Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.457
Filtrar
2.
Carbohydr Polym ; 344: 122538, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39218556

RESUMEN

An ideal adhesive hydrogel must possess high adhesion to the native tissue, biocompatibility, eligible biodegradability, and good mechanical compliance with the substrate tissues. We constructed an interpenetrating double-network hydrogel containing polysaccharides (alginate and dextran) and nanosized spherical dendrimer by both physical and chemical crosslinking, thus endowing the hydrogel with a broad range of mechanical properties, adhesive properties, and biological functions. The double-network hydrogel has moderate pore sizes and swelling properties. The chelation of calcium ions significantly enhances the tensile and compressive properties. The incorporation of dendrimer improves both the mechanical and adhesive properties. This multicomponent interpenetrating network hydrogel has excellent biocompatibility, tunable mechanical and adhesive properties, and satisfied multi-functions to meet the complex requirements of wound healing and tissue engineering. The hydrogel exhibits promising corneal adhesion capabilities in vitro, potentially supplanting the need for sutures in corneal stromal surgery and mitigating the risks associated with donor corneal damage and graft rejection during corneal transplantation. This novel polysaccharide and dendrimer hydrogel also shows good results in sutureless keratoplasty, with high efficiency and reliability. Based on the clinical requirements for tissue bonding and wound closure, the hydrogel provides insight into solving the mechanical properties and adhesive strength of tissue adhesives.


Asunto(s)
Alginatos , Dendrímeros , Dextranos , Hidrogeles , Adhesivos Tisulares , Alginatos/química , Hidrogeles/química , Dextranos/química , Dendrímeros/química , Adhesivos Tisulares/química , Animales , Trasplante de Córnea/métodos , Humanos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Resistencia a la Tracción , Conejos , Córnea/cirugía , Cicatrización de Heridas/efectos de los fármacos , Reactivos de Enlaces Cruzados/química
3.
Int J Mol Sci ; 25(16)2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39201785

RESUMEN

The impressive adhesive capacity of marine mussels has inspired various fascinating designs in biomedical fields. Mussel-inspired injectable adhesive hydrogels, as a type of promising mussel-inspired material, have attracted much attention due to their minimally invasive property and desirable functions provided by mussel-inspired components. In recent decades, various mussel-inspired injectable adhesive hydrogels have been designed and widely applied in numerous biomedical fields. The rational incorporation of mussel-inspired catechol groups endows the injectable hydrogels with the potential to exhibit many properties, including tissue adhesiveness and self-healing, antimicrobial, and antioxidant capabilities, broadening the applications of injectable hydrogels in biomedical fields. In this review, we first give a brief introduction to the adhesion mechanism of mussels and the characteristics of injectable hydrogels. Further, the typical design strategies of mussel-inspired injectable adhesive hydrogels are summarized. The methodologies for integrating catechol groups into polymers and the crosslinking methods of mussel-inspired hydrogels are discussed in this section. In addition, we systematically overview recent mussel-inspired injectable adhesive hydrogels for biomedical applications, with a focus on how the unique properties of these hydrogels benefit their applications in these fields. The challenges and perspectives of mussel-inspired injectable hydrogels are discussed in the last section. This review may provide new inspiration for the design of novel bioinspired injectable hydrogels and facilitate their application in various biomedical fields.


Asunto(s)
Bivalvos , Hidrogeles , Hidrogeles/química , Animales , Bivalvos/química , Humanos , Materiales Biocompatibles/química , Adhesivos Tisulares/química , Materiales Biomiméticos/química , Adhesivos/química , Inyecciones
4.
Tech Coloproctol ; 28(1): 95, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103661

RESUMEN

BACKGROUND: Anastomotic leakage (AL) is the most frequent life-threating complication following colorectal surgery. Several attempts have been made to prevent AL. This prospective, randomized, multicentre trial aimed to evaluate the safety and efficacy of nebulised modified cyanoacrylate in preventing AL after rectal surgery. METHODS: Patients submitted to colorectal surgery for carcinoma of the high-medium rectum across five high-volume centres between June 2021 and January 2023 entered the study and were randomized into group A (anastomotic reinforcement with cyanoacrylate) and group B (no reinforcement) and followed up for 30 days. Anastomotic reinforcement was performed via nebulisation of 1 mL of a modified cyanoacrylate glue. Preoperative features and intraoperative and postoperative results were recorded and compared. The study was registered at ClinicalTrials.gov (ID number NCT03941938). RESULTS: Out of 152 patients, 133 (control group, n = 72; cyanoacrylate group, n = 61) completed the follow-up. ALs were detected in nine patients (12.5%) in the control group (four grade B and five grade C) and in four patients (6.6%), in the cyanoacrylate group (three grade B and one grade C); however, despite this trend, the differences were not statistically significant (p = 0.36). However, Clavien-Dindo complications grade > 2 were significantly higher in the control group (12.5% vs. 3.3%, p = 0.04). No adverse effects related to the glue application were reported. CONCLUSION: The role of modified cyanoacrylate application in AL prevention remains unclear. However its use to seal colorectal anastomoses is safe and could help to reduce severe postoperative complications.


Asunto(s)
Anastomosis Quirúrgica , Fuga Anastomótica , Cianoacrilatos , Recto , Humanos , Fuga Anastomótica/prevención & control , Fuga Anastomótica/etiología , Femenino , Masculino , Estudios Prospectivos , Anciano , Persona de Mediana Edad , Cianoacrilatos/administración & dosificación , Anastomosis Quirúrgica/efectos adversos , Anastomosis Quirúrgica/métodos , Recto/cirugía , Adhesivos Tisulares/uso terapéutico , Técnicas de Sutura , Neoplasias del Recto/cirugía , Resultado del Tratamiento
6.
ACS Appl Mater Interfaces ; 16(33): 43180-43188, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39110843

RESUMEN

The development of bioadhesives with strong adhesion and on-demand adhesion-detachment behavior is still critically important and challenging for facilitating painless and damage-free removal in clinical applications. In this work, for the first time, we report the easy fabrication of novel polyurethane-urea (PUU)-based bioadhesives with thermoresponsive on-demand adhesion and detachment behavior. The PUU copolymer was synthesized by a simple copolymerization of low-molecular-weight, hydrophilic, and biocompatible poly(ethylene glycol), glyceryl monolaurate (GML, a special chain extender with a long side hydrophobic alkyl group), and isophorone diisocyanate (IPDI). Here, GML was expected to not only adjust the temperature-dependent adhesion behavior but also act as an internal plasticizer. By simple adjustment of the water content, the adhesion strength of the 15 wt % water-containing PUU film toward porcine skin is as high as 55 kPa with an adhesion energy of 128 J/m2 at 37 °C. The adhesion strength dramatically decreases to only 3 kPa at 10 °C, exhibiting switching efficiency as high as 0.95. Furthermore, the present PUU-based adhesive also shows good on-demand underwater adhesion and detachment with a cell viability close to 100%. We propose that biomaterial research fields, especially novel PUU/polyurethane (PU)-based functional materials and bioadhesives, could benefit from such a novel thermoresponsive copolymer with outstanding mechanical and functional performances and an easy synthesis and scaled-up process as described in this article.


Asunto(s)
Poliuretanos , Poliuretanos/química , Poliuretanos/farmacología , Animales , Porcinos , Humanos , Temperatura , Urea/química , Urea/farmacología , Urea/análogos & derivados , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/síntesis química , Adhesivos Tisulares/química , Adhesivos Tisulares/farmacología , Adhesivos Tisulares/síntesis química , Adhesión Celular/efectos de los fármacos , Ratones , Adhesivos/química , Adhesivos/farmacología
7.
Int J Biol Macromol ; 278(Pt 3): 134761, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39151870

RESUMEN

Corneal injuries play a significant role in global visual impairment, underscoring the demand for innovative biomaterials with specific attributes such as adhesion, cohesion, and regenerative potential. In this study, we have developed a biocompatible bioadhesive for corneal reconstruction. Derived from Collagen type I, naturally present in human corneal stromal tissue, the bioadhesive was cross-linked with modified polyethylene glycol diacrylate (PEGDA-DOPA), rendering it curable through visible light exposure and exhibiting superior adhesion to biological tissues even in wet conditions. The physicochemical characteristics of the proposed bioadhesive were customized by manipulating the concentration of its precursor polymers and adjusting the duration of photocrosslinking. To identify the optimal sample with maximum adhesion, mechanical strength, and biocompatibility, characterization tests were conducted. The optimal specimen, consisting of 30 % (w/v) PEGDA-DOPA and cured with visible light for 5 min, exhibited commendable adhesive strength of 783.6 kPa and shear strength of 53.7 kPa, surpassing that of commercialized eye adhesives.Additionally, biocompatibility test results indicated a notably high survival rate (>100 %) of keratocytes seeded on the hydrogel adhesive after 7 days of incubation. Consequently, this designed bioadhesive, characterized by high adhesion strength, robust mechanical strength, and excellent biocompatibility, is anticipated to enhance the spontaneous repair process of damaged corneal stromal tissue.


Asunto(s)
Perforación Corneal , Hidrogeles , Polietilenglicoles , Humanos , Hidrogeles/química , Hidrogeles/farmacología , Perforación Corneal/tratamiento farmacológico , Polietilenglicoles/química , Animales , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Colágeno/química , Colágeno/farmacología , Ensayo de Materiales , Adhesivos Tisulares/química , Adhesivos Tisulares/farmacología
8.
ACS Appl Mater Interfaces ; 16(36): 47226-47241, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39193631

RESUMEN

The development of multifunctional wound adhesives is critical in clinical settings due to the scarcity of dressings with effective adhesive properties while protecting against infection by drug-resistant bacteria. Polysaccharide and gelatin-based hydrogels, known for their biocompatibility and bioactivity, assist in wound healing. This study introduces a multifunctional bioadhesive hydrogel developed through dynamic covalent bonding and light-triggered covalent bonding, comprising oxidized hyaluronic acid, methacrylated gelatin, and the bacteriocin recently discovered by our lab, named jileicin (JC). The adhesion strength of the hydrogel, measured at 180 kPa, was 4.35 times higher than that of the fibrin glue. Furthermore, the hydrogel demonstrated robust platelet adhesion, procoagulant activity, and outstanding hemostatic properties in a mouse liver injury model. Incorporating JC significantly enhanced the phagocytosis and bactericidal capabilities of the macrophages. This immunomodulatory function on host cells, coupled with its potent bacterial membrane-disrupting ability, makes JC an effective killer against methicillin-resistant Staphylococcus aureus. In wound repair experiments on diabetic mice with infected full-thickness skin defects, the hydrogel treatment group showed a notable reduction in bacterial load, accelerated M2-type macrophage polarization, diminished inflammation, and hastened wound healing. Owing to its outstanding biocompatibility, antibacterial activity, and controlled adhesion, this hydrogel presents a promising therapeutic option for treating infected skin wounds.


Asunto(s)
Antibacterianos , Diabetes Mellitus Experimental , Gelatina , Ácido Hialurónico , Hidrogeles , Cicatrización de Heridas , Animales , Cicatrización de Heridas/efectos de los fármacos , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Gelatina/química , Hidrogeles/química , Hidrogeles/farmacología , Ratones , Antibacterianos/química , Antibacterianos/farmacología , Diabetes Mellitus Experimental/tratamiento farmacológico , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Adhesivos Tisulares/química , Adhesivos Tisulares/farmacología , Humanos , Masculino
9.
Science ; 385(6711): 877-883, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39172835

RESUMEN

Polymer adhesives play an important role in many medical, consumer, and industrial products. Polymers of α-lipoic acid (αLA) have the potential to fulfill the need for versatile and environmentally friendly adhesives, but their performance is plagued by spontaneous depolymerization. We report a family of stabilized αLA polymer adhesives that can be tailored for a variety of medical or nonmedical uses and sustainably sourced and recycled in a closed-loop manner. Minor changes in monomer composition afforded a pressure-sensitive adhesive that functions well in dry and wet conditions, as well as a structural adhesive with strength equivalent to that of conventional epoxies. αLA surgical superglue successfully sealed murine amniotic sac ruptures, increasing fetal survival from 0 to 100%.


Asunto(s)
Polímeros , Ácido Tióctico , Adhesivos Tisulares , Animales , Femenino , Ratones , Polímeros/química , Reciclaje , Ácido Tióctico/química , Adhesivos Tisulares/química , Polimerizacion , Células 3T3 NIH
10.
ACS Appl Mater Interfaces ; 16(31): 40469-40482, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39046205

RESUMEN

In addressing the intricate challenges of enterocutaneous fistula (ECF) treatment, such as internal bleeding, effluent leakage, inflammation, and infection, our research is dedicated to introducing a regenerative adhesive hydrogel that can seal and expedite the healing process. A double syringe setup was utilized, with dopagelatin and platelet-rich plasma (PRP) in one syringe and Laponite and sodium periodate in another. The hydrogel begins to cross-link immediately after passing through a mixing tip and exhibits tissue adhesive properties. Results demonstrated that PRP deposits within the pores of the cross-linked hydrogel and releases sustainably, enhancing its regenerative capabilities. The addition of PRP further improved the mechanical properties and slowed down the degradation of the hydrogel. Furthermore, the hydrogel demonstrated cytocompatibility, hemostatic properties, and time-dependent macrophage M1 to M2 phase transition, suggesting the anti-inflammatory response of the material. In an in vitro bench test simulating high-pressure fistula conditions, the hydrogel effectively occluded pressures up to 300 mmHg. In conclusion, this innovative hydrogel holds promise for ECF treatment and diverse fistula cases, marking a significant advancement in its therapeutic approaches.


Asunto(s)
Hidrogeles , Fístula Intestinal , Cicatrización de Heridas , Hidrogeles/química , Hidrogeles/farmacología , Fístula Intestinal/terapia , Animales , Cicatrización de Heridas/efectos de los fármacos , Humanos , Ratones , Plasma Rico en Plaquetas/química , Adhesivos Tisulares/química , Adhesivos Tisulares/farmacología , Silicatos/química , Silicatos/uso terapéutico , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología
11.
ACS Appl Mater Interfaces ; 16(31): 40653-40666, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39052487

RESUMEN

The key to saving lives is to achieve instant and effective sealing hemostasis in the event of emergency bleeding. Herein, a plant oil-based EMTA/Zn2+ bioadhesive is prepared by a facile reaction of epoxidized soybean oil (ESO) with methacrylic acid (MAA) and tannic acid (TA), followed by the addition of zinc ions for coordination with TA. The EMTA/Zn2+ bioadhesive can be rapidly cured in situ at the wound site through photo-cross-linking under ultraviolet (UV) light-emitting diode (LED) irradiation within 30 s, achieving ultrastrong wet-tissue adhesion performance of 92.4 and 51.8 kPa to porcine skin and aortic skin after 7 days underwater, respectively. Especially, the EMTA/Zn2+ bioadhesive exhibits outstanding sealing performance in vitro with the high burst pressure of 525 mmHg (70 kPa) and 337.5 mmHg (45 kPa) to porcine skin and aortic skin, respectively. Moreover, the EMTA/Zn2+ bioadhesive not only has outstanding hemocompatibility and good biodegradability but also exhibits excellent cytocompatibility and antibacterial properties. Notably, the EMTA/Zn2+ bioadhesive has remarkable instant sealing hemostatic ability for hemorrhaging liver in vivo. Therefore, the prepared plant oil-based EMTA/Zn2+ bioadhesive can serve as a charming alternative candidate for instant sealing hemostasis in clinical applications, especially in traumatic internal organs and arterial bleeding.


Asunto(s)
Hemostasis , Animales , Porcinos , Hemostasis/efectos de los fármacos , Aceites de Plantas/química , Aceites de Plantas/farmacología , Hemostáticos/química , Hemostáticos/farmacología , Adhesivos Tisulares/química , Adhesivos Tisulares/farmacología , Zinc/química , Zinc/farmacología , Ratones , Humanos , Hemorragia/tratamiento farmacológico , Piel/efectos de los fármacos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Taninos/química , Taninos/farmacología , Metacrilatos/química , Metacrilatos/farmacología
12.
ACS Nano ; 18(32): 21411-21432, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39079092

RESUMEN

Epidural adhesion or epidural fibrosis is the major reason for postoperative pain, which remains a clinically challenging problem. Current physical barriers fail to provide a satisfactory therapeutic outcome mainly due to their lack of adhesion, inability to prevent fluid leakage, and exhibiting limited antioxidant properties. Herein, we fabricated a cysteine-modified bioadhesive (SECAgel) with improved sealing and antioxidant properties for epidural adhesion prevention, inspired by the organism's antioxidant systems. The resulting SECAgel showed good injectability and in situ adhesion ability, effectively covering every corner of the irregular wound. Besides, it possessed efficient sealing properties (395.2 mmHg), effectively stopping blood leakage in the rabbit carotid artery transection model. The antioxidant experiments demonstrated that the SECAgel effectively scavenged various radicals and saved the cells from oxidative stress. Two animal models were used to show that the SECAgel effectively inhibited adhesion in both situations with and without cerebrospinal fluid leakage. The RNA sequencing analysis showed that SECAgel treatment effectively inhibited the expression of key genes related to adhesion development, inflammatory response, and oxidative stress. The SECAgel, together with good biocompatibility, can be a good candidate for preventing epidural adhesion in the clinic.


Asunto(s)
Antioxidantes , Animales , Conejos , Antioxidantes/farmacología , Antioxidantes/química , Adherencias Tisulares/prevención & control , Espacio Epidural/patología , Espacio Epidural/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Adhesivos Tisulares/química , Adhesivos Tisulares/farmacología , Cisteína/química , Cisteína/farmacología , Humanos , Ratones , Adhesivos/química , Adhesivos/farmacología , Masculino
13.
ACS Biomater Sci Eng ; 10(8): 5094-5107, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-38979636

RESUMEN

Intervertebral disc (IVD) herniation is a leading cause of disability and lower back pain, causing enormous socioeconomic burdens. The standard of care for disc herniation is nucleotomy, which alleviates pain but does not repair the annulus fibrosus (AF) defect nor recover the biomechanical function of the disc. Existing bioadhesives for AF repair are limited by insufficient adhesion and significant mechanical and geometrical mismatch with the AF tissue, resulting in the recurrence of protrusion or detachment of bioadhesives. Here, we report a composite hydrogel sealant constructed from a composite of a three-dimensional (3D)-printed thermoplastic polyurethane (TPU) mesh and tough hydrogel. We tailored the fiber angle and volume fraction of the TPU mesh design to match the angle-ply structure and mechanical properties of native AF. Also, we proposed and tested three types of geometrical design of the composite hydrogel sealant to match the defect shape and size. Our results show that the sealant could mimic native AF in terms of the elastic modulus, flexural modulus, and fracture toughness and form strong adhesion with the human AF tissue. The bovine IVD tests show the effectiveness of the composite hydrogel sealant for AF repair and biomechanics recovery and for preventing herniation with its heightened stiffness and superior adhesion. By harnessing the combined capabilities of 3D printing and bioadhesives, these composite hydrogel sealants demonstrate promising potential for diverse applications in tissue repair and regeneration.


Asunto(s)
Anillo Fibroso , Hidrogeles , Animales , Anillo Fibroso/efectos de los fármacos , Hidrogeles/química , Hidrogeles/farmacología , Bovinos , Humanos , Impresión Tridimensional , Poliuretanos/química , Poliuretanos/farmacología , Adhesivos Tisulares/farmacología , Adhesivos Tisulares/química
14.
ACS Appl Bio Mater ; 7(8): 5237-5246, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39007499

RESUMEN

Vocal fold (VF) scarring, a complex problem in laryngology, results from injury and inflammation of the layered architecture of the VFs. The resultant voice hoarseness, for which successful therapeutic options are currently limited, affects the patient's quality of life. A promising strategy to reverse this disorder is the use of antifibrotic drugs. The present study proposes a novel microbead-embedded injectable hydrogel that can sustain the release of the anti-fibrotic drug pirfenidone (PFD) for vocal fold scarring. Microbeads were developed using sodium alginate and gelatin, which were further embedded into a biomimetic and tissue adhesive gellan gum (GG) hydrogel. The microbead-embedded hydrogel exhibited improved injectability, viscoelasticity, tissue adhesiveness, degradability, and swelling compared to the hydrogel without beads. Additionally, the bead-embedded hydrogel could sustain the release of the PFD for a week. In vitro studies showed that the drug-loaded hydrogel could reduce the migration and proliferation of fibroblast cells in a dose-dependent manner. In summary, this study demonstrates the potential of a PFD-loaded injectable hydrogel with enhanced viscoelastic and tissue-adhesive properties for vocal fold scarring applications.


Asunto(s)
Materiales Biocompatibles , Cicatriz , Ensayo de Materiales , Adhesivos Tisulares , Pliegues Vocales , Pliegues Vocales/patología , Pliegues Vocales/efectos de los fármacos , Adhesivos Tisulares/química , Adhesivos Tisulares/farmacología , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Cicatriz/tratamiento farmacológico , Cicatriz/patología , Humanos , Proliferación Celular/efectos de los fármacos , Tamaño de la Partícula , Microgeles/química , Antifibróticos/química , Antifibróticos/farmacología , Fibroblastos/efectos de los fármacos , Hidrogeles/química , Hidrogeles/farmacología , Alginatos/química , Movimiento Celular/efectos de los fármacos , Polisacáridos Bacterianos , Piridonas
15.
Int Angiol ; 43(3): 331-341, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39041783

RESUMEN

Cyanoacrylate adhesive closure (CAC) systems are widely used to treat varicose veins. In terms of efficacy and safety, these nonthermal, non-tumescent methods are noninferior to endovenous thermal ablation techniques. However, no published studies have compared products that use CAC systems. VenaSeal® (Medtronic, Santa Rosa, CA, USA) and VenaBlock® (Invamed) are the most commonly used CAC-based products worldwide. This study aimed to focus on the efficacy of these two commonly used products, with little emphasis on safety. Published full-text articles on the VenaBlock® and VenaSeal® systems were searched. Data for each product were evaluated by comparing them with each other in terms of effectiveness. In total, 1882 extremities from 11 studies using VenaBlock® and 524 extremities from eight studies using VenaSeal® were included and compared. Both devices were effective, and their cumulative recanalization-free survival rates were similar (P=0.188) at the 6-, 12-, 24-, 36-, and 60-month follow-ups. Both products improved the venous clinical severity score (VCSS) and quality of life (QoL) scores. VenaBlock® and VenaSeal® are effective in terms of cumulative recanalization-free survival rates, and no significant difference was found between the two groups (P=0.188). Both significantly improve the VCSS and QoL scores. CAC is feasible for the treatment of varicose veins.


Asunto(s)
Cianoacrilatos , Procedimientos Endovasculares , Insuficiencia Venosa , Humanos , Cianoacrilatos/efectos adversos , Cianoacrilatos/uso terapéutico , Cianoacrilatos/administración & dosificación , Insuficiencia Venosa/terapia , Procedimientos Endovasculares/efectos adversos , Procedimientos Endovasculares/instrumentación , Enfermedad Crónica , Resultado del Tratamiento , Extremidad Inferior/irrigación sanguínea , Estudios de Factibilidad , Masculino , Femenino , Várices/terapia , Persona de Mediana Edad , Calidad de Vida , Adhesivos Tisulares/uso terapéutico , Adulto
16.
J Mater Chem B ; 12(33): 8142-8152, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39058226

RESUMEN

Medical adhesives have been used for wound closure with many advantages over sutures, but the wet environment in the human body poses a big challenge for its application. The currently used dry double-sided tape (DST) can remove the water barrier by water absorption, but its over-swelling makes it difficult to achieve long-term adhesion. In this study, a dry double-sided tape post-treated with tannic acid (DST-TA) was developed. A double network adhesive composed of polyacrylic acid and gelatin was first prepared by free radical photocrosslinking, and was post-treated in acidic (pH = 2) tannic acid solution. Tannic acid was immobilized in the DST through the catecholyl group, which could form hydrogen bonds with the DST, or react with the amino group on the gelatin by oxidizing to quinone. In vivo and in vitro studies demonstrated that DST-TA had significantly higher swelling resistance and tensile strength than DST. The introduced catecholyl group could reduce over-swelling of the DST, and improve short-term and long-term adhesion in a wet environment. We also demonstrated that the DST-TA had good hemocompatibility, biodegradability, and no cytotoxicity, offering a potential option for long-term medical adhesive in a wet environment.


Asunto(s)
Gelatina , Polifenoles , Animales , Humanos , Resinas Acrílicas/química , Resinas Acrílicas/farmacología , Gelatina/química , Ensayo de Materiales , Polifenoles/química , Polifenoles/farmacología , Propiedades de Superficie , Resistencia a la Tracción , Adhesivos Tisulares/química , Adhesivos Tisulares/farmacología
17.
Int J Biol Macromol ; 277(Pt 1): 134098, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39048009

RESUMEN

Gauze or bandages are commonly used to effectively control bleeding during trauma and surgery. However, conventional treatment methods can sometimes lead to secondary damages. In recent years, there has been increased interest in developing adhesive hemostatic hydrogels as a safer alternative for achieving hemostasis. Methylcellulose (MC) is a well-known thermo-sensitive polymer with excellent biocompatibility that is capable of forming a hydrogel through physical crosslinking owing to its inherent thermo-reversible properties. However, the poor mechanical properties of the MC hydrogel comprising a single crosslinked network (SN) limit its application as a hemostatic material. To address this issue, we incorporated a chitosan-gallol (CS-GA) conjugate, which has the ability to form chemical crosslinks through self-crosslinking reactions under specific pH conditions, into the MC hydrogel to reinforce the MC hydrogel network. The resulting MC/CS-GA hydrogel with a dual-crosslinked network (DN), involving both physical and chemical crosslinks, exhibited synergistic effects of the two types of crosslinks. Thus, compared with those of the SN hydrogel, the composite DN hydrogel exhibited significantly enhanced mechanical strength and tissue adhesive properties. Moreover, the DN hydrogel presented excellent biological activity in vitro. Additionally, in rat hepatic hemorrhage models, the DN hydrogel exhibited high hemostatic efficiency, showcasing its multifunctional capabilities.


Asunto(s)
Quitosano , Hemostáticos , Hidrogeles , Metilcelulosa , Temperatura , Adhesivos Tisulares , Hidrogeles/química , Hidrogeles/farmacología , Quitosano/química , Animales , Adhesivos Tisulares/química , Adhesivos Tisulares/farmacología , Concentración de Iones de Hidrógeno , Hemostáticos/química , Hemostáticos/farmacología , Ratas , Metilcelulosa/química , Hemorragia/tratamiento farmacológico , Ratas Sprague-Dawley , Masculino , Reactivos de Enlaces Cruzados/química , Humanos
18.
Int J Biol Macromol ; 276(Pt 1): 133857, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39009254

RESUMEN

Tissue adhesion of hydrogels plays an important role in wound healing, which can improve the efficiency of wound treatment, stop bleeding, facilitate tissue growth and wound closure. However, most non-covalent crosslinked hydrogels have weak tissue adhesion and rheological properties. Furthermore, it remains a challenge to synthesize a fully physically crosslinked hydrogel with good rheological properties without compromising its tissue adhesion strength. In this paper, a physically crosslinked hydrogel was developed from a mixture of chitosan and pullulan in different polymer volume ratios using aqueous NaOH. Fourier transform infrared spectroscopy, scanning electron microscopy, thermal analysis, rheological and lap shear tests were used to evaluate the influence of polymer volume ratios on the rheological, and tissue adhesive properties of the hydrogels. It was found that the hydrogels possessed high tissue adhesive strength ranging from 18.0 ± 0.90 to 49.0 ± 2.45 kPa and good storage moduli up to 5.157 ± 1.062 kPa. Gentamicin was incorporated into this polymer matrix and the release profile was investigated. The ratio of chitosan and pullulan to obtain hydrogels with optimum viscoelastic and tissue adhesive properties was identified to be CS/PUL 2:1. These results indicated that the synthesized hydrogels can be potential materials for biomedical applications such as medical adhesives and wound dressings.


Asunto(s)
Quitosano , Glucanos , Hidrogeles , Reología , Cicatrización de Heridas , Quitosano/química , Hidrogeles/química , Glucanos/química , Cicatrización de Heridas/efectos de los fármacos , Adhesivos Tisulares/química , Adhesivos Tisulares/farmacología , Gentamicinas/química , Gentamicinas/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Fenómenos Mecánicos
19.
Burns ; 50(7): 1848-1852, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38987080

RESUMEN

BACKGROUND: Traditional fixation of autografts in the treatment of burns involves the use of sutures and staples. A novel fibrin sealant, Artiss, has been introduced as an alternate method of fixation and has shown promising safety and efficacy results in the adult population. Our study assessed the effectiveness of fibrin sealant to secure autologous split thickness skin grafts (ASTSG) in the pediatric burn population. METHODS: We performed a retrospective cohort study of pediatric patients under 18 years of age who received autografting for the treatment of burns at our institution between 2017 and 2023. We compared ASTSG secured with fibrin sealant to those managed traditionally with sutures or staples. Outcomes of interest include the need for return trips to the operating room (OR), time to wound healing, graft take, and total time in the operating room. RESULTS: 83 patients underwent a total of 142 individual ASTSGs for management of unique body area injuries. 66.3 % were male, median age was 79 months, and scald was the most common mechanism of injury (41.0 %). Forty-five (39.5 %) traditionally affixed ASTSG required at least one return to the OR while only one (3.6 %) ASTSG secured with fibrin sealant required an additional return to the OR (p < 0.001). Graft take was similar in both groups (92.9 % for fibrin sealant vs. 93.9 % for traditional methods, p = 1). Time to wound healing was also similar: 16 vs. 15 days for fibrin glue and traditional methods, respectively (p = 0.23). CONCLUSION: Outcomes from autograft fixation with fibrin sealant were comparable to those treated with traditional methods, with a reduction in the need for return trips to the operating room. These data suggest that fibrin sealant is a suitable alternative to traditional fixation methods in pediatric autografting.


Asunto(s)
Quemaduras , Adhesivo de Tejido de Fibrina , Trasplante de Piel , Adhesivos Tisulares , Humanos , Adhesivo de Tejido de Fibrina/uso terapéutico , Quemaduras/cirugía , Quemaduras/terapia , Masculino , Niño , Femenino , Trasplante de Piel/métodos , Estudios Retrospectivos , Preescolar , Adolescente , Lactante , Adhesivos Tisulares/uso terapéutico , Trasplante Autólogo/métodos , Cicatrización de Heridas , Autoinjertos , Supervivencia de Injerto
20.
Int Ophthalmol ; 44(1): 297, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951293

RESUMEN

BACKGROUND/OBJECTIVES: To evaluate the effect of topical cyclosporine A (CsA) 0.05% in patients with pterygium surgery using fibrin glue (FG). SUBJECTS/METHODS: Patients with primary nasal pterygium were retrospectically analyzed and categorized into two groups: Group 1 with 41 eyes from 38 patients as a control group and group 2 with 39 eyes from 36 patients who received topical CsA twice a day for 6 months. Patients were assessed for recurrence rate, tear film parameters, side effects, and complications at postoperative intervals of 1-7 days; 1st, 3rd, 6th and 12th months. The follow-up period was 1 year. RESULTS: The two groups were age (p = 0.934) and sex (p = 0.996) matched. CsA drop was discontinued in one patient due to burning sensation and conjunctival hyperemia after 1 week. There was no statistically significant difference between the mean preoperative and postoperative 1st year Schirmer I and tear break-up time (TBUT) values in group 1 (p = 0.136; p = 0.069). Although the difference between the mean preoperative and postoperative 1st year TBUT values in group 2 was not statistically different (p = 0.249), Schirmer I results were higher postoperatively (p = 0.003). There was no statistically significant difference between preoperative Schirmer (p = 0.496), postoperative Schirmer (p = 0.661), preoperative TBUT (p = 0.240) and postoperative TBUT (p = 0.238) results of the two groups. Recurrence was observed in only one patient from group 1. CONCLUSION: No recurrent pterygium cases were observed in group 2. Schirmer I values were higher postoperatively in group 2; thus,topical CsA treatment may improve lacrimal secretion and be effective after pterygium surgery with FG.


Asunto(s)
Ciclosporina , Adhesivo de Tejido de Fibrina , Inmunosupresores , Pterigion , Humanos , Pterigion/cirugía , Pterigion/diagnóstico , Ciclosporina/administración & dosificación , Masculino , Femenino , Persona de Mediana Edad , Adhesivo de Tejido de Fibrina/administración & dosificación , Inmunosupresores/administración & dosificación , Estudios Retrospectivos , Estudios de Seguimiento , Adulto , Adhesivos Tisulares/administración & dosificación , Adhesivos Tisulares/uso terapéutico , Resultado del Tratamiento , Anciano , Soluciones Oftálmicas/administración & dosificación , Procedimientos Quirúrgicos Oftalmológicos/métodos , Procedimientos Quirúrgicos Oftalmológicos/efectos adversos , Recurrencia , Conjuntiva , Lágrimas/metabolismo , Lágrimas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA