Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Prod Res ; : 1-14, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38795161

RESUMEN

The study aimed to investigate the role of metal nanoparticles (M-NPs) in improving the efficiency of Physalis peruviana (Cape gooseberry) juice, which is rich in numerous important therapeutic phytochemicals. Therefore, it was subsequently studied against chemically-induced toxicity in rats. The present study demonstrated that C. gooseberry juice was used for the biosynthesis of silver (Ag-NPs) and zinc oxide nanoparticles (ZnO-NPs). The ZnO-C. gooseberry nano-extract exhibited higher in vitro biological activities compared to the other extracts. It was also found to be safer when administered orally. Moreover, it demonstrated a greater ameliorative effect against hepatotoxicity induced by carbon tetrachloride (CCl4) in rats. It restored the integrity of the liver tissue by increasing levels of antioxidant enzymes and reducing the inflammatory markers significantly (p ≤ 0.05). The study found that the ZnO-C. gooseberry nano-extract demonstrated greater efficacy in combating CCl4-induced hepatotoxicity compared to the other extracts.

2.
Front Bioeng Biotechnol ; 12: 1326143, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38464542

RESUMEN

Introduction: The development of an effective extender is important for semen preservation and the artificial insemination (AI) industry. This study demonstrates the beneficial effect of zinc oxide nanoparticles (ZnO-NPs) as an additive to semen extenders to improve semen quality, fertility, and antibacterial activity during liquid preservation in a boar model. Methods: Initially, to find out the safe concentration of ZnO-NPs in sperm cells, a wide range of ZnO-NP concentrations (0, 5, 10, 50, 100, 500, and 1,000 µM) were co-incubated with sperm at 37°C for a cytotoxic study. These NP concentrations were compared to their salt control zinc acetate (ZA) at the same concentrations and to a control group. The effect of the different concentrations of ZnO-NPs on sperm motility, membrane integrity, mitochondrial membrane potential (MMP), and apoptosis was assessed. Accordingly, the non-toxic dose was selected and supplemented in MODENA extender to determine its beneficial effect on the boar semen parameters mentioned and the lipid peroxidation (LPO) levels during liquid preservation at 16°C for 6 days. The non-cytotoxic dosage was subsequently chosen for AI, fertility investigations, and the evaluation of the antibacterial efficacy of ZnO-NPs during preservation hours. An antibacterial study of ZnO-NPs and its salt control at doses of 10 µM and 50 µM was carried out by the colony forming unit (CFU) method. Results and discussion: The cytotoxic study revealed that 5, 10, and 50 µM of ZnO-NPs are safe. Consequently, semen preserved in the MODENA extender, incorporating the non-toxic dose, exhibited 10 and 50 µM ZnO-NPs as the optimal concentrations for beneficial outcomes during liquid preservation at 16°C. ZnO-NPs of 10 µM concentration resulted in a significantly (p < 0.05) improved conception rate of 86.95% compared to the control of 73.13%. ZnO-NPs of 10 and 50 µM concentrations exhibit potent antimicrobial action by reducing the number of colonies formed with days of preservation in comparison to the negative control. The investigation concluded that the incorporation of 10 µM ZnO-NPs led to enhancements in sperm motility, membrane integrity, and MMP, attributed to a reduction in the malondialdehyde (MDA) levels. This improvement was accompanied by a concurrent increase in fertility rates, including farrowing rate and litter size, during the liquid preservation process. Furthermore, ZnO-NPs exhibited an antimicrobial effect, resulting in decreased bacterial growth while preserving boar semen at 16°C for 6 days. These findings suggest that ZnO-NPs could serve as a viable alternative to antibiotics, potentially mitigating antibiotic resistance concerns within the food chain.

3.
Heliyon ; 10(3): e25604, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38356535

RESUMEN

Gentamicin (GEN), a widely used broad-spectrum antibiotic, faces challenges amid the global emergency of antimicrobial resistance. This study aimed to explore the synergistic effects of zinc oxide nanoparticles (ZnO NPs) in combination with GEN on the bactericidal activity against various bacterial strains. Results showed ZnO NPs with MICs ranging from 0.002 to 1.5 µg/mL, while the precursor salt displayed a MIC range of 48.75-1560 µg/mL. Chitosan (CS)-capped ZnO NPs exhibited even lower MICs than their uncapped counterparts, with the CS-capped synthesized ZnO NPs demonstrating the lowest values. Minimal bactericidal concentrations (MBC) aligned with MIC trends. Combinations of CS-capped synthesized ZnO NPs and GEN proved highly effective, inhibiting bacterial growth at significantly lower concentrations than GEN or ZnO NPs alone. This phenomenon may be attributed to the conformation of CS on the ZnO NPs' surface, enhancing the positive particle surface charge. This possibly facilitates a more effective interaction between ZnO NPs and microorganisms, leading to increased accumulation of zinc and GEN within bacterial cells and an overproduction of reactive oxygen species (ROS). It's crucial to note that, while this study did not specifically involve resistant strains, its primary focus remains on enhancing the overall antimicrobial activity of gentamicin. The research aims to contribute to addressing the global challenge of antimicrobial resistance, recognizing the urgent need for effective strategies to combat this critical issue. The findings, particularly the observed synergy between ZnO NPs and GEN, hold significant implications for repositioning the first-line antibiotic GEN.

4.
Animals (Basel) ; 13(18)2023 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-37760268

RESUMEN

Nanotechnology has gained tremendous attention because of its crucial characteristics and wide biomedical applications. Although zinc oxide nanoparticles (ZnO-NPs) are involved in many industrial applications, researchers pay more attention to their toxic effects on living organisms. Since the olfactory epithelium is exposed to the external environment, it is considered the first organ affected by ZnO-NPs. Herein, we demonstrated the cytotoxic effect of ZnO-NPs on the olfactory organ of adult zebrafish after 60 days post-treatment. We opted for this period when fishes stop eating their diet from the aquarium, appear feeble, and cannot swim freely. Our study demonstrated that ZnO-NPs induced significant malformations of the olfactory rosettes at histological, ultrastructural, and genetic levels. At the ultrastructure level, the olfactory lamellae appeared collapsed, malformed, and twisted with signs of degeneration and loss of intercellular connections. In addition, ZnO-NPs harmed sensory receptor and ciliated cells, microvilli, rodlet, crypt, and Kappe cells, with hyper-activity of mucous secretion from goblet cells. At the genetic level, ZnO-NPs could activate the reactive oxygen species (ROS) synthesis expected by the down-regulation of mRNA expression for the antioxidant-related genes and up-regulation of DNA damage, cell growth arrest, and apoptosis. Interestingly, ZnO-NPs affected the odor sensation at 60 days post-treatment (60-dpt) more than at 30-dpt, severely damaging the olfactory epithelium and irreparably affecting the cellular repairing mechanisms. This induced a dramatically adverse effect on the cellular endoplasmic reticulum (ER), revealed by higher CHOP protein expression, that suppresses the antioxidant effect of Nrf2 and is followed by the induction of apoptosis via the up-regulation of Bax expression and down-regulation of Bcl-2 protein.

5.
Front Chem ; 11: 1138333, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37035110

RESUMEN

Medical devices such as Central Venous Catheters (CVCs), are routinely used in intensive and critical care settings. In the present scenario, incidences of Catheter-Related Blood Stream Infections (CRBSIs) pose a serious challenge. Despite considerable advancements in the antimicrobial therapy and material design of CVCs, clinicians continue to struggle with infection-related complications. These complications are often due colonization of bacteria on the surface of the medical devices, termed as biofilms, leading to infections. Biofilm formation is recognized as a critical virulence trait rendering infections chronic and difficult to treat even with 1,000x, the minimum inhibitory concentration (MIC) of antibiotics. Therefore, non-antibiotic-based solutions that prevent bacterial adhesion on medical devices are warranted. In our study, we report a novel and simple method to synthesize zinc oxide (ZnO) nanoparticles using ethanolic plant extracts of Eupatorium odoratum. We investigated its physio-chemical characteristics using Field Emission- Scanning Electron Microscopy and Energy dispersive X-Ray analysis, X-Ray Diffraction (XRD), Photoluminescence Spectroscopy, UV-Visible and Diffuse Reflectance spectroscopy, and Dynamic Light Scattering characterization methods. Hexagonal phase with wurtzite structure was confirmed using XRD with particle size of ∼50 nm. ZnO nanoparticles showed a band gap 3.25 eV. Photoluminescence spectra showed prominent peak corresponding to defects formed in the synthesized ZnO nanoparticles. Clinically relevant bacterial strains, viz., Proteus aeruginosa PAO1, Escherichia coli MTCC 119 and Staphylococcus aureus MTCC 7443 were treated with different concentrations of ZnO NPs. A concentration dependent increase in killing efficacy was observed with 99.99% killing at 500 µg/mL. Further, we coated the commercial CVCs using green synthesized ZnO NPs and evaluated it is in vitro antibiofilm efficacy using previously optimized in situ continuous flow model. The hydrophilic functionalized interface of CVC prevents biofilm formation by P. aeruginosa, E. coli and S. aureus. Based on our findings, we propose ZnO nanoparticles as a promising non-antibiotic-based preventive solutions to reduce the risk of central venous catheter-associated infections.

6.
Drug Chem Toxicol ; 46(2): 209-218, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34915775

RESUMEN

The ever-increasing use of zinc oxide nanoparticles (ZnO NPs) in industrial and consumer products leads to concerns about their safety. Liver is one of the most important target organs of nanoparticles after entering the body. As such, the aim of this study was to evaluate the protective effects of vitamins (Vit) A, C, and E on ZnO NPs-induced liver oxidative stress. For this task, 54 male Wistar rats were randomly divided into nine groups of six: control 1 (water), control 2 (olive oil), Vit A (1000 IU/kg), Vit C (200 mg/kg), Vit E (100 IU/kg), ZnO (200 mg/kg), ZnO + VitA, ZnO + VitC, and ZnO + VitE. The animals received ZnO for 2 weeks while treatment with Vit started one week before the ZnO administration. In order to specify oxidative stress status, total antioxidant capacity (TAC), total oxidative status and malondialdehyde were determined by colorimetric assay. In addition, the activity and gene expression of antioxidant enzymes including superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) were evaluated by colorimetric assay kit and qRT-PCR, respectively. Moreover, histological analysis was conducted to estimate the extent of liver damage. Our results indicate that the oxidative parameters are increased while the content of TAC, antioxidant enzymes activity, and gene expression of SOD, GPX, and CAT show a significant reduction in the liver of ZnO-treated rats compared to the control (p< 0.05). In contrast, the administration of Vit could significantly modulate the aforementioned changes. Overall, Vit A, E, and C can mitigate oxidative stress caused by ZnO NPs.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Óxido de Zinc , Masculino , Ratas , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Óxido de Zinc/toxicidad , Ratas Wistar , Vitaminas/metabolismo , Vitaminas/farmacología , Nanopartículas del Metal/toxicidad , Estrés Oxidativo , Hígado , Vitamina A/metabolismo , Vitamina A/farmacología , Vitamina K/metabolismo , Vitamina K/farmacología , Superóxido Dismutasa/metabolismo
7.
Biol Trace Elem Res ; 201(3): 1252-1260, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35364806

RESUMEN

Nanoparticles are vastly exploited in today's technology. However, it is realized that exposure to high concentrations of nanoparticles (NPs) may have adverse effects on human health. According to previous reports, zinc oxide (ZnO) NPs cause toxic effects in tissues via inducing apoptosis. The current work was designed to evaluate possible protective activities of vitamins (Vits) A, C, and E against ZnO NPs-induced apoptosis in the liver of rats. To this aim, fifty-four adult male Wistar rats were randomly distributed into nine groups (n = 6 rats for each group), namely, Control1 (water), Control2 (olive oil), Vit A (1000 IU/kg), Vit C (200 mg/kg), Vit E (100 IU/kg), ZnO (200 mg/kg), ZnO + VitA, ZnO + VitC, and ZnO + VitE. To investigate apoptosis, the mRNA and protein expression of Bcl-2-associated X (Bax) and B-cell lymphoma protein 2 (Bcl-2) were examined by qRT-PCR and western blot techniques. The mRNA and protein expression of TNF-α as well as the activity of caspase 3,7 were also measured. The results revealed that ZnO NPs considerably enhance the ratio of Bax to Bcl-2 mRNA and protein expression as well as the activity of caspase 3,7 compared to the control group. Furthermore, the findings implied that the elevated level of TNF-α may link with ZnO NPs-mediated apoptosis in the liver of rats. More importantly, Vits A, C, and E exhibited ameliorative properties against apoptosis-inducing effects of ZnO NPs. Thus, administration of Vits A, C, and E may be effective in preventing liver damage and apoptosis caused by ZnO NPs.


Asunto(s)
Nanopartículas , Óxido de Zinc , Adulto , Ratas , Masculino , Humanos , Animales , Óxido de Zinc/toxicidad , Vitaminas/farmacología , Caspasa 3/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo , Ratas Wistar , Apoptosis , Nanopartículas/toxicidad , Vitamina A/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Vitamina K/farmacología , ARN Mensajero/metabolismo , Estrés Oxidativo
8.
Antioxidants (Basel) ; 11(11)2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36358528

RESUMEN

The efficiency of Cd-tolerant plant growth-promoting bacteria (PGPB), zinc oxide nanoparticles (ZnO NPs), and titanium dioxide nanoparticles (TiO2) in maize growing in Cd-rich conditions was tested in the current study. The best Cd-tolerant strain, Bacillus pumilus, exhibited plant growth stimulation in vivo and in vitro experiments. We determined the toxic concentrations (30 (ppm)) of both NPs for plant growth. B. pumilus, ZnO NPs (20 (ppm)), and TiO2 NPs (10 (ppm)) had a synergistic effect on plant growth promotion in Cd-contaminated soil (120 (ppm)) in a pot experiment. Both alone and in combination, these therapies reduced Cd toxicity, resulting in improved stress metabolism and defense responses. The combined treatments showed increased relative water content, photosynthetic pigments, proline, total sugars, and proteins and significantly reduced lipid peroxidation. Moreover, this combination increased the levels of minerals and antioxidants and reduced Cd bioaccumulation in shoots and roots by 40-60%. Our in silico pipeline presented a novel picture of the participation of ZnO-TiO2 protein interaction in both B. pumilus and maize. These findings provide fresh insights on the use of B. pumilus, ZnO, and TiO2 NPs, both separately and in combination, as a viable and environmentally benign strategy for reducing Cd stress in maize.

9.
BMC Microbiol ; 22(1): 244, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36221053

RESUMEN

BACKGROUND: Biofilm-related infections are difficult to be treated because of higher resistance to antimicrobial agents. Current study aims to characterize the influence of zinc oxide nanoparticles (ZnO-NPs) on both S. aureus susceptibility to antibiotics and pathogenesis. METHODS: The influence of ZnO-NPs on biofilm formation by S. aureus was characterized by the crystal violet and tube assay. The synergistic effect of ZnO-NPs in combination with antibiotics on S. aureus was characterized using the checkerboard method. The effect of ZnO-NPs on S. aureus cell surface hydrophobicity and blood hemolysis was investigated. RT-qPCR was used to investigate the effect of ZnO-NPs on the expression of biofilm related genes (icaA, icaR and sarA), katA and sigB. The impact of ZnO-NPs on S. aureus pathogenesis was evaluated using mice infection model. RESULTS: ZnO-NPs exhibited a good antibiofilm activity against S. aureus. The findings indicate a synergistic antibiofilm effect of combination between ZnO-NPs and tested antibiotics. ZnO-NPs were capable of decreasing S. aureus cell surface hydrophobicity which could account for observed decrease in bacterial biofilm forming capacity. Moreover, ZnO-NPs-treated bacteria exhibited a significant decrease in blood hemolysis relative to control untreated S. aureus. The expression of biofilm related genes was significantly repressed in ZnO-NPs treated bacteria as compared to untreated cells. Finally, the effect of ZnO-NPs on S. aureus pathogenesis was investigated using mice infection model where ZnO-NPs accelerated healing of wounds in mice as compared to control untreated mice. CONCLUSIONS: Present data support the efficiency of ZnO-NPs as antibiofilm agent in treatment of S. aureus infections. This study recommends the incorporation of ZnO-NPs as adjuvant with other antibiotics targeting S. aureus based on the promising findings obtained herein in order to control infection with this pathogen.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Infecciones Estafilocócicas , Óxido de Zinc , Animales , Antibacterianos/química , Antibacterianos/farmacología , Bacterias/metabolismo , Biopelículas , Violeta de Genciana/farmacología , Hemólisis , Complejo Hierro-Dextran/farmacología , Nanopartículas del Metal/química , Ratones , Pruebas de Sensibilidad Microbiana , Nanopartículas/química , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus , Virulencia , Óxido de Zinc/química , Óxido de Zinc/farmacología
10.
Molecules ; 27(14)2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35889257

RESUMEN

Cancer remains a leading cause of death worldwide, despite extraordinary progress. So, new cancer treatment modalities are needed. Tumor-treating fields (TTFs) use low-intensity, intermediate-frequency alternating electric fields with reported cancer anti-mitotic properties. Moreover, nanomedicine is a promising therapy option for cancer. Numerous cancer types have been treated with nanoparticles, but zinc oxide nanoparticles (ZnO NPs) exhibit biocompatibility. Here, we investigate the activity of TTFs, a sub-lethal dose of ZnO NPs, and their combination on hepatocellular carcinoma (HepG2), the colorectal cancer cell line (HT-29), and breast cancer cell lines (MCF-7). The lethal effect of different ZnO NPs concentrations was assessed by sulforhodamine B sodium salt assay (SRB). The cell death percent was determined by flow cytometer, the genotoxicity was evaluated by comet assay, and the total antioxidant capacity was chemically measured. Our results show that TTFs alone cause cell death of 14, 8, and 17% of HepG2, HT-29, and MCF-7, respectively; 10 µg/mL ZnO NPs was the sub-lethal dose according to SRB results. The combination between TTFs and sub-lethal ZnO NPs increased the cell death to 29, 20, and 33% for HepG2, HT-29, and MCF-7, respectively, without reactive oxygen species increase. Increasing NPs potency using TTFs can be a novel technique in many biomedical applications.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Neoplasias , Óxido de Zinc , Apoptosis , Daño del ADN , Humanos , Células MCF-7 , Nanopartículas del Metal/química , Nanopartículas/química , Óxido de Zinc/química , Óxido de Zinc/farmacología
11.
Chemosphere ; 303(Pt 1): 134554, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35405200

RESUMEN

Chromium toxicity impairs the productivity of rice crops and raises a major concern worldwide and thus, it calls for unconventional and sustainable means of crop production. In this study, we identified the implication of zinc oxide nanoparticles (ZnO NPs) in promoting plant growth and ameliorating chromium-induced stress in seedlings of rice (Oryza sativa). This investigation demonstrates that the exogenous supplementation of ZnO NPs at 25 µM activates defense mechanisms conferring rice seedlings significant tolerance against stress imposed by the exposure of 100 µM Cr(VI). Further, supplementation of this nanofertilizer reversed the inhibitory effects of Cr(VI) on growth and photosynthetic efficiency. The growth promotion was primarily associated with the function of ZnO NPs in inducing activity of antioxidative enzymes i.e. APX, DHAR, MDHAR and GR belonging to the ascorbate-glutathione cycle in the Cr-exposed seedlings, exceeding the levels in control. The overexpression of these antioxidative genes correlated concomitantly with the decrease of oxidants including SOR and H2O2 and the increase in the levels of non-enzymatic antioxidants: AsA and GSH.


Asunto(s)
Nanopartículas , Oryza , Óxido de Zinc , Antioxidantes/metabolismo , Antioxidantes/farmacología , Cromo/toxicidad , Suplementos Dietéticos , Fertilizantes , Peróxido de Hidrógeno/farmacología , Nanopartículas/toxicidad , Oryza/fisiología , Estrés Oxidativo , Plantones , Óxido de Zinc/toxicidad
12.
Biol Trace Elem Res ; 200(11): 4771-4781, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34993911

RESUMEN

The aim of the current study was to determine protective effects of betaine on depressive-like behaviors in zinc oxide nanoparticles (ZnO NPs) exposed mice. Forty male mice randomly allocated into four experimental groups. Group 1 kept as control and groups 2-4 received oral administration of betaine (30 mg/kg), ZnO NPs (600 mg/kg), and ZnO NPs (600 mg/kg) 1 h after pre-administration of betaine (30 mg/kg) for 7 days, respectively. Then, forced swimming test (FST), tail suspension test (TST), open field test (OFT), and rotarod tests were done. Furthermore, serum malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPx), and total antioxidant capacity (TAC) levels were determined. Hippocampal tissue samples were collected for histopathological assessment. According to the results, treatment with ZnO NPs significantly increased immobility time in the FST and TST (P<0.05). Betaine significantly decreased immobility time in the FST and TST (P<0.05). Pretreatment with betaine significantly decreased ZnO NPs-induced alterations in the FST and TST (P<0.05). The duration of staying on the rotarod and the numbers of crossings in the OFT significantly decreased in the mice that received ZnO NPs (P<0.05). These results were significantly improved in betaine+ZnO NPs treated mice as compared to the ZnO NPs group (P<0.05). Treatment with ZnO NPs significantly increased serum MDA level while decreased SOD and GPx compared to the control group (P<0.05). These changes were effectively ameliorated by pretreatment with betaine compared to the ZnO NPs group (P<0.05). No significant effect on serum TAC level was observed in all groups (P˃0.05). Administration of ZnO NPs decreased the thickness of hippocampus and pyramidal neurons in the hippocampal dentate gyrus (DG) and CA1 regions were sparsely arranged. Pretreatment with betaine caused an improvement in the histological features of the hippocampus when compared with ZnO NPs-treated mice. Taken together, these results suggest that betaine has protective role against ZnO NPs-induced toxicity in mice.


Asunto(s)
Nanopartículas , Óxido de Zinc , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Betaína/farmacología , Glutatión Peroxidasa , Masculino , Malondialdehído , Ratones , Estrés Oxidativo , Superóxido Dismutasa/metabolismo , Óxido de Zinc/farmacología
13.
Environ Res ; 202: 111700, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34274331

RESUMEN

Nanoparticles (NPs) have enormous applications in every field of science by their particular size, diverse morphology, and higher surface-ratio, which provide them for unique properties. Nanosized materials can be used to overcome almost every challenge in science. The development of nanoscience, metal or metal oxide NPs have emerged as promising materials. Especially, zinc oxide nanoparticles (ZnO NPs) have remarkable applications in diverse fields including cosmetic, optical, and electrical fields, biomedicine, and catalysis. Several cost-effective strategies using different chemicals, plants, and microbes mediated ZnO NPs are reported in several studies, among which fungal-mediated approaches have gained tremendous interest due to their eco-friendly and simple protocols. In this study, we report the formation of ZnO NPs with sizes ranging between 13 and 15 nm using Acremonium potronii, a new fungal species found in fruits, soil, and marine environments. The obtained ZnO NPs are characterized by several analytical techniques, and their catalytic activity in the degradation of methylene blue dye is investigated, including a kinetic study to investigate the rate of degradation process. The ZnO NPs can degrade about 93% of the dye. This work demonstrates the potential of the synthesized ZnO NPs as dye removal catalysts and offers a platform for the application of A. potronii.


Asunto(s)
Acremonium , Nanopartículas del Metal , Nanopartículas , Óxido de Zinc , Compuestos Azo , Catálisis
14.
Front Pharmacol ; 12: 626238, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34305580

RESUMEN

We evaluated the neuro-, immuno-, and male reproductive toxicity of zinc oxide nanoparticles (ZnO NPs) alone and in combination with lead acetate. We also studied the therapeutic role of α-lipoic acid postexposure. Lead (10 mg/kg, body weight), ZnO NPs (100 mg/kg, bwt) alone, and their combination were administered orally in Wistar rats for 28 days, followed by the administration of α-lipoic acid (15 mg/kg, bwt) for the next 15 days. Our results demonstrated protective effects of α-lipoic acid on lead and ZnO NP-induced biochemical alterations in neurological, immunological, and male reproductive organs in rats. The altered levels of blood δ-aminolevulinic acid dehydratase (ALAD), immunoglobulins (IgA, IgG, IgM, and IgE), interleukins (IL-1ß, IL-4, and IL-6), caspase-3, and tumor necrosis factor (TNF-α) were attenuated by lipoic acid treatment. Lead and ZnO NP-induced oxidative stress was decreased by lipoic acid treatment, while a moderate recovery in the normal histoarchitecture of the brain section (cortex and hippocampus) and testes further confirmed the neuro- and male reproductive toxicity of lead and ZnO NPs. We also observed a significant decrease in the blood metal content in the animals treated with lipoic acid compared to the lead-administered group, indicating the moderate chelating property of lipoic acid. It may thus be concluded that lipoic acid might be a promising protective agent against lead and ZnO NP-induced alterations in the neurological, immunological, and reproductive parameters.

15.
Ecotoxicol Environ Saf ; 218: 112262, 2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-33964549

RESUMEN

Salinity is a key devastating abiotic factor that hinders the development and yield of safflower. The sole and combined application of zinc oxide nanoparticles (ZnO-NPs) and a biofertilizer (BF) to improve salt tolerance in safflower has not been thoroughly explored. The response of safflower plants in a pot experiment to the foliar spray of ZnO-NPs alone and in combination with a BF was thus detected. We determined that a ZnO-NP concentration of 17 mg/L was sufficient to protect safflower against salinity (250 mM NaCl) by increasing the plant productivity, percent water content, and osmolyte levels. Coapplication of ZnO-NPs and Phytoguard protected safflower plants from salinity stress by improving the activities of antioxidant enzymes and decreasing the levels of proline (leaves (61%) and roots (63%)) and malondialdehyde (MDA) (leaves (54%) and roots (65%)). Under salt stress, the Na+ content increased, while seed coating with biofertilizer and ZnO-NP spray significantly decreased the Na+ concentration (74% in leaves and 60% in roots). For the K+ concentration, however, antagonistic outcomes were observed. Additionally, the combined treatment significantly enhanced agronomic parameters such as the number of leaves and pods per plant, capitulum weight, and the number of yellow and wilted leaves per plant under salinity stress. Thus, ZnO-NPs could be an effective bio-source for the protection of safflower plants under salinity stress. Our findings showed that in the combined treatment of ZnO-NPs and biofertilizer, the salinity tolerance was more pronounced than in the single treatment and untreated control. A thorough analysis at the molecular level, however, is still required to understand the mechanism by which ZnO-NPs and BF in safflower plants alleviate salt stress.

16.
Comb Chem High Throughput Screen ; 24(6): 841-848, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33109056

RESUMEN

AIM AND OBJECTIVE: In current research, imidazole derivatives are synthesized via a new process of four component reaction of trichloroacetonitrile, amides, alkyl bromides and amino acids catalyzed by zinc oxide nanoparticles (ZnO-NPs) as a simple and recyclable catalyst in water at room temperature. Among investigated compounds, compounds 5b have good results relative to butylated hydroxytoluene (BHT) and 2-tert-butylhydroquinone (TBHQ) as standard antioxidant. The achieved outcomes of disk diffusion experiment showed that these compounds avoided the growth of bacterial. MATERIALS AND METHODS: In this research, all chemicals are purchased from Fluka (Buchs, Switzerland) and employed with any purification. For measuring infrared spectroscopy and melting point, a Shimadzu IR-460 spectrometer and Electrothermal 9100 apparatus are utilized respectively. BRUKER DRX-400 AVANCE spectrometer is used for giving the 1H, and 13CNMR spectra at 400.1 and 100 MHz respectively. For recording mass spectra, A FINNIGAN-MAT 8430 spectrometer with an ionization potential of 70 eV was utilized. The scanning electron microscopy (SEM) employing a Holland Philips XL30 microscope was used for determination of ZnO nanocomposites morphology. X-ray diffraction (XRD) analysis at room temperature using a Holland Philips Xpert X-ray powder diffractometer, with CuKα radiation (λ=0.15406 nm), with 2θ ranging from 20 to 80° was employed for characterization of crystalline structure of Fe3O4/CuO nanocomposites. Scherrer's formula; D= 0.9λ/ß cosθ was employed for calculating the average crystallite size where D is the diameter of the nanoparticles, λ (CuKα) =1.5406 Å and ß is the fullwidth at half-maximum of the diffraction lines. A general way to prepare of compounds 5 The trichloroacetonitrile 1 (2 mmol) and amides 2 (2 mmol) mixed with ZnO-NPs (10 mol%) in water (5 mL). after 45 min amino acids 3 (2 mmol) was added to previous mixture at room temperature. After 30 min α-haloketones 4 (2 mmol) was added to mixture and stirred for 3 h. After 3 h, the reaction is completed and TLC confirms progress of the reaction. At last, the solid residue was collected by filtration and cleaned with EtOAC to removing ZnO-NPs and after evaporating solvent and washing solid with Et2O compounds 5 afforded as pure product. RESULTS: Without employing catalyst, these reactions have low yield and busy mixture. The synthesis of compound 5a as sample reaction and displayed the ZnO nanoparticles (10 mol%) is the best catalyst for sample reaction and H2O is the very better than other solvent in sample raection. Structures of 5 are confirmed by IR, 1H NMR, 13C NMR mass spectra. CONCLUSION: In summary, imdazole derivatives were produced in excellent yield from the reaction of trichloroacetonitrile, amides, alkyl bromides and amino acids using ZnO-NPs in water at room temperature. In addition, the power of synthesized imidazole as antioxidant was determined by radical trapping of DPPH and power of reducing ferric analyzes. The tested imidazoles display good radical trapping of DPPH but exhibitted moderate FRAP relative to BHT and TBHQ as synthetic antioxidants.The outcomes of disk diffusion experiment exhibite that synthesized imidazole avoided the bacterial growth. The superiorities of this procedure are environmental, high yield of product and low amounts of catalyst and short time of reaction.


Asunto(s)
Aminoácidos/química , Antibacterianos/farmacología , Antioxidantes/farmacología , Imidazoles/farmacología , Nanopartículas/química , Óxido de Zinc/química , Antibacterianos/síntesis química , Antibacterianos/química , Antioxidantes/síntesis química , Antioxidantes/química , Bacillus cereus/efectos de los fármacos , Compuestos de Bifenilo/antagonistas & inhibidores , Catálisis , Escherichia coli/efectos de los fármacos , Imidazoles/síntesis química , Imidazoles/química , Klebsiella pneumoniae/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Picratos/antagonistas & inhibidores , Staphylococcus aureus/efectos de los fármacos
17.
Environ Sci Pollut Res Int ; 28(10): 12500-12520, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33083954

RESUMEN

Zinc oxide nanoparticles (ZnO NPs) possess huge application potential. However, the toxicity of ZnO NPs is a great cause of concern. Indeed, ZnO NPs have been found to cause neurotoxicity. As microglial dysfunctions have been linked to the neurotoxic potential of NPs, the physico-chemical properties of ZnO NPs were determined and their cytotoxic effects were characterised on murine microglial BV-2 cells. In-house prepared and meticulously characterised ZnO NPs exhibited narrow size distribution with an average size of around 20 nm and a zeta potential at physiological pH around 24 mV. ZnO NPs did not exhibit aggregation in the cell culture medium. When microglial BV-2 cells were exposed for 6 and 24 h to ZnO NPs (5, 10, 20, 40, and 80 µg/mL), several cell damages were observed. Cellular accumulation of NPs in microglial BV-2 cells was associated with cell growth inhibition and cell death induction, measured by the trypan blue exclusion and MTT assays. Mitochondrial dysfunction and lysosomal alteration were associated with increased plasma membrane permeability measured by staining with DiOC6(3), acridine orange, and propidium iodide, respectively. In addition, an accumulation of reactive oxygen species (ROS) was detected after staining with dihydroethidium and dihydrorhodamine 123. No apoptotic features were present: no cells with condensed and/or fragmented nuclei (Hoechst staining) characteristic of apoptotic cells, absence of subG1 cells, absence of caspase-3 cleavage, and PARP fragmentation. With ZnO NPs (80 µg/mL), with the annexin V/propidium iodide (PI) assay, few apoptotic cells (annexin V+/PI- cells) were detected whereas (annexin V+/PI+ cells) evocating necrotic cells were mainly identified. No modification of the cells in the different phases of the cell cycle was found. Altogether, our data show that ZnO NPs induce a non-apoptotic mode of cell death associated with an accumulation of ROS, mitochondrial, and lysosomal dysfunction and plasma membrane damages in microglial BV-2 cells.Graphical abstract.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Óxido de Zinc , Animales , Apoptosis , Muerte Celular , Supervivencia Celular , Nanopartículas del Metal/toxicidad , Ratones , Estrés Oxidativo , Especies Reactivas de Oxígeno , Óxido de Zinc/toxicidad
18.
Entropy (Basel) ; 22(10)2020 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-33286839

RESUMEN

The present analysis deals with the entropy analysis of the blood flow through an anisotropically tapered arteries under the suspension of magnetic Zinc-oxide (ZnO) nanoparticles (NPs). The Jeffrey fluid model is contemplated as blood that is electrically conducting and incompressible. The lubrication approach is used for the mathematical modeling. The second law of thermodynamics is used to examine the entropy generation. The exact solutions are obtained against velocity and temperature profile with the use of computational software. The results for Entropy, Velocity, Bejan number, temperature profile, and impedance profile are discussed by plotting the graphs. ZnO-NPs have promising applications in biomedical engineering due to its low toxicity, economically reliable, and excellent biocompatibility. ZnO-NPs also emerged in medicine i.e., antibacterial and anticancer activity, and also beneficial in antidiabetic treatment. The monitoring of the blood temperature in the case of the tapered artery has supreme importance in controlling the temperature of blood in the living environment. The presence of a magnetic field is advantageous to manage and control the blood motion at different temperatures. The present outcomes are enriched to give valuable information for the research scientists in the field biomedical science, who are looking to examine the blood flow with stenosis conditions and also beneficial in treating multiple diseases.

19.
Materials (Basel) ; 13(21)2020 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-33182376

RESUMEN

We investigated the effect of intense-pulsed light (IPL) post-treatment on the time-dependent characteristics of ZnO nanoparticles (NPs) used as an electron transport layer (ETL) of quantum-dot light-emitting diodes (QLEDs). The time-dependent characteristics of the charge injection balance in QLEDs was observed by fabrication and analysis of single carrier devices (SCDs), and it was confirmed that the time-dependent characteristics of the ZnO NPs affect the device characteristics of QLEDs. Stabilization of the ZnO NPs film properties for improvement of the charge injection balance in QLEDs was achieved by controlling the current density characteristics via filling of the oxygen vacancies by IPL post-treatment.

20.
Materials (Basel) ; 13(12)2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32549247

RESUMEN

In this research work, we synthesised poly(methyl methacrylate) (PMMA) enriched with 2 wt.% zinc oxide nanoparticles (ZnO) through conventional heat polymerisation and characterised its microstructure. It was found that the distribution of ZnO nanoparticles was homogeneous through the volume of the PMMA. The mechanical testing of the PMMA-ZnO composite primarily included the determination of the compressive properties on real dentures, while density measurements were performed using a pycnometer. The testing of functional properties involved the identification of the colour of the new PMMA-ZnO composite, where pure PMMA acted as a control. In the second step, the PMMA-ZnO cytotoxicity assays were measured in vitro, which were shown to be similar to the control PMMA. Based on this, it could be concluded that the newly formed PMMA-ZnO composite did not induce direct or indirect cytotoxic effects in L929 cell cultures; therefore, according to ISO/DIN 10993-5:2009, this composite was categorised as non-cytotoxic.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA