Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS Pathog ; 17(12): e1010091, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34914813

RESUMEN

There are strong incentives for human populations to develop antiviral systems. Similarly, genomes that encode antiviral systems have had strong selective advantages. Protein-guided immune systems, which have been well studied in mammals, are necessary for survival in our virus-laden environments. Small RNA-directed antiviral immune systems suppress invasion of cells by non-self genetic material via complementary base pairing with target sequences. These RNA silencing-dependent systems operate in diverse organisms. In mammals, there is strong evidence that microRNAs (miRNAs) regulate endogenous genes important for antiviral immunity, and emerging evidence that virus-derived nucleic acids can be directly targeted by small interfering RNAs (siRNAs), PIWI-interacting RNAs (piRNAs), and transfer RNAs (tRNAs) for protection in some contexts. In this review, we summarize current knowledge of the antiviral functions of each of these small RNA types and consider their conceptual and mechanistic overlap with innate and adaptive protein-guided immunity, including mammalian antiviral cytokines, as well as the prokaryotic RNA-guided immune system, CRISPR. In light of recent successes in delivery of RNA for antiviral purposes, most notably for vaccination, we discuss the potential for development of small noncoding RNA-directed antiviral therapeutics and prophylactics.


Asunto(s)
ARN Pequeño no Traducido/inmunología , Virus/inmunología , Animales , Humanos
2.
J Infect Dis ; 221(12): 2050-2059, 2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32006006

RESUMEN

BACKGROUND: Respiratory syncytial virus (RSV) is the leading viral cause of severe pediatric respiratory illness, and vaccines are needed. Live RSV vaccine D46/NS2/N/ΔM2-2-HindIII, attenuated by deletion of the RSV RNA regulatory protein M2-2, is based on previous candidate LID/ΔM2-2 but incorporates prominent differences from MEDI/ΔM2-2, which was more restricted in replication in phase 1. METHODS: RSV-seronegative children aged 6-24 months received 1 intranasal dose (105 plaque-forming units [PFUs] of D46/NS2/N/ΔM2-2-HindIII [n = 21] or placebo [n = 11]) and were monitored for vaccine shedding, reactogenicity, RSV-antibody responses and RSV-associated medically attended acute respiratory illness (RSV-MAARI) and antibody responses during the following RSV season. RESULTS: All 21 vaccinees were infected with vaccine; 20 (95%) shed vaccine (median peak titer, 3.5 log10 PFUs/mL with immunoplaque assay and 6.1 log10 copies/mL with polymerase chain reaction). Serum RSV-neutralizing antibodies and anti-RSV fusion immunoglobulin G increased ≥4-fold in 95% and 100% of vaccines, respectively. Mild upper respiratory tract symptoms and/or fever occurred in vaccinees (76%) and placebo recipients (18%). Over the RSV season, RSV-MAARI occurred in 2 vaccinees and 4 placebo recipients. Three vaccinees had ≥4-fold increases in serum RSV-neutralizing antibody titers after the RSV season without RSV-MAARI. CONCLUSIONS: D46/NS2/N/ΔM2-2-HindIII had excellent infectivity and immunogenicity and primed vaccine recipients for anamnestic responses, encouraging further evaluation of this attenuation strategy. CLINICAL TRIALS REGISTRATION: NCT03102034 and NCT03099291.


Asunto(s)
Anticuerpos Antivirales/sangre , Infecciones por Virus Sincitial Respiratorio/prevención & control , Vacunas contra Virus Sincitial Respiratorio/inmunología , Virus Sincitial Respiratorio Humano/inmunología , Proteínas Virales/genética , Adolescente , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Niño , Eliminación de Gen , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , ARN Pequeño no Traducido/química , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/inmunología , ARN Viral/química , ARN Viral/genética , ARN Viral/inmunología , Infecciones por Virus Sincitial Respiratorio/inmunología , Infecciones por Virus Sincitial Respiratorio/virología , Vacunas contra Virus Sincitial Respiratorio/administración & dosificación , Vacunas contra Virus Sincitial Respiratorio/química , Vacunas contra Virus Sincitial Respiratorio/genética , Virus Sincitial Respiratorio Humano/genética , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/química , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología
3.
Int J Med Microbiol ; 310(1): 151356, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31585715

RESUMEN

Bacterial outer membrane vesicles (OMVs) play a vital role in the mechanism of host-pathogen communication, while emerging evidence suggests that OMVs regulate host immune responses through differentially packaged small noncoding RNAs (sncRNAs) to target host mRNA function. Therefore, we identified differentially packaged sncRNAs in Helicobacter pylori OMVs and showed transfer of OMV sncRNAs to human gastric adenocarcinoma cells in this study. Our data revealed that sncRNAs (sR-2509025 and sR-989262) were enriched in OMVs, and reduced lipopolysaccharide or OMV-induced interleukin 8 (IL-8) secretion by cultured AGS cells. Collectively, these findings are consistent with the hypothesis that sncRNAs in H. pylori OMVs play a novel role in the mechanism of host-pathogen interaction, whereby H. pylori evades the host immune response.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/genética , Helicobacter pylori/inmunología , Interacciones Huésped-Patógeno/inmunología , Interleucina-8/inmunología , ARN Pequeño no Traducido/inmunología , Adenocarcinoma , Línea Celular , Línea Celular Tumoral , Células Epiteliales/inmunología , Células Epiteliales/microbiología , Infecciones por Helicobacter/microbiología , Helicobacter pylori/genética , Humanos , Evasión Inmune , Transporte de Proteínas , Neoplasias Gástricas
4.
mBio ; 10(5)2019 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-31594810

RESUMEN

Cellular sensing of bacterial RNA is increasingly recognized as a determinant of host-pathogen interactions. The intracellular pathogen Listeria monocytogenes induces high levels of type I interferons (alpha/beta interferons [IFN-α/ß]) to create a growth-permissive microenvironment during infection. We previously demonstrated that RNAs secreted by L. monocytogenes (comprising the secRNome) are potent inducers of IFN-ß. We determined the composition and diversity of the members of the secRNome and found that they are uniquely enriched for noncoding small RNAs (sRNAs). Testing of individual sRNAs for their ability to induce IFN revealed several sRNAs with this property. We examined ril32, an intracellularly expressed sRNA that is highly conserved for the species L. monocytogenes and that was the most potent inducer of IFN-ß expression of all the sRNAs tested in this study, in more detail. The rli32-induced IFN-ß response is RIG-I (retinoic acid inducible gene I) dependent, and cells primed with rli32 inhibit influenza virus replication. We determined the rli32 motif required for IFN induction. rli32 overproduction promotes intracellular bacterial growth, and a mutant lacking rli32 is restricted for intracellular growth in macrophages. rli32-overproducing bacteria are resistant to H2O2 and exhibit both increased catalase activity and changes in the cell envelope. Comparative transcriptome sequencing (RNA-Seq) analysis indicated that ril32 regulates expression of the lhrC locus, previously shown to be involved in cell envelope stress. Inhibition of IFN-ß signaling by ruxolitinib reduced rli32-dependent intracellular bacterial growth, indicating a link between induction of the interferon system and bacterial physiology. rli32 is, to the best of our knowledge, the first secreted individual bacterial sRNA known to trigger the induction of the type I IFN response.IMPORTANCE Interferons are potent and broadly acting cytokines that stimulate cellular responses to nucleic acids of unusual structures or locations. While protective when induced following viral infections, the induction of interferons is detrimental to the host during L. monocytogenes infection. Here, we identify specific sRNAs, secreted by the bacterium, with the capacity to induce type I IFN. Further analysis of the most potent sRNA, rli32, links the ability to induce RIG-I-dependent induction of the type I IFN response to the intracellular growth properties of the bacterium. Our findings emphasize the significance of released RNA for Listeria infection and shed light on a compartmental strategy used by an intracellular pathogen to modulate host responses to its advantage.


Asunto(s)
Factores Inmunológicos/metabolismo , Interferón beta/metabolismo , Listeria monocytogenes/inmunología , Listeria monocytogenes/metabolismo , Macrófagos/microbiología , ARN Bacteriano/metabolismo , ARN Pequeño no Traducido/metabolismo , Animales , Células Cultivadas , Eliminación de Gen , Listeria monocytogenes/genética , Ratones Endogámicos C57BL , ARN Bacteriano/genética , ARN Bacteriano/inmunología , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/inmunología
5.
Cell Host Microbe ; 26(2): 173-182, 2019 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-31415750

RESUMEN

Eukaryotic small RNAs (sRNAs) are short non-coding regulatory molecules that induce RNA interference (RNAi). During microbial infection, host RNAi machinery is highly regulated and contributes to reprogramming gene expression and balancing plant immunity and growth. While most sRNAs function endogenously, some can travel across organismal boundaries between hosts and microbes and silence genes in trans in interacting organisms, a mechanism called "cross-kingdom RNAi." During the co-evolutionary arms race between fungi and plants, some fungi developed a novel virulence mechanism, sending sRNAs as effector molecules into plant cells to silence plant immunity genes, whereas plants also transport sRNAs, mainly using extracellular vesicles, into the pathogens to suppress virulence-related genes. In this Review, we highlight recent discoveries on these key roles of sRNAs and RNAi machinery. Understanding the molecular mechanisms of sRNA biogenesis, trafficking, and RNAi machinery will help us develop innovative strategies for crop protection.


Asunto(s)
Interacciones Huésped-Patógeno/genética , Inmunidad de la Planta/genética , Plantas/genética , ARN Interferente Pequeño/genética , Arabidopsis/genética , Arabidopsis/inmunología , Bacterias/genética , Bacterias/patogenicidad , Hongos/genética , Hongos/patogenicidad , Interacciones Huésped-Patógeno/inmunología , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta/inmunología , Plantas/inmunología , Interferencia de ARN/inmunología , ARN Interferente Pequeño/inmunología , ARN Pequeño no Traducido/inmunología , Simbiosis , Virulencia/genética
6.
BMC Vet Res ; 14(1): 89, 2018 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-29534724

RESUMEN

BACKGROUND: High throughput sequencing allows identification of small non-coding RNAs. Transfer RNA Fragments are a class of small non-coding RNAs, and have been identified as being involved in inhibition of gene expression. Given their role, it is possible they may be involved in mediating the infection-induced defense response in the host. Therefore, the objective of this study was to identify 5' transfer RNA fragments (tRF5s) associated with a serum antibody response to M. bovis in beef cattle. RESULTS: The tRF5s encoding alanine, glutamic acid, glycine, lysine, proline, selenocysteine, threonine, and valine were associated (P < 0.05) with antibody response against M. bovis. tRF5s encoding alanine, glutamine, glutamic acid, glycine, histidine, lysine, proline, selenocysteine, threonine, and valine were associated (P < 0.05) with season, which could be attributed to calf growth. There were interactions (P < 0.05) between antibody response to M. bovis and season for tRF5 encoding selenocysteine (anticodon UGA), proline (anticodon CGG), and glutamine (anticodon TTG). Selenocysteine is a rarely used amino acid that is incorporated into proteins by the opal stop codon (UGA), and its function is not well understood. CONCLUSIONS: Differential expression of tRF5s was identified between ELISA-positive and negative animals. Production of tRF5s may be associated with a host defense mechanism triggered by bacterial infection, or it may provide some advantage to a pathogen during infection of a host. Further studies are needed to establish if tRF5s could be used as a diagnostic marker of chronic exposure.


Asunto(s)
Formación de Anticuerpos/inmunología , Mycoplasma bovis/inmunología , ARN Pequeño no Traducido/inmunología , ARN de Transferencia/inmunología , Animales , Bovinos/inmunología , Bovinos/microbiología , Ensayo de Inmunoadsorción Enzimática/veterinaria , Infecciones por Mycoplasma/inmunología , Infecciones por Mycoplasma/microbiología , Infecciones por Mycoplasma/veterinaria
7.
Microb Pathog ; 118: 9-17, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29524548

RESUMEN

Plants are attacked by a large number of pathogens. To defend against these pathogens, plants activate or repress a vast array of genes. For genetic expression and reprogramming, host endogenous small RNAs (sRNAs) are the key factors. Among these sRNAs, microRNAs (miRNAs) mediate gene regulation through RNA silencing at the post-transcriptional level and play an essential role in the defense responses to biotic and abiotic stress. In the recent years, high-throughput sequencing has enabled the researchers to uncover the role of plant miRNAs during pathogen invasion. So here we have reviewed the recent research findings illustrating the plant miRNAs active involvement in various defense processes during fungal, bacterial, viral and nematode infections. However, rapid validation of direct targets of miRNAs is the dire need of time, which can be very helpful in improving the plant resistance against various pathogenic diseases.


Asunto(s)
Resistencia a la Enfermedad/inmunología , Resistencia a la Enfermedad/fisiología , MicroARNs/inmunología , MicroARNs/fisiología , Enfermedades de las Plantas/inmunología , Plantas/inmunología , Animales , Infecciones Bacterianas/inmunología , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Secuenciación de Nucleótidos de Alto Rendimiento , Inmunidad , MicroARNs/genética , Micosis/inmunología , Infecciones por Nematodos/inmunología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/parasitología , Inmunidad de la Planta , Plantas/genética , Plantas/microbiología , Plantas/parasitología , ARN de Planta/inmunología , ARN Pequeño no Traducido/inmunología , Estrés Fisiológico , Virosis/inmunología
8.
J Invertebr Pathol ; 152: 38-47, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29378202

RESUMEN

Bee pollination is critical for improving productivity of one third of all plants or plant products consumed by humans. The health of honey bees is in decline in many countries worldwide, and RNA viruses together with other biological, environmental and anthropogenic factors have been identified as the main causes. The rapid genetic variation of viruses represents a challenge for diagnosis. Thus, application of deep sequencing methods for detection and analysis of viruses has increased over the last years. In this study, we leverage from the innate Dicer-2 mediated antiviral response against viruses to reconstruct complete viral genomes using virus-derived small interfering RNAs (vsiRNAs). Symptomatic A. mellifera larvae collected from hives free of Colony Collapse Disorder (CCD) and the parasitic Varroa mite (Varroa destructor) were used to generate more than 107 million small RNA reads. We show that de novo assembly of insect viral sequences is less fragmented using only 22 nt long vsiRNAs rather than a combination of 21-22 nt small RNAs. Our results show that A. mellifera larvae activate the RNAi immune response in the presence of Sacbrood virus (SBV). We assembled three SBV genomes from three individual larvae from different hives in a single apiary, with 1-2% nucleotide sequence variability among them. We found 3-4% variability between SBV genomes generated in this study and earlier published Australian variants suggesting the presence of different SBV quasispecies within the country.


Asunto(s)
Abejas/virología , Virus de Insectos/genética , ARN Pequeño no Traducido/química , ARN Viral/química , Animales , Abejas/inmunología , Colapso de Colonias/virología , Biología Computacional , Genoma Viral , Virus de Insectos/química , Filogenia , Interferencia de ARN , ARN Pequeño no Traducido/inmunología , ARN Viral/inmunología , Análisis de Secuencia de ARN
9.
Aging Cell ; 16(5): 1026-1034, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28665028

RESUMEN

We have recently reported that TLR-related genes, including TLR7, are upregulated during aging. However, the role of TLR7 and its endogenous ligand in inflammation related to aging is not well defined. Here, we established that small RNAs trigger age-related renal inflammation via TLR7 signaling pathway. We first investigated the expression changes of nine different TLRs in kidney of 6-month-old young rats and 20-month-old aged rats. The results revealed that the expression of TLR7 was the highest among nine TLRs in kidney of old rats compared to the young aged rats. Next, to assess the role of cellular RNA as a TLR7 ligand, we treated a renal tubular epithelial cell line with total RNA isolated from the kidney of young and old rats. The results showed that RNA isolated from old rats showed higher expression of TLR7, IL1ß, and TNFα compared to that from young rats. Furthermore, RNA isolated from old rats induced IKKα/ß/JNK/NF-κB activation. To identify RNA that activates TLR7, we isolated small and large RNAs from old rat kidney and found that small RNAs increased TLR7 expression in cells. Finally, to investigate the local inflammatory response by small RNA, C57B/L6 mice were intraperitoneally injected with small RNAs isolated from young and old rats; thereby, RNA isolated from old rats induced higher inflammatory responses. Our study demonstrates that renal small RNAs from aged rats induce pro-inflammatory processes via the activation of the TLR7/IKKα/ß/JNK/NF-κB signaling pathway, and highlights its causative role as a possible therapeutic target in age-related chronic renal inflammation.


Asunto(s)
Envejecimiento/genética , Células Epiteliales/metabolismo , MAP Quinasa Quinasa 4/genética , FN-kappa B/genética , ARN Pequeño no Traducido/genética , Receptor Toll-Like 7/genética , Envejecimiento/inmunología , Envejecimiento/metabolismo , Animales , Línea Celular , Células Epiteliales/citología , Células Epiteliales/inmunología , Regulación del Desarrollo de la Expresión Génica , Quinasa I-kappa B/genética , Quinasa I-kappa B/inmunología , Quinasa I-kappa B/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Interleucina-1beta/metabolismo , Isoenzimas/genética , Isoenzimas/inmunología , Isoenzimas/metabolismo , Riñón/citología , Riñón/inmunología , Riñón/metabolismo , MAP Quinasa Quinasa 4/inmunología , MAP Quinasa Quinasa 4/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , FN-kappa B/inmunología , FN-kappa B/metabolismo , ARN Pequeño no Traducido/inmunología , ARN Pequeño no Traducido/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Receptor Toll-Like 7/inmunología , Receptor Toll-Like 7/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología , Factor de Necrosis Tumoral alfa/metabolismo
10.
Semin Immunol ; 28(1): 45-53, 2016 02.
Artículo en Inglés | MEDLINE | ID: mdl-26710685

RESUMEN

Adoptive T cell-based immunotherapies can mediate complete and durable regressions in patients with advanced cancer, but current response rates remain inadequate. Maneuvers to improve the fitness and antitumor efficacy of transferred T cells have been under extensive exploration in the field. Small non-coding microRNAs have emerged as critical modulators of immune system homeostasis and T cell immunity. Here, we summarize recent advances in our understanding of the role of microRNAs in regulating T cell activation, differentiation, and function. We also discuss how microRNA therapeutics could be employed to fine-tune T cell receptor signaling and enhance T cell persistence and effector functions, paving the way for the next generation of adoptive immunotherapies.


Asunto(s)
Vacunas contra el Cáncer/inmunología , Inmunoterapia Adoptiva/métodos , MicroARNs/genética , Neoplasias/terapia , ARN Pequeño no Traducido/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/fisiología , Animales , Diferenciación Celular/genética , Supervivencia Celular , Citotoxicidad Inmunológica , Humanos , Inmunidad Celular/genética , Activación de Linfocitos/genética , MicroARNs/inmunología , Neoplasias/inmunología , ARN Pequeño no Traducido/inmunología , Receptores de Antígenos de Linfocitos T/genética , Transducción de Señal , Linfocitos T/trasplante
11.
Yi Chuan ; 34(1): 41-9, 2012 Jan.
Artículo en Chino | MEDLINE | ID: mdl-22306872

RESUMEN

Small RNAs are involved in a multitude of biological processes in plants. Based on their origins and precursor structures, small RNAs can be divided into two major classes: microRNAs (miRNAs) and small interference RNAs (siRNAs). Small RNAs are typically 21-24 nucleotide (nt) long, and differ in both biogenesis and biological function. In the pathogenic process, pathogens can either induce or suppress the synthesis of small RNAs, which, in turn, regulate the expression of pathogenesis-related genes to mediate diverse plant-pathogen interactions. The biogenesis and biological functions of small RNAs, together with possible regulation mechanisms underlying the host-pathogen interactions, are summarized in this review.


Asunto(s)
Interacciones Huésped-Patógeno , Plantas/inmunología , ARN de Planta/inmunología , ARN Pequeño no Traducido/inmunología , Resistencia a la Enfermedad , Inmunidad , Plantas/genética , ARN de Planta/genética , ARN Pequeño no Traducido/genética
12.
Annu Rev Genet ; 45: 273-97, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22060043

RESUMEN

Bacteria and archaea have evolved defense and regulatory mechanisms to cope with various environmental stressors, including virus attack. This arsenal has been expanded by the recent discovery of the versatile CRISPR-Cas system, which has two novel features. First, the host can specifically incorporate short sequences from invading genetic elements (virus or plasmid) into a region of its genome that is distinguished by clustered regularly interspaced short palindromic repeats (CRISPRs). Second, when these sequences are transcribed and precisely processed into small RNAs, they guide a multifunctional protein complex (Cas proteins) to recognize and cleave incoming foreign genetic material. This adaptive immunity system, which uses a library of small noncoding RNAs as a potent weapon against fast-evolving viruses, is also used as a regulatory system by the host. Exciting breakthroughs in understanding the mechanisms of the CRISPR-Cas system and its potential for biotechnological applications and understanding evolutionary dynamics are discussed.


Asunto(s)
Archaea/genética , Bacterias/genética , ARN de Archaea/genética , ARN Bacteriano/genética , Inmunidad Adaptativa , Archaea/química , Archaea/inmunología , Archaea/virología , Bacterias/química , Bacterias/inmunología , Bacterias/virología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Bacteriófagos/genética , Bacteriófagos/inmunología , Proteínas Asociadas a CRISPR , Biología Computacional , Endodesoxirribonucleasas/química , Endodesoxirribonucleasas/genética , Proteínas de Escherichia coli , Evolución Molecular , Regulación de la Expresión Génica Arqueal , Regulación Bacteriana de la Expresión Génica , Sitios Genéticos , Plásmidos/inmunología , Interferencia de ARN , Procesamiento Postranscripcional del ARN , ARN de Archaea/química , ARN de Archaea/inmunología , ARN Bacteriano/química , ARN Bacteriano/inmunología , ARN Pequeño no Traducido/química , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/inmunología , Transcripción Genética , Virosis/genética , Virosis/inmunología , Virosis/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA