CoV-2/fisiología , SARS-CoV-2/genética , Ratones , Médula Ósea/metabolismo , Médula Ósea/patología , Calgranulina B/metabolismo , Calgranulina B/genética , Humanos , Calgranulina A/metabolismo , Calgranulina A/genética , Modelos Animales de Enfermedad
19.
Protein J ; 43(2): 243-258, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38431537

RESUMEN

S100A8 and S100A9 belong to the calcium-binding, damage associated molecular pattern (DAMP) proteins shown to aggravate the pathogenesis of rheumatoid arthritis (RA) through their interaction with the TLR4, RAGE and CD36 receptors. S100A8 and S100A9 proteins tend to exist in monomeric, homo and heterodimeric forms, which have been implicated in the pathogenesis of RA, via interacting with Pattern Recognition receptors (PRRs). The study aims to assess the influence of changes in the structure and biological assembly of S100A8 and S100A9 proteins as well as their interaction with significant receptors in RA through computational methods and surface plasmon resonance (SPR) analysis. Molecular docking analysis revealed that the S100A9 homodimer and S100A8/A9 heterodimer showed higher binding affinity towards the target receptors. Most S100 proteins showed good binding affinity towards TLR4 compared to other receptors. Based on the 50 ns MD simulations, TLR4, RAGE, and CD36 formed stable complexes with the monomeric and dimeric forms of S100A8 and S100A9 proteins. However, SPR analysis showed that the S100A8/A9 heterodimers formed stable complexes and exhibited high binding affinity towards the receptors. SPR data also indicated that TLR4 and its interactions with S100A8/A9 proteins may play a primary role in the pathogenesis of RA, with additional contributions from CD36 and RAGE interactions. Subsequent in vitro and in vivo investigations are warranted to corroborate the involvement of S100A8/A9 and the expression of TLR4, RAGE, and CD36 in the pathophysiology of RA.


Asunto(s)
Antígenos CD36 , Calgranulina A , Calgranulina B , Simulación del Acoplamiento Molecular , Receptor para Productos Finales de Glicación Avanzada , Receptor Toll-Like 4 , Calgranulina B/química , Calgranulina B/metabolismo , Receptor Toll-Like 4/química , Receptor Toll-Like 4/metabolismo , Calgranulina A/química , Calgranulina A/metabolismo , Calgranulina A/genética , Humanos , Antígenos CD36/química , Antígenos CD36/metabolismo , Antígenos CD36/genética , Receptor para Productos Finales de Glicación Avanzada/química , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Unión Proteica , Simulación de Dinámica Molecular , Resonancia por Plasmón de Superficie , Multimerización de Proteína , Artritis Reumatoide/metabolismo
20.
Nat Commun ; 15(1): 2701, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38538601

RESUMEN

Heart failure is the prevalent complication of acute myocardial infarction. We aim to identify a biomarker for heart failure post-acute myocardial infarction. This observational study includes 1062 and 1043 patients with acute myocardial infarction in the discovery and validation cohorts, respectively. The outcomes are in-hospital and long-term heart failure events. S100A8/A9 is screened out through proteomic analysis, and elevated circulating S100A8/A9 is independently associated with heart failure in discovery and validation cohorts. Furthermore, the predictive value of S100A8/A9 is superior to the traditional biomarkers, and the addition of S100A8/A9 improves the risk estimation using traditional risk factors. We finally report causal effect of S100A8/A9 on heart failure in three independent cohorts using Mendelian randomization approach. Here, we show that S100A8/A9 is a predictor and potentially causal medicator for heart failure post-acute myocardial infarction.


Asunto(s)
Insuficiencia Cardíaca , Infarto del Miocardio , Humanos , Calgranulina B , Pronóstico , Proteómica , Calgranulina A/genética , Infarto del Miocardio/complicaciones , Insuficiencia Cardíaca/etiología , Biomarcadores , Síndrome
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA