Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 449
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124875, 2025 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-39137707

RESUMEN

Lanthanide chelates with dimethyl(phenylsulfonyl)amidophosphate (labeled as HSP) and Lewis base ligands (bpy = 2,2;-bipyridine and phen = 1,10-phenanthroline) of formula Na[Ln(SP)4] (1Ln), [Ln(SP)3bpy] (2Ln); [Ln(SP)3phen] (3Ln) (Ln = Eu3+, Gd3+, Tb3+ and Lu3+) were obtained and characterized by the X-ray, photoluminescence spectroscopy at 293 and 77 K as well as by intrinsic (QLnLn) and overall (QLnL) luminescence quantum yields. These phosphors manifest a very strong emission after excitation in the UV range of the molecular singlet states (S1) and two of them have very high QLnL values (Eu3+ and Tb3+ chelates of the type 2Ln and 3Ln). The dynamics of the excited states are discussed based on the intramolecular energy transfer theory, considering the dipole-dipole, the dipole-multipole and the exchange mechanisms. From the calculated energy transfer rates, a rate equation model was constructed and, thus, the theoretical QLnL can be obtained. A good correlation between the experimentally determined and theoretically calculated QLnL values was achieved, with the triplet state (T1) playing a predominant role in the energy transfer process for Eu3+ compounds, while the sensitization for Tb3+ compounds is dominated by the energy transfer rates from the singlet state (S1).

2.
Heliyon ; 10(16): e36139, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39224273

RESUMEN

Scientific evidence has revealed that climate change negatively affects agricultural crop production both regionally and globally. Previous studies have indicated that the role of climate change is significant in some parts of China. Thus, assessing the impact of the future climate on the grain market is vital for ensuring regional and national food security. In this study, regional climate model (RCM 4.5 and 8.5) simulations were employed to investigate the role of future climate change on a major grain-producing market in China (Northeast China). For this purpose, historical (2004-2017) and future (2020-2076) data were applied in the gravity model to examine the effects of climate change on the Northeast China grain market. The results revealed that the maximum temperature is a crucial climate factor that significantly affects the grain market. The analysis revealed that precipitation was positively related and that the temperature was significantly negatively related to domestic consumption and exports of rice, maize, and soybean. Moreover, the analysis of the RCM (4.5 and 8.5) simulations revealed a negative contribution of the maximum temperature to domestic consumption and export levels. Overall, the analysis enhances our understanding of the impacts of climate change on the Northeast China grain market.

3.
J Dairy Sci ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39265833

RESUMEN

The objectives of this study were to evaluate associations of genetic, cow management and nutrition, inbreeding, and crop yields from 1970 to 2020 with measures of production and economic efficiency according to a whole farm model, and to evaluate effects of genetic change in individual traits on economic efficiency in comparison to expectations from economic selection indexes. Genetic and phenotypic performance metrics for Holsteins from 1970 and 2020 were retrieved and input into the Integrated Farm System Model (IFSM) for a 7000 cow TX herd and a 50 cow PA grazing herd. Crop yields estimates from 1970 and 2020 were retrieved and farm hectarage was altered so that forage and energy concentrate requirements were met through farm production; likewise, scenarios evaluating effects of atmospheric CO2 fertilization (CO2F) on crop yield were evaluated by altering farm hectarage. For single traits that could be dynamically modeled by IFSM, performance shifts and resulting change in product prices or management expenses were added to 1970 base models. Economic efficiency was evaluated as the per cow return to management and unpaid factors as compared with 1970 base models. As averaged across state scenarios, gains in economic efficiency were +$945 and -$76 for additive genetic and inbreeding effects, respectively, for a total gain from genetic change of +$869. Genetic gain in fat yield (+$549) and protein yield (+$524) were responsible for most of the genetic gain, whereas milk yield (-$128) and increased cow BW (-$129) depressed economic efficiency. Genetic change in productive life had a smaller effect (+$44) than predicted unless heifers were purchased and at double the default value. Gains due to cow management and nutrition increased efficiency by +$666 and crop yield increased efficiency by +$711, of which +$371 was attributed to CO2F across scenarios. Whole farm dry matter efficiencies derived as the ratio of fat and protein corrected milk yield to dry matter intake increased from 0.82 (PA) and 0.97 (TX) in 1970 to 1.20 in 2020 and could be higher if farms reduce the size of their replacement herd by producing beef calves. The landmass required in 2020 was 63% and 78% of the 1970 requirement for TX and PA, respectively. Changes in cow genetic merit, management and nutrition, and crop yields have all increased the economic and environmental sustainability of milk production, and systems such as IFSM could be a useful tool to help inform economic selection indices.

4.
Appl Environ Microbiol ; 90(9): e0107824, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39212378

RESUMEN

Plant-associated microbial communities play important roles in agricultural productivity, and their composition has been shown to vary across plant compartments and developmental stages. However, the response of microbial communities within different plant compartments and at different developmental stages to diverse long-term fertilization treatments, as well as their linkages with crop yields, remains underexplored. This study analyzed wheat-associated bacterial communities within various soil and plant compartments under three fertilization treatments throughout the vegetative and reproductive phases. The variance in bacterial community was primarily attributed to compartments, followed by fertilization treatments and developmental stages. The composition of belowground bacterial communities (bulk soil, rhizosphere soil, and root) exhibited stronger responses to fertilization treatments than aboveground compartments (stem and leaf). The composition of belowground bacterial communities responded to fertilization treatments at all developmental stages, and it was significantly correlated with crop yields during the vegetative phase, whereas the aboveground community composition only showed a response to fertilization during the reproductive phase, at which point it was significantly correlated with crop yields. Moreover, during this reproductive phase, the co-occurrence network of aboveground bacterial communities exhibited enhanced complexity, and it contained an increased number of keystone species associated with crop yields, such as Sphingomonas spp., Massilia spp., and Frigoribacterium spp. Structural equation modeling indicated that augmenting total phosphorus levels in aboveground compartments could enhance crop yields by increasing the relative abundance of these keystone species during the reproductive phase. These findings highlight the pivotal role of aboveground bacterial communities in wheat production during the reproductive phase. IMPORTANCE: The developmental stage significantly influences crop-associated bacterial communities, but the relative importance of bacterial communities in different compartments to crop yields across various stages is still not well understood. This study reveals that belowground bacterial communities during the vegetative phase are significantly correlated with crop yields. Notably, during the reproductive phase, the composition of aboveground bacterial communities was significantly correlated with crop yields. During this phase, the complexity and enriched keystone species within the aboveground co-occurrence network underscore their role in boosting crop production. These results provide a foundation for developing microbiome-based products that are phase-specific and promote sustainable agricultural practices.


Asunto(s)
Bacterias , Fertilizantes , Microbiota , Microbiología del Suelo , Triticum , Triticum/microbiología , Triticum/crecimiento & desarrollo , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Fertilizantes/análisis , Rizosfera , Raíces de Plantas/microbiología , Hojas de la Planta/microbiología
5.
PeerJ ; 12: e17840, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39184393

RESUMEN

Background: Small-grain winter cereals can be utilized as early spring pastures in temperate climates to relieve grazing pressure and potentially mitigate feed shortages. This study was conducted to determine the effects of triticale and oat cereal pastures grazed by sheep during early spring on forage yields, nutritive values, and nutritional requirements of sheep. Methods: The research was carried out over three consecutive years, from 2015 to 2017, at the Sheep Research Institute in Bandirma-Balikesir, located in the Marmara region of Türkiye. The treatments were arranged in a completely randomized block design, with the two forage species, triticale and oat, randomized within each of three blocks. The animal material for the study consisted of 24 Karacabey Merino sheep, each 2 years old, with an average live weight of 57.6 ± 0.5 kg, all in the late lactation stage. In each replication, four sheep were included, resulting in a total of 12 sheep grazing in each of the triticale and oat pastures. The sheep grazed exclusively on the cereal pastures without any additional feed, and had unrestricted access to water throughout the entire period of the experiment. The dry matter yields (DMY), dry matter intakes (DMI), nutritive values, and mineral contents of the cereal species were determined. Results: The DMY showed significant differences over the years (P < 0.05). No differences in DMY were observed between pastures, with oats yielding 11.99 t ha-1 and triticale yielding 11.08 t ha-1. During the grazing period, the change in DMY was significant in all years (P < 0.05). The average DMI of the sheep was 2,003.5 g d-1 for triticale and 2,156.6 g d-1 for oat, respectively, and DMI exhibited no significant differences across pastures. Although there was no difference in DMI between 2015 and 2016, the lowest consumption occurred in 2017 (P < 0.05). Additionally, while DMI showed different trends each year based on the periods, it generally decreased by the end of the grazing period. While both pastures provided similar nutritive values, significant differences were observed in the crude protein (CP), acid detergent fiber (ADF), in vitro true DM digestibility (DDM), and metabolisable energy (ME) values across the years. Over the years, as the grazing period progressed, CP levels decreased while neutral detergent fiber (NDF), ADF, and acid detergent lignin (ADL) increased, resulting in reduced DDM and ME values. The phosphorus (P) content in triticale was higher than in oats, but there were no differences in the content of other minerals between them. Between the years, significant differences were observed in the levels of phosphorus (P) and iron (Fe), while changes in other elements were insignificant. The variation in mineral content during the grazing process differed over the three years. Study results indicated that the nutritional values of triticale and oat pastures are similar, and both can effectively be used to provide sufficient feed to meet the early spring forage requirements for sheep.


Asunto(s)
Alimentación Animal , Avena , Valor Nutritivo , Estaciones del Año , Triticale , Animales , Avena/química , Alimentación Animal/análisis , Ovinos , Triticale/química , Femenino , Crianza de Animales Domésticos/métodos , Fenómenos Fisiológicos Nutricionales de los Animales , Grano Comestible/química , Dieta/veterinaria
6.
Plant Physiol Biochem ; 215: 109001, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39213945

RESUMEN

Seed priming by nitric oxide (NO) and hydrogen sulphide (H2S) in combating against abiotic stress in plants is well documented. However, knowledge of fundamental mechanisms of their crosstalk is scrambled. Therefore, the reported study examined the probable role of NO and H2S in the mitigation of arsenate toxicity (As(V)) in rice seedlings and whether their potential signalling routes crossover. Results report that As(V) toxicity limited shoot and root length growth with more As accumulation in roots. As(V) further caused elevated reactive oxygen species levels, inhibited ascorbate-glutathione cycle enzymes and relative gene expression of its enzymes and thus, causing lipid and protein oxidation. These results correlate with reduced nitric oxide synthase-like and L-cysteine desulfhydrase activity along with endogenous NO and H2S. While, L-NAME or PAG augmented As(V) toxicity, and addition of SNP or NaHS effectively reversed their respective effects. Furthermore, SNP under PAG or NaHS under L-NAME were able to pacify As(V) stress, implicating that endogenous NO and H2S efficiently ameliorate As(V) toxicity but without their shared signaling in rice seedlings.


Asunto(s)
Arseniatos , Ácido Ascórbico , Glutatión , Sulfuro de Hidrógeno , Óxido Nítrico , Oryza , Plantones , Azufre , Oryza/metabolismo , Oryza/genética , Oryza/efectos de los fármacos , Sulfuro de Hidrógeno/metabolismo , Óxido Nítrico/metabolismo , Plantones/efectos de los fármacos , Plantones/metabolismo , Plantones/genética , Arseniatos/toxicidad , Ácido Ascórbico/metabolismo , Glutatión/metabolismo , Azufre/metabolismo , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Especies Reactivas de Oxígeno/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Cistationina gamma-Liasa/metabolismo , Cistationina gamma-Liasa/genética
7.
J Colloid Interface Sci ; 677(Pt A): 369-377, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39096705

RESUMEN

In the domain of electrocatalytic NO3- reduction (NO3-RR) for the treatment of low-concentration nitrate-containing domestic or industrial wastewater, the conversion of NO3- into NH4+ holds significant promise for resource recovery. Nevertheless, the central challenge in this field revolves around the development of catalysts exhibiting both high catalytic activity and selectivity. To tackle this challenge, we design a two-step hydrothermal combine with carbonization process to fabricate a cobalt-doped Fe-based MOF (MIL-101) catalyst at 800 °C temperatures. The aim was to fully leverage cobalt's demonstrated high selectivity in NO3- electroreduction and enhance activity by promoting electron transfer through the d-band of Fe. The results indicate that the synthesized catalyst inherits multiple active sites from its precursor, with the co-doping process optimized through the topological properties of the MOF. Elemental analysis and oxidation state testing were employed to scrutinize the fundamental characteristics of this catalyst type and comprehend how these features may influence its efficiency. Electrochemical analysis revealed that, even under conditions of low NO3- concentration, the Cox@MIL-Fe catalyst achieved an impressive nitrate conversion rate of 98 % at -0.9 V vs. RHE. NH4+ selectivity was notably high at 87 %, and the by-product NO2- levels remained at a minimal threshold. The Faradaic efficiency for NH4+ reached 74 %, with ammonia yield approaching 0.08 mmol h-1 cm-2. This study furnishes indispensable research data for the design of Fe-based electrocatalysts for nitrate reduction, offering profound insights into the modulation of catalysts to play a pivotal role in the electroreduction of nitrate ions.

8.
Ann N Y Acad Sci ; 1538(1): 144-161, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39086254

RESUMEN

This study analyzes the relationship between drought processes and crop yields in Moldova, together with the effects of possible future climate change on crops. The severity of drought is analyzed over time in Moldova using the Standard Precipitation Index, the Standardized Precipitation Evapotranspiration Index, and their relationship with crop yields. In addition, rainfall variability and its relationship with crop yields are examined using spectral analysis and squared wavelet coherence. Observed station data (1950-2020 and 1850-2020), ERA5 reanalysis data (1950-2020), and climate model simulations (period 1970-2100) are used. Crop yield data (maize, sunflower, grape), data from experimental plots (wheat), and the Enhanced Vegetation Index from Moderate Resolution Imaging Spectroradiometer satellites were also used. Results show that although the severity of meteorological droughts has decreased in the last 170 years, the impact of precipitation deficits on different crop yields has increased, concurrent with a sharp increase in temperature, which negatively affected crop yields. Annual crops are now more vulnerable to natural rainfall variability and, in years characterized by rainfall deficits, the possibility of reductions in crop yield increases due to sharp increases in temperature. Projections reveal a pessimistic outlook in the absence of adaptation, highlighting the urgency of developing new agricultural management strategies.


Asunto(s)
Productos Agrícolas , Sequías , Calentamiento Global , Productos Agrícolas/crecimiento & desarrollo , Moldavia , Adaptación Fisiológica/fisiología , Cambio Climático , Lluvia , Modelos Climáticos , Zea mays/crecimiento & desarrollo , Zea mays/fisiología , Triticum/crecimiento & desarrollo , Triticum/fisiología , Temperatura
9.
Adv Mater ; 36(36): e2407274, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39030858

RESUMEN

Carbon materials have great potential for applications in energy, biology, and environment due to their excellent chemical and physical properties. Their preparation by carbonization methods encounters limitations and the carbon loss during pyrolysis in the form of gaseous molecules results in low yield of carbon materials. Herein a low-energy (600 °C) and high-yield (82 wt.%) carbonization strategy is developed using liquid gallium-assisted pyrolysis of metal-organic frameworks (MOFs) affording the N-doped carbon nanotube (CNT) non-hollow frameworks encapsulating Co nanoparticles. The liquid gallium layer offers protection against air, promotes heat transfer, and limits the escape of small carbonaceous gaseous molecules, which greatly improve the yields of the pyrolysis reaction. Experimental and theoretical results reveal that the synergistic interaction between CNTs and N/O-containing groups gives a non-hollow framework composed of N/O-enriched and open CNTs (NOCNTF-15, 15 denotes the 15 mm thickness of the liquid gallium layer during the pyrolysis) with high specific capacity (185 mAh g-1 at 10 A g-1) and ultra-stable cyclability (stable operation at 10 A g-1 and 50 °C for 20 000 cycles). This study provides a unique approach to carbonization that facilitates the practical application of low-cost CNTs and other MOFs-derived carbon materials in high-performance sodium-ion batteries (SIBs).

10.
Appl Radiat Isot ; 212: 111445, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39013329

RESUMEN

For the first time, charge distribution studies have been carried out in the epi-cadmium neutron induced fission of 235U by measuring the fractional cumulative yields (FCY) and independent yields (IY) of various fission products. An off-line γ-ray spectrometric technique was used for the measurements. The average energy of the epi-cadmium neutron spectrum is 1.9 MeV. From the FCY values, the isobaric width parameter (σZ), most probable charge (ZP) and the charge polarization (ΔΖEXPT) as a function of fragment mass were obtained. Similarly, from the IY values, isotopic width parameter (σA), the most probable mass (AP) and the elemental yields (YZ) of Sn, Sb, Te, I, Xe, Cs, Ba, La, Ce and Pr were determined by using a non-linear fit. From the YZ values, the proton even-odd effect (δp) was obtained for the first time. The present data in the 235U(n, f) reaction were compared with the similar data in the 235U(nth, f) and 238U(n, f) reactions as well as of other actinides to examine the role of excitation energy and pairing effect.

11.
12.
Small ; : e2402951, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38923817

RESUMEN

Recently, lanthanide-based 0D metal halides have attracted considerable attention for their applications in X-ray imaging, light-emitting diodes (LEDs), sensors, and photodetectors. Herein, lead-free 0D gadolinium-alloyed cesium cerium chloride (Gd3+-alloyed Cs3CeCl6) nanocrystals (NCs) are introduced as promising materials for optoelectronic application owing to their unique optical properties. The incorporation of Gd3+ in Cs3CeCl6 (CCC) NCs is proposed to increase the photoluminescence quantum yield (PLQY) from 57% to 96%, along with significantly enhanced phase and chemical stability. The structural analysis is performed by density functional theory (DFT) to confirm the effect of Gd3+ in Cs3Ce1- xGdxCl6 (CCGC) alloy system. Moreover, the CCGC NCs are applied as the active layer in UVPDs with different Gd3+ concentration. The excellent device performance is shown at 20% of Gd3+ in CCGC NCs with high detectivity (7.938 × 1011 Jones) and responsivity (0.195 A W-1) at -0.1 V at 310 nm. This study paves the way for the development of lanthanide-based metal halide NCs for next-generation UVPDs and other optoelectronic applications.

13.
World J Microbiol Biotechnol ; 40(8): 246, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38902402

RESUMEN

Saccharomyces cerevisiae, the primary microorganism involved in ethanol production, is hindered by the accumulation of ethanol, leading to reduced ethanol production. In this study, we employed histidine-modified Fe3O4 nanoparticles (His-Fe3O4) for the first time, to the best of our knowledge, as a method to enhance ethanol yield during the S. cerevisiae fermentation process. The results demonstrated that exposing S. cerevisiae cells to Fe3O4 nanoparticles (Fe3O4 NPs) led to increased cell proliferation and glucose consumption. Moreover, the introduction of His-Fe3O4 significantly boosted ethanol content by 17.3% (p < 0.05) during fermentation. Subsequent findings indicated that the increase in ethanol content was associated with enhanced ethanol tolerance and improved electron transport efficiency. This study provided evidence for the positive effects of His-Fe3O4 on S. cerevisiae cells and proposed a straightforward approach to enhance ethanol production in S. cerevisiae fermentation. The mediation of improved ethanol tolerance offers significant potential in the fermentation and bioenergy sectors.


Asunto(s)
Etanol , Fermentación , Glucosa , Histidina , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/crecimiento & desarrollo , Etanol/metabolismo , Histidina/metabolismo , Glucosa/metabolismo , Transporte de Electrón/efectos de los fármacos , Nanopartículas de Magnetita
14.
J Fungi (Basel) ; 10(6)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38921404

RESUMEN

Gibberellic acid (GA3) is a tetracyclic diterpenoid carboxylic acid synthesized by the secondary metabolism of Fusarium fujikuroi. This phytohormone is widely studied due to the advantages it offers as a plant growth regulator, such as growth stimulation, senescence delay, flowering induction, increased fruit size, and defense against abiotic or biotic stress, which improve the quality and yield of crops. Therefore, GA3 has been considered as an innovative strategy to improve agricultural production. However, the yields obtained at large scale are insufficient for the current market demand. This low productivity is attributed to the lack of adequate parameters to optimize the fermentation process, as well as the complexity of its regulation. Therefore, this article describes the latest advances for potentializing the GA3 production process, including an analysis of its origins from crops, the benefits of its application, the related biosynthetic metabolism, the maximum yields achieved from production processes, and their association with genetic engineering techniques for GA3 producers. This work provides a new perspective on the critical points of the production process, in order to overcome the limits surrounding this modern line of bioengineering.

15.
Plants (Basel) ; 13(12)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38931044

RESUMEN

Unraveling the intricate physiological and biochemical intricacies associated with female dominance in grape berries across diverse developmental stages is imperative for optimizing grape production and ensuring the attainment of high-quality yields. This study conducted a thorough analysis of grape berries across phenological stages (BBCH-79, BBCH-81, BBCH-89) and cultivars. At BBCH-89, Bozcaada Çavusu*Vasilâki demonstrated the highest berry weight and total soluble solids (TSS) levels, emphasizing its enological potential. Acidity peaked at BBCH-79 (28.16) and declined at BBCH-89 (6.11), signaling a shift towards lower acidity in later stages. Bozcaada Çavusu*Vasilâki consistently showed the highest maturity index (MI). Mineral content variations were observed across nitrogen (N), calcium (Ca), potassium (K), phosphorus (P), magnesium (Mg), sulfur (S), iron (Fe), manganese (Mn), boron (B), zinc (Zn), and copper (Cu), with Bozcaada Çavusu*Vasilâki often having the highest concentrations, particularly in potassium, calcium, and boron. Hormonal analysis revealed a significant surge in concentrations at BBCH-89, with Bozcaada Çavusu*Vasilâki standing out. Notably, Indole-3-acetic acid (IAA) concentrations increased by 106%, and abscisic acid (ABA) levels peaked at BBCH-79 with a 38% increase in Bozcaada Çavusu*Kuntra. Sugar content analysis showed variations in fructose, glucose, sucrose, rhamnose, xylose, galactose, and arabinose levels across sampling times and cultivars. Bozcaada Çavusu*Vasilâki consistently exhibited higher sugar levels, especially at BBCH-81 and BBCH-89. Vitamin concentrations varied temporally and among cultivars, with BBCH-89 displaying the highest vitamin A concentration (6.24 mg/100 g FW), and Bozcaada Çavusu*Vasilâki often exhibiting maximum values for vitamin B1, B2, B6, and C. Further research and targeted cultivation practices focusing on the unique attributes of Bozcaada Çavusu*Vasilâki could enhance grape production efficiency, emphasizing its potential contribution to achieving consistently high-quality yields across various phenological stages.

17.
BMC Plant Biol ; 24(1): 506, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38840055

RESUMEN

Sesame is a major annual oil crop that is grown practically everywhere in tropical and subtropical Asia, as well as Africa, for its very nutritious and tasty seeds. Rising temperatures, droughts, floods, desertification, and weather all have a significant impact on agricultural production, particularly in developing countries like Ethiopia. Therefore, the main objective of this study is to examine the influence of climate change on the sesame yield in North Gondar, North Ethiopia, by using the autoregressive distributed Lag (ARDL) time series model. This study employed climate data from the Bahirdar Agrometeorological Center and secondary data on sesame production from the Ethiopian Statistical Service, spanning 36 years, from 1987 to 2023. Autoregressive Distributed LAG (ARDL) includes diagnostic tests for both short- and long-term autoregressive models. The results for the long-run and short-run elastic coefficients show a significant positive association between temperatures and sesame yield. Sesame yield and rainfall have a significant negative long-run and short-run relationship in North Gondar, North Ethiopia. ARDL results confirm that temperature and rainfall have significant effects on sesame productivity. Temperature had a considerable favorable effect on sesamen production, but rainfall had a negative effect in North Gondar, Ethiopia. Based on the evidence acquired from our study, we made several policy recommendations and suggestions to government officials, policymakers, new technologies, researchers, policy development planners, and other stakeholders in order to develop or implement new technology to halt its production and direct adaptation measures in light of the certainty of global warming and the characteristics of climate-dependent agricultural production.


Asunto(s)
Cambio Climático , Sesamum , Etiopía , Sesamum/crecimiento & desarrollo , Sesamum/fisiología , Lluvia , Temperatura
18.
J Sci Food Agric ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38822542

RESUMEN

BACKGROUND: The Songhua River Basin, a vital grain-producing area in China, faces challenges due to the uneven distribution of water resources and the intensive water demands of agriculture. To enhance agricultural development and effectively manage water scarcity, it is essential to identify the water-saving potential of major staple crops - corn, wheat, and rice. This study enhances the World Food Studies (WOFOST) model by refining the day of year for the developmental vegetative stage (DVS), thereby improving the representation of phenological stages for spring maize, spring wheat, and rice within the model. This refinement offers a detailed analysis of the potential and rainfed yields. RESULTS: The results from the modified WOFOST model show promising simulation outcomes for the biomass and yield of maize, wheat, and rice, with Nash-Sutcliffe efficiency (NS) and index of agreement (IoA) values all exceeding 0.7. An analysis of photothermal potential yields (Yp) and rainfed yields (Yr) revealed minimal differences in yields for spring maize and rice across various rainfall frequencies. Specifically, the average photothermal utilization rates (LTs) are 93.57% for maize and 85.25% for rice. In contrast, the rainfed yield for wheat is lower than its photothermal yield, with an LT of 43.66%. CONCLUSIONS: These findings suggest that in the Songhua River Basin, maize and rice offer greater potential for water conservation compared to wheat. It is recommended to judiciously reduce irrigation during the growing seasons of spring maize and rice to help alleviate agricultural water use pressures. © 2024 Society of Chemical Industry.

19.
J Exp Bot ; 75(16): 4904-4925, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-38700102

RESUMEN

Optimizing photosynthesis is considered an important strategy for improving crop yields to ensure food security. To evaluate the potential of using photosynthesis-related parameters in crop breeding programs, we measured chlorophyll fluorescence along with growth-related and morphological traits of 23 barley inbred lines across different developmental stages in field conditions. The photosynthesis-related parameters were highly variable, changing with light intensity and developmental progression of plants. Yet, the variation in photosystem II quantum yield observed among the inbred lines in the field largely reflected the variation in CO2 assimilation properties in controlled climate chamber conditions, confirming that the chlorophyll fluorescence-based technique can provide proxy parameters of photosynthesis to explore genetic variation under field conditions. Heritability (H2) of the photosynthesis-related parameters in the field ranged from 0.16 for the quantum yield of non-photochemical quenching to 0.78 for the fraction of open photosystem II center. Two parameters, the maximum photosystem II efficiency in the light-adapted state (H2=0.58) and the total non-photochemical quenching (H2=0.53), showed significant positive and negative correlations, respectively, with yield-related traits (dry weight per plant and net straw weight) in the barley inbred lines. These results indicate the possibility of improving crop yield through optimizing photosynthetic light use efficiency by conventional breeding programs.


Asunto(s)
Variación Genética , Hordeum , Fotosíntesis , Hordeum/genética , Hordeum/crecimiento & desarrollo , Hordeum/fisiología , Complejo de Proteína del Fotosistema II/metabolismo , Complejo de Proteína del Fotosistema II/genética , Clorofila/metabolismo
20.
Plants (Basel) ; 13(10)2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38794491

RESUMEN

MADS-box transcription factors act as the crucial regulators in plant organ differentiation. Crop yields are highly influenced by the flower number and fruit growth. However, flower identification is a very complex biological process, which involves many cascade regulations. The molecular mechanisms underlying the genetic regulation of flower identification in cultivated plants, such as tomato, are intricate and require further exploration. In this study, we investigated the vital function of a SEPALLATA (SEP) MADS-box gene, SlMBP21, in tomato sympodial inflorescence meristem (SIM) development for the conversion from SIMs to floral meristems (FMs). SlMBP21 transcripts were primarily accumulated in young inflorescence meristem, flowers, sepals, and abscission zones. The Ailsa Craig (AC++) tomato plants with suppressed SlMBP21 mRNA levels using RNAi exhibited a large increase in flower number and fruit yields in addition to enlarged sepals and inhibited abscission zone development. Scanning electron microscopy (SEM) revealed that the maturation of inflorescence meristems (IMs) was repressed in SlMBP21-RNAi lines. RNA-seq and qRT-PCR analyses showed that numerous genes related to the flower development, plant hormone signal transduction, cell cycle, and cell proliferation et al. were dramatically changed in SlMBP21-RNAi lines. Yeast two-hybrid assay exhibited that SlMBP21 can respectively interact with SlCMB1, SFT, JOINTLESS, and MC, which play key roles in inflorescence meristems or FM development. In summary, our data demonstrate that SlMBP21 functions as a key regulator in SIM development and the conversion from SIMs to FMs, through interacting with other regulatory proteins to control the expression of related genes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA