RESUMEN
Integrating agricultural, chemical, and technological knowledge is crucial for developing bio-nanotechnologies to improve agricultural production. This study explores the innovative use of biopolymeric coatings, based on sodium alginate and sodium alginate + Laponite® (nanoclay), containing biostimulants (tryptophol and thymol) or not, on garlic cloves. These coatings were analyzed using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR-ATR), and scanning electron microscopy (SEM). Greenhouse bioassays showed improvements in garlic shoot plant biomass with both treatments: sodium alginate biopolymer and sodium alginate biopolymer plus Laponite®. In the field experiment, garlic plants treated with sodium alginate, in combination with conventional pesticide treatments, resulted in better quality garlic bulbs, where larger garlics were harvested in this treatment, reducing commercial losses. In tropical garlic crops, obtaining plants with greater initial vigor is essential. Our results highlight the potential of these bio-nanotechnological strategies to enhance garlic propagation, ensuring environmental protection and food security.
Asunto(s)
Ajo , Ajo/química , Biopolímeros/química , Alginatos/química , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X , Microscopía Electrónica de Rastreo , Nanotecnología/métodosRESUMEN
Scaffolds for the filling and regeneration of osteochondral defects are a current challenge in the biomaterials field, and solutions with greater functionality are still being sought. The novel approach of this work was to obtain scaffolds with biologically active additives possessing microstructural, permeability, and mechanical properties, mimicking the complexity of natural cartilage. Four types of scaffolds with a gelatin/alginate matrix modified with hydroxyapatite were obtained, and the relationship between the modifiers and substrate properties was evaluated. They differed in the type of second modifier used, which was hydrated MgCl2 in two proportions, ZnO, and nanohydroxyapatite. The samples were obtained by freeze-drying by using two-stage freezing. Based on microstructural observations combined with X-ray microanalysis, the microstructure of the samples and the elemental content were assessed. Permeability and mechanical tests were also performed. The scaffolds exhibited a network of interconnected pores and complex microarchitecture, with lower porosity at the surface (15 ± 7 to 29 ± 6%) and higher porosity at the center (67 ± 8 to 75 ± 8%). The additives had varying effects on the pore sizes and permeabilities of the samples. ZnO yielded the most permeable scaffolds (5.92 × 10-11 m2), whereas nanohydroxyapatite yielded the scaffold with the lowest permeability (1.18 × 10-11 m2), values within the range reported for trabecular bone. The magnesium content had no statistically significant effect on the permeability. The best mechanical parameters were obtained for ZnO samples and those containing hydrated MgCl2. The scaffold's properties meet the criteria for filling osteochondral defects. The developed scaffolds follow a biomimetic approach in terms of hierarchical microarchitecture and mechanical parameters as well as chemical composition. The obtained composite materials have the potential as biomimetic scaffolds for the regeneration of osteochondral defects.
Asunto(s)
Hidrogeles , Cloruro de Magnesio , Andamios del Tejido , Óxido de Zinc , Óxido de Zinc/química , Andamios del Tejido/química , Cloruro de Magnesio/química , Hidrogeles/química , Porosidad , Alginatos/química , Durapatita/química , Permeabilidad , Gelatina/química , Ensayo de MaterialesRESUMEN
Bone tissue regeneration strategies have incorporated the use of natural polymers, such as hydroxyapatite (nHA), chitosan (CH), gelatin (GEL), or alginate (ALG). Additionally, platelet concentrates, such as platelet-rich fibrin (PRF) have been suggested to improve scaffold biocompatibility. This study aimed to develop scaffolds composed of nHA, GEL, and CH, with or without ALG and lyophilized PRF, to evaluate the scaffold's properties, growth factor release, and dental pulp stem cells (DPSC), and osteoblast (OB) derived from DPSC viability. Four scaffold variations were synthesized and lyophilized. Then, degradation, swelling profiles, and morphological analysis were performed. Furthermore, PDGF-BB and FGF-B growth factors release were quantified by ELISA, and cytotoxicity and cell viability were evaluated. The swelling and degradation profiles were similar in all scaffolds, with pore sizes ranging between 100 and 250 µm. FGF-B and PDGF-BB release was evidenced after 24 h of scaffold immersion in cell culture medium. DPSC and OB-DPSC viability was notably increased in PRF-supplemented scaffolds. The nHA-CH-GEL-PRF scaffold demonstrated optimal physical-biological characteristics for stimulating DPSC and OB-DPSC cell viability. These results suggest lyophilized PRF improves scaffold biocompatibility for bone tissue regeneration purposes.
Asunto(s)
Alginatos , Supervivencia Celular , Quitosano , Pulpa Dental , Durapatita , Gelatina , Osteoblastos , Fibrina Rica en Plaquetas , Células Madre , Andamios del Tejido , Humanos , Pulpa Dental/citología , Quitosano/química , Quitosano/farmacología , Gelatina/química , Fibrina Rica en Plaquetas/química , Fibrina Rica en Plaquetas/metabolismo , Andamios del Tejido/química , Células Madre/efectos de los fármacos , Células Madre/citología , Células Madre/metabolismo , Supervivencia Celular/efectos de los fármacos , Durapatita/química , Durapatita/farmacología , Alginatos/química , Alginatos/farmacología , Osteoblastos/efectos de los fármacos , Osteoblastos/citología , Adhesión Celular/efectos de los fármacos , Ingeniería de Tejidos/métodos , Células CultivadasRESUMEN
Carvacrol has demonstrated antioxidant activity; however, its high volatility and low water solubility limit its direct application in food matrices. Then, an effective encapsulation system is required to protect it. This study aimed to design and characterize a carvacrol-based additive encapsulated in a spray-dried multilayer emulsion based on chitosan/sodium alginate/maltodextrin. Spray-drying temperature of 120 °C and 3 %(w/w) maltodextrin content maximized both encapsulation efficiency (~97 %) and loading capacity (~53 %). The powder's antioxidant properties were evaluated in two food simulant media: water (SiW) and water-ethanol (SiD). The highest antioxidant activity was observed in SiW for both ABTSâ¢+ (8.2 ± 0.3mgEAG/g) and FRAP (4.1 ± 0.2mgEAG/g) methods because of the reduced release of carvacrol in SiD vs. SiW, as supported by micro- and macrostructural observations by SAXS and microscopy, respectively. An increase from 143 to 157 °C attributable to carvacrol protection and Tg = 44.4 °C (> ambient) were obtained by TGA and DSC, respectively. FT-IR confirmed intermolecular interactions (e.g. -COO- and -NH3+) as well as H-bonding formation. High water solubility (81 ± 3 %), low hygroscopicity (8.8 ± 0.2 %(w/w), poor flowability (CI:45 ± 4), and high cohesiveness (HR:1.8 ± 0.1) between particles were achieved, leading to a powdered antioxidant additive with high potential for applications which required avoiding/reducing oxidation on hydrophilic and hydrophobic food products.
Asunto(s)
Alginatos , Antioxidantes , Quitosano , Cimenos , Emulsiones , Polisacáridos , Polvos , Quitosano/química , Antioxidantes/química , Antioxidantes/farmacología , Cimenos/química , Alginatos/química , Emulsiones/química , Polisacáridos/química , Ácido Glucurónico/química , Ácidos Hexurónicos/químicaRESUMEN
Some synthetic polymers can be used at low concentrations to reduce the toxicity of conventional cryoprotectant agents. In this study we investigated whether the addition of synthetic polymers to a conventional cryoprotectant solution would improve the cryopreservation of bovine ovarian tissue. Freshly collected ovaries from ten adult crossbred cows were incised using a scalpel in the frontal section. From each cow, ovarian cortical slices of 1 mm thickness were divided into 30 fragments of 3 × 3 mm, of which 10 served as fresh controls, 10 were vitrified with conventional cryoprotectant agents (2.93 M glycerol, 27 % w/v; 4.35 M ethylene glycol, 27 % w/v), and 10 were vitrified using the same cryoprotectant agents in addition to synthetic polymers (0.2 % PVP K-12, 0.2 % SuperCool X-1000 ™ w/v and 0.4 % SuperCool Z-1000 ™ w/v). After warming, histology was used to assess follicular quantity and integrity, while in vitro culture of mechanically isolated follicles encapsulated in an alginate matrix was performed for 15 days to assess their growth and hormonal production. Vitrified ovarian tissues presented abnormal morphology, a higher percentage of atretic follicles, and their isolated follicles had lower survival rates and lower frequency of antrum formation during in vitro culture compared to those from fresh tissue. At the end of culture, the follicles that had been cryopreserved produced less estradiol and progesterone than the fresh ones. The addition of synthetic polymers during tissue vitrification did not modify any of these parameters. We conclude that, under the conditions of this study, the use of this combination of synthetic polymers for tissue vitrification did not enhance the preservation of the morphological or functional integrity of bovine ovarian follicles.
Asunto(s)
Criopreservación , Crioprotectores , Glicol de Etileno , Glicerol , Folículo Ovárico , Ovario , Vitrificación , Animales , Femenino , Bovinos , Crioprotectores/farmacología , Criopreservación/métodos , Criopreservación/veterinaria , Ovario/efectos de los fármacos , Glicerol/farmacología , Glicol de Etileno/farmacología , Folículo Ovárico/efectos de los fármacos , Polímeros/farmacología , Polímeros/química , Progesterona/farmacología , Estradiol/farmacología , Alginatos/química , Alginatos/farmacologíaRESUMEN
3D-printed hydrogel scaffolds biomimicking the extracellular matrix (ECM) are key in cartilage tissue engineering as they can enhance the chondrogenic differentiation of mesenchymal stem cells (MSCs) through the presence of active nanoparticles such as graphene oxide (GO). Here, biomimetic hydrogels were developed by cross-linking alginate, gelatin, and chondroitin sulfate biopolymers in the presence of GO as a bioactive filler, with excellent processability for developing bioactive 3D printed scaffolds and for the bioprinting process. A novel bioink based on our hydrogel with embedded human MSCs presented a cell survival rate near 100% after the 3D bioprinting process. The effects of processing and filler concentration on cell differentiation were further quantitatively evaluated. The nanocomposited hydrogels render high MSC proliferation and viability, exhibiting intrinsic chondroinductive capacity without any exogenous factor when used to print scaffolds or bioprint constructs. The bioactivity depended on the GO concentration, with the best performance at 0.1 mg mL-1. These results were explained by the rational combination of the three biopolymers, with GO nanoparticles having carboxylate and sulfate groups in their structures, therefore, biomimicking the highly negatively charged ECM of cartilage. The bioactivity of this biomaterial and its good processability for 3D printing scaffolds and 3D bioprinting techniques open up a new approach to developing novel biomimetic materials for cartilage repair.
Asunto(s)
Alginatos , Bioimpresión , Diferenciación Celular , Condrogénesis , Sulfatos de Condroitina , Gelatina , Hidrogeles , Células Madre Mesenquimatosas , Nanocompuestos , Impresión Tridimensional , Andamios del Tejido , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Sulfatos de Condroitina/química , Sulfatos de Condroitina/farmacología , Alginatos/química , Alginatos/farmacología , Gelatina/química , Bioimpresión/métodos , Diferenciación Celular/efectos de los fármacos , Condrogénesis/efectos de los fármacos , Nanocompuestos/química , Andamios del Tejido/química , Hidrogeles/química , Hidrogeles/farmacología , Ingeniería de Tejidos/métodos , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Grafito/química , Grafito/farmacología , Proliferación Celular/efectos de los fármacos , Células CultivadasRESUMEN
Staphylococcus aureus is a pathogen widely involved in wound infection due to its ability to release several virulence factors that impair the skin healing process, as well as its mechanism of drug resistance. Herein, sodium alginate and chitosan were combined to produce a hydrogel for topical delivery of neomycin to combat S. aureus associated with skin complications. The hydrogel was formulated by combining sodium alginate (50 mg/mL) and chitosan (50 mg/mL) solutions in a ratio of 9:1 (HBase). Neomycin was added to HBase to achieve a concentration of 0.4 mg/mL (HNeo). The incorporation of neomycin into the product was confirmed by scanning electron microscopy, FTIR and TGA analysis. The hydrogels produced are homogeneous, have a high swelling capacity, and show biocompatibility using erythrocytes and fibroblasts as models. The formulations showed physicochemical and pharmacological stability for 60 days at 4 ± 2 °C. HNeo totally inhibited the growth of S. aureus after 4 h. The antimicrobial effects were confirmed using ex vivo (porcine skin) and in vivo (murine) wound infection models. Furthermore, the HNeo-treated mice showed lower severity scores than those treated with HBase. Taken together, the obtained results present a new low-cost bioproduct with promising applications in treating infected wounds.
Asunto(s)
Alginatos , Antibacterianos , Quitosano , Hidrogeles , Neomicina , Staphylococcus aureus , Quitosano/química , Quitosano/farmacología , Alginatos/química , Alginatos/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Staphylococcus aureus/efectos de los fármacos , Animales , Ratones , Neomicina/farmacología , Neomicina/química , Neomicina/administración & dosificación , Antibacterianos/farmacología , Antibacterianos/química , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Cutáneas Estafilocócicas/tratamiento farmacológico , Infecciones Cutáneas Estafilocócicas/microbiología , Infecciones Cutáneas Estafilocócicas/patología , Portadores de Fármacos/química , Piel/efectos de los fármacos , Piel/microbiologíaRESUMEN
Vitamins are responsible for providing biological properties to the human body; however, their instability under certain environmental conditions limits their utilization in the food industry. The objective was to conduct a systematic review on the use of biopolymers and lipid bases in microencapsulation processes, assessing their impact on the stability, controlled release, and viability of fortified foods with microencapsulated vitamins. The literature search was conducted between the years 2013-2023, gathering information from databases such as Scopus, PubMed, Web of Science and publishers including Taylor & Francis, Elsevier, Springer and MDPI; a total of 49 articles were compiled The results were classified according to the microencapsulation method, considering the following information: core, coating material, solvent, formulation, process conditions, particle size, efficiency, yield, bioavailability, bioaccessibility, in vitro release, correlation coefficient and references. It has been evidenced that gums are the most frequently employed coatings in the protection of vitamins (14.04%), followed by alginate (10.53%), modified chitosan (9.65%), whey protein (8.77%), lipid bases (8.77%), chitosan (7.89%), modified starch (7.89%), starch (7.02%), gelatin (6.14%), maltodextrin (5.26%), zein (3.51%), pectin (2.63%) and other materials (7.89%). The factors influencing the release of vitamins include pH, modification of the coating material and crosslinking agents; additionally, it was determined that the most fitting mathematical model for release values is Weibull, followed by Zero Order, Higuchi and Korsmeyer-Peppas; finally, foods commonly fortified with microencapsulated vitamins were described, with yogurt, bakery products and gummy candies being notable examples.
Asunto(s)
Composición de Medicamentos , Alimentos Fortificados , Vitaminas , Vitaminas/análisis , Quitosano/química , Disponibilidad Biológica , Humanos , Biopolímeros/química , Alginatos/química , Proteína de Suero de Leche/químicaRESUMEN
Biomaterial scaffolds play a pivotal role in the advancement of cultured meat technology, facilitating essential processes like cell attachment, growth, specialization, and alignment. Currently, there exists limited knowledge concerning the creation of consumable scaffolds tailored for cultured meat applications. This investigation aimed to produce edible scaffolds featuring both smooth and patterned surfaces, utilizing biomaterials such as salmon gelatin, alginate, agarose and glycerol, pertinent to cultured meat and adhering to food safety protocols. The primary objective of this research was to uncover variations in transcriptomes profiles between flat and microstructured edible scaffolds fabricated from marine-derived biopolymers, leveraging high-throughput sequencing techniques. Expression analysis revealed noteworthy disparities in transcriptome profiles when comparing the flat and microstructured scaffold configurations against a control condition. Employing gene functional enrichment analysis for the microstructured versus flat scaffold conditions yielded substantial enrichment ratios, highlighting pertinent gene modules linked to the development of skeletal muscle. Notable functional aspects included filament sliding, muscle contraction, and the organization of sarcomeres. By shedding light on these intricate processes, this study offers insights into the fundamental mechanisms underpinning the generation of muscle-specific cultured meat.
Asunto(s)
Diferenciación Celular , Carne in Vitro , Andamios del Tejido , Transcriptoma , Animales , Alginatos/química , Materiales Biocompatibles/química , Biopolímeros , Gelatina/química , Perfilación de la Expresión Génica , Células Musculares/metabolismo , Desarrollo de Músculos/genética , Salmón , Sefarosa/química , Andamios del Tejido/químicaRESUMEN
Known for its antioxidant properties, Araucaria angustifolia bracts extract was encapsulated using hydrodynamic electrospray ionization jetting within calcium alginate cross-linked hydrogel beads with varying contents of modified pinhão starch. The rheological properties of the dispersions and analysis of the physicochemical and digestive properties of encapsulated beads were studied. The results demonstrated that dispersions containing starch exhibited higher viscosity and reduced compliance values, indicating samples with stronger, more compact, and stable structures that are less susceptible to deformation. This was confirmed by the beads rupture strength test. The ATR-FTIR analysis suggest that no new chemical bonds were formed, with encapsulation being responsible only for physical interactions between the functional groups of the polymers used and the active groups of the compounds present in the extract. The thermal stability of starch-containing beads was higher. Total tannins were higher in beads containing starch, with 53.61 %, 56.83 %, and 66.99 % encapsulation yield for samples with 2 %, 4 %, and 6 % starch, respectively, and the remaining antioxidant activity ranged from 96.04 % to 81.08 %. In vitro gastrointestinal digestion simulation indicated that the highest releases occurred in the intestinal phase, ranging from 60.72 % to 63.50 % for the release of total phenolic compounds.
Asunto(s)
Alginatos , Antioxidantes , Hidrogeles , Almidón , Alginatos/química , Almidón/química , Hidrogeles/química , Antioxidantes/química , Extractos Vegetales/química , Microesferas , Reología , Hidrodinámica , ViscosidadRESUMEN
Driven by climate change and human activity, Sargassum blooming rates have intensified, producing copious amount of the invasive, pelagic seaweed across the Caribbean and Latin America. Battery recycling and lead-smelter wastes have heavily polluted the environment and resulted in acute lead poisoning in children through widespread heavy metal contamination particular in East Trinidad. Our study details a comprehensive investigation into the use of Sargassum (S. natans), as a potential resource-circular feedstock for the synthesis of calcium alginate beads utilized in heavy metal adsorption, both in batch and column experiments. Here, ionic cross-linking of extracted sodium alginate with calcium chloride was utilized to create functional ion-exchange beads. Given the low quality of alginates extracted from Sargassum which produce poor morphological beads, composite beads in conjunction with graphene oxide and acrylamide were used to improve fabrication. Stand-alone calcium alginate beads exhibited superior Pb2+ adsorption, with a capacity of 213 mg g-1 at 20 °C and pH 3.5, surpassing composite and commercial resins. Additives like acrylamide and graphene oxide in composite alginate resins led to a 21-40% decrease in Pb2+ adsorption due to reduced active sites. Column operations confirmed Alginate systems' practicality, with 20-24% longer operating times, 15 times lower adsorbent mass on scale-up and 206% smaller column diameters compared to commercial counterparts. Ultimately, this study advocates for Sargassum-based Alginate ion-exchange beads as a bio-based alternative in Trinidad and developing nations for dealing with heavy metal ion waste, offering superior heavy metal adsorption performance and supporting resource circularity.
Asunto(s)
Alginatos , Resinas de Intercambio Iónico , Plomo , Sargassum , Sargassum/química , Alginatos/química , Adsorción , Plomo/química , Resinas de Intercambio Iónico/químicaRESUMEN
Chitosan (CS) and sodium alginate (SA)-based biocomposites (CSA) were prepared with the in-situ generation of Calcium Carbonate (CSAX_Ca) through a simple, straightforward, economical, and eco-friendly procedure. Different drying conditions (X) were tested to achieve suitable structural and surface characteristics to enhance adsorption capacity: freeze-dried (L), vacuum-dried with methanol (M), and freeze-dried + vacuum-dried with methanol (LM). Temperature and adsorbent dosage effects on the adsorption capacity of Cu2+ or Pb2+ were examined. Results showed that the higher-yielding biocomposite (CSALM_Ca) exhibited rapid adsorption and good diffusion properties, achieving removal above 90â¯% within contaminant initial concentration ranges of 10-100â¯mg/L. At 35⯰C, a pseudo-second-order kinetic and the Langmuir model effectively described kinetics and isotherms, revealing maximum adsorption (qe, max) of 429 mgCu2+/L and 1742 mgPb2+/g. Characterization through FTIR, XRD, and SEM of the as-prepared adsorbents confirmed the presence of CaCO3 in vaterite and calcite forms and the influence of drying conditions on the material morphology. Post-adsorption material characterization, in combination with adsorption findings, revealed chemisorption processes involving Ca2+ ion exchange for Cu2+ or Pb2+, resulting in surface-insoluble compounds. The best-performing material showed that after three reuse cycles, the removal of Cu2+ and Pb2+ decreased to 75â¯% and 62â¯%, respectively.
Asunto(s)
Alginatos , Carbonato de Calcio , Quitosano , Cobre , Plomo , Contaminantes Químicos del Agua , Purificación del Agua , Quitosano/química , Cobre/química , Alginatos/química , Plomo/química , Adsorción , Carbonato de Calcio/química , Contaminantes Químicos del Agua/química , Cinética , Purificación del Agua/métodos , Agua/química , Propiedades de Superficie , TemperaturaRESUMEN
The present work describes the process of degradation of a polyelectrolytic complex (PEC) based on sodium alginate (ALG) and chitosan (CHI), buried for different time intervals, in a clayey soil (ultisol) collected from the municipality of Campos dos Goytacazes, in the northern region of the state of Rio de Janeiro, Brazil. The influence of PEC on soil moisture was also investigated. The results showed that soil moisture increased with the presence of PEC after 7â¯days of testing, and remained high until the end of the study. FTIR and Raman spectra showed that the breaking of the glycosidic bond (C-O-C) was responsible for the PEC degradation. Thermogravimetry results revealed that alginate was possibly degraded faster than chitosan. Microscopic analysis of the PEC revealed a fragile and fragmented surface of the samples that were buried, in comparison with those not buried. The microbiological assays of the soil confirmed the biodegradation of the polysaccharides. Chemical analysis of soil indicated that PEC did not significantly influence soil fertility. Therefore, we conclude that the PEC (ALG: CHI), formed only by electrostatic interaction, buried in clayey soil, even being biodegraded, can be a promising soil conditioner for agricultural applications.
Asunto(s)
Quitosano , Quitosano/química , Alginatos/química , Suelo , Brasil , Polielectrolitos/químicaRESUMEN
Although sodium alginate (SA) is frequently utilized because of its good gelling properties, the substance's dearth of adsorption active sites prevents it from effectively removing heavy metals. Herein, SA was used as the base material to form a cross-linked structure with Fe3+ and Mg2+, and gel beads with a diameter of 2.0 ± 0.1 mm with specific adsorption on As(V) were synthesized as adsorbent (Fe/Mg-SA). Fe/Mg-SA was systematically characterized, and its adsorption properties were investigated by varying several conditions. Fe/Mg-SA had a wide pH application range. The adsorption kinetics revealed that a quasi-secondary kinetic model was followed. The adsorption process is linked to the complexation of hydroxyl and AsO43-, chemisorption predominated the adsorption process. The maximal adsorption capacity of Fe/Mg-SA is determined by fitting the Langmuir model to be 37.4 mg/g. Compared to other adsorbents, it is simpler to synthesis, more effective and cheaper. Each treatment of 1 m3 wastewater of Fe/Mg-SA only costs ¥ 38.612. The novel gel beads synthesized provides a better option for purifying groundwater contaminated with As(V).
Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Alginatos/química , Adsorción , Porosidad , Metales Pesados/química , Geles/química , Cinética , Contaminantes Químicos del Agua/química , Concentración de Iones de HidrógenoRESUMEN
The 5-alpha-reductase enzyme, present in pilosebaceous units, plays a crucial role in the appearance of cutaneous hyperandrogenism manifestations (hirsutism, acne, and androgenetic alopecia). Its inhibition is an excellent strategy to reverse these conditions. Given the limitations of existing treatments, with transient effects and delayed therapeutic response, as well as the possibility of causing undesirable side effects, this study sought to develop new drug delivery systems to overcome these limitations. In other words, innovative stimuli-responsive hybrid nanoparticles were synthesized using silica/natural polysaccharides, encapsulating 5-alpha-reductase enzyme inhibitors derived from the plant Stryphnodendron adstringens (Mart.) Coville (commonly known as 'Barbatimão'). Silica core was synthesized by the modified Stöber method. The pH responsive polysaccharides used to coat the porous silica cores were chitosan, and sodium alginate, this coating was carried out using the Layer-by-Layer technique. The hybrid nanoparticles were characterized at molecular and physical-chemical levels. Furthermore, encapsulation efficiency, pH-dependent release behavior, and cytotoxicity were evaluated. Amorphous mesoporous structure with adequate size for follicular delivery (between 300 and 600 nm) in addition to effective phytocompound loading capacity, above 80 % was obtained. Based on the release studies, it was possible to observe pH responsiveness. The ethyl acetate fraction (EAF) obtained from "Barbatimão" bark extract was released in a controlled and more efficient manner by the alginate-coated nanoparticle (SNP_EAF_SA) at pH 7.4, which corresponds to the pH at the deepest area of hair follicles. Furthermore, SNP_EAF_SA proved to be less cytotoxic compared to EAF and chitosan-coated hybrid nanoparticles (SNP_EAF_CH). Characterization, release, and cytotoxicity results indicate that SNP_EAF_SA is a promising system for on-demand follicular delivery of antiandrogenic actives contained in EAF.
Asunto(s)
Quitosano , Nanopartículas , Quitosano/química , Inhibidores de 5-alfa-Reductasa , Brasil , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/química , Alginatos/química , Dióxido de Silicio/química , Concentración de Iones de Hidrógeno , Oxidorreductasas , Porosidad , Portadores de FármacosRESUMEN
BACKGROUND: Calcium alginate gels are widely used to encapsulate active compounds. Some characteristic parameters of these gels are necessary to describe the release of active compounds through mechanistic mathematical models. In this work, transport and kinetics properties of calcium alginate gels were determined through simple experimental techniques. RESULTS: The weight-average molecular weight ( M ¯ w = 192 × 103 Da) and the fraction of residues of α-l-guluronic acid ( F G = 0.356) of sodium alginate were determined by capillary viscometry and 1 H-nuclear magnetic resonance at 25 °C, respectively. Considering the half egg-box model, both values were used to estimate the molecular weight of calcium alginate as M g = 2.02 × 105 Da. An effective diffusion coefficient of water ( D eff , w = 2.256 × 10-9 m2 s-1 ) in calcium alginate was determined using a diffusion cell at 37 °C. Finally, a kinetics constant of depolymerization ( k m = 9.72 × 10-9 m3 mol-1 s-1 ) of calcium alginate was obtained considering dissolution of calcium to a medium under intestinal conditions. CONCLUSION: The experimental techniques used are simple and easily reproducible. The obtained values may be useful in the design, production, and optimization of the alginate-based delivery systems that require specific release kinetics of the encapsulated active compounds. © 2023 Society of Chemical Industry.
Asunto(s)
Alginatos , Imagen por Resonancia Magnética , Alginatos/química , Geles/química , Espectroscopía de Resonancia Magnética , Modelos Teóricos , Calcio/química , Ácidos Hexurónicos/química , Ácido Glucurónico/químicaRESUMEN
Alginate is a biopolymer widely used on delivery systems when bioactive protection at acidic pH is required, while chitosan can enhance mucoadhesion and controlled release at alkaline pHs. In this work, alginate ionotropic gelation and electrostatic complexation to chitosan were evaluated concomitantly or in a two-step approach to improve the delivery properties of systems in different pHs. The effect of pH on alginate gelation and chitosan interactions were also evaluated. Alginate microspheres were prepared by ionotropic gelation in CaCl2 at different pH values (2.5 and 6.0) by extrusion. Complexation with chitosan was carried out during alginate ionotropic gelation (one-step approach) or after alginate gel formation (two-step approach). Alginate microparticles without chitosan showed larger pores and lower mechanical strength. Extruded microspheres at pH 6.0 were more stable to pH and showed smaller pores than the formed at pH 2.5. One-step production retained a large amount of bioactive at pH 7.0 and resulted in lower release at the pH of intestinal digestion. The two-step approach retained less amount of bioactive but confer more protection to the pH of the stomach phase and higher release in pH of the intestinal phase than one-step samples. These results indicate that the formation of alginate gels by ionotropic gelation followed by the complexation with chitosan (in two-step) is promising for the transport and delivery of bioactives into intestinal conditions, whereas the ionotropic gelation concomitantly to electrostatic complexation (one-step approach) is indicated to the delivery of bioactives into lower pH environments.
Asunto(s)
Quitosano , Sistemas de Liberación de Medicamentos , Sistemas de Liberación de Medicamentos/métodos , Quitosano/química , Alginatos/química , Concentración de Iones de Hidrógeno , Tamaño de la PartículaRESUMEN
This study aimed to analyze the physicochemical and histological properties of nanostructured hydroxyapatite and alginate composites produced at different temperatures with and without sintering and implanted in rabbit tibiae. Hydroxyapatite-alginate (HA) microspheres (425-600 µm) produced at 90 and 5 °C without (HA90 and HA5) or with sintering at 1000 °C (HA90S and HA5S) were characterized and applied to evaluate thein vitrodegradation; also were implanted in bone defects on rabbit's tibiae (n= 12). The animals were randomly divided into five groups (blood clot, HA90S, HA5S, HA90, and HA5) and euthanized after 7 and 28 d. X-ray diffraction and Fourier-transform infrared analysis of the non-sintered biomaterials showed a lower crystallinity than sintered materials, being more degradablein vitroandin vivo. However, the sinterization of HA5 led to the apatite phase's decomposition into tricalcium phosphate. Histomorphometric analysis showed the highest (p< 0.01) bone density in the blood clot group, similar bone levels among HA90S, HA90, and HA5, and significantly less bone in the HA5S. HA90 and HA5 groups presented higher degradation and homogeneous distribution of the new bone formation onto the surface of biomaterial fragments, compared to HA90S, presenting bone only around intact microspheres (p< 0.01). The elemental distribution (scanning electron microscope and energy dispersive spectroscopy andµXRF-SR analysis) of Ca, P, and Zn in the newly formed bone is similar to the cortical bone, indicating bone maturity at 28 d. The synthesized biomaterials are biocompatible and osteoconductive. The heat treatment directly influenced the material's behavior, where non-sintered HA90 and HA5 showed higher degradation, allowing a better distribution of the new bone onto the surface of the biomaterial fragments compared to HA90S presenting the same level of new bone, but only on the surface of the intact microspheres, potentially reducing the bone-biomaterial interface.
Asunto(s)
Durapatita , Trombosis , Animales , Conejos , Durapatita/química , Sincrotrones , Materiales Biocompatibles/química , Cerámica , Alginatos/químicaRESUMEN
The present work presents the results obtained in the production of vanillin-doped alginate biopolymeric film using green chemistry methodology. Alginate dressings are already a therapeutic reality, but they act only by maintaining the appropriate environment for healing. In order to improve their properties, the incorporation of vanillin was proposed due to its antioxidant and antimicrobial potential. Different biopolymeric films were produced employing the experiment planning through response surface analysis, which allowed determining the best region for a medium value of solubility and high degree of swelling. This region refers to values above 0.07 g of CaCl2 and concentrations above 0.024 g of vanillin, triggering solubility between 25 and 30% and a degree of swelling above 100% and with fixed values of alginate (0.85 g). Such data are related to experiments (A), (B), and (C) listed in Table 1. Regarding the optimization of the process, the normal boundary intersection (NBI) method allowed the analysis of concave regions, predicting the optimal points and generating the Pareto chart with equidistant limits. The antimicrobial test allowed observing the antimicrobial activity against Escherichia coli and Pseudomonas aeruginosa microorganisms from the biopolymeric films, as well as a solution of vanillin with calcium chloride and glycerol obtaining a halo of inhibition only in the presence of vanillin, and there was no significant difference between the results obtained in the experiments (A) and (B). The thermal analyses showed that the material has thermal stability in the ideal temperature range (~ 25 °C) for application as a biocurative. We preliminarily concluded that the alginate biopolymeric film doped with vanillin prepared using green chemical methodology presents antimicrobial properties and thermal stability that indicate its potential use as biocurative.
Asunto(s)
Antiinfecciosos , Materiales Biocompatibles , Alginatos/química , Antiinfecciosos/farmacología , BenzaldehídosRESUMEN
Nowadays, wastewater treatment is a critical concern, particularly regarding the removal of heavy metals through adsorption methods. Extensive research has been conducted on obtaining high-yield and environmentally friendly adsorbents. Natural polymer adsorbents especially have shown promise in ion and organic molecule adsorption. To enhance the practical applicability of adsorbents, the combination of biopolymers to form biocomposites is a promising alternative. In this study, adsorbents based on a 1:1 wt./wt. of chitosan (CS) and alginate (SA) were prepared. The influence of the regeneration route and drying conditions on the copper adsorption capacity was investigated, along with reaction parameters such as contact time, adsorbent particle size, and pH. The highest adsorption capacity was observed in the composite material obtained through a one-pot regeneration process and freeze-dried. The CSAR3L sample exhibited a remarkable adsorption capacity of 288 mg Cu(II)/g after 360 min at 25 °C. The synergistic effect between the CS and SA precursors was confirmed by analyzing the individual precursors and their mechanical mixture. The initial adsorption rates at pH 6 followed the order: CSAR3-L > Bk-CSR3L > Bk-SAR3L + Bk-CSR3L > Bk-SAR3L. The physicochemical and morphological properties of the materials were studied by FTIR, XRD, DLS, XPS, optical microscopy, EDS-SEM, elemental chemical analysis, and TGA-DTG. The utilization of different drying methods resulted in the formation of calcium carbonate crystalline phases in the as-prepared materials, thus creating substantial adsorption active sites. After the adsorption process, hydroxylated copper sulfate phases and a significant decrease in calcium concentration were observed, indicating that an ion exchange adsorption mechanism occurred. The analysis of adsorption kinetics and the shape of the adsorption isotherms, in agreement with the characterization results, suggested the presence of multiple active sites and the formation of a chemisorption monolayer.