Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Biol Macromol ; 274(Pt 2): 133288, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38908643

RESUMEN

Biodegradable packaging materials are increasingly being investigated due to rising concerns about food safety and environmental conservation. This study examines the incorporation of chia mucilage (CM) into starch-based films using the casting method, aiming to understand its effects on the structure and functionality of the films. CM, an anionic heteropolysaccharide, is hypothesized to enhance the mechanical and barrier properties of the films through polymer interactions and hydrogen bonding. Our findings confirm that CM incorporation results in films with uniformly smooth surfaces, indicating high compatibility and homogeneity within the starch matrix. Notably, CM improves film transparency and crystallinity. Mechanical assessments show a remarkable elevation in tensile strength, soaring from 5.21 MPa to 12.38 MPa, while elongation at break decreases from 61.73 % to 31.42 %, indicating a trade-off between strength and flexibility. Additionally, water solubility decreases from 57.97 % to 41.40 %, and water vapor permeability is reduced by 30 % with CM loading. These results highlight the role of CM in facilitating the formation of a dense, interconnected polymeric network within the starch matrix. Given the soluble dietary fiber nature of CM, the CS/CM (corn starch/chia mucilage) blended films are expected to be safe for food packaging and applicable as edible films with health benefits.


Asunto(s)
Embalaje de Alimentos , Permeabilidad , Mucílago de Planta , Solubilidad , Almidón , Agua , Almidón/química , Mucílago de Planta/química , Agua/química , Embalaje de Alimentos/métodos , Resistencia a la Tracción , Películas Comestibles , Vapor , Fenómenos Mecánicos
2.
Int J Mol Sci ; 25(11)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38892341

RESUMEN

Anthocyanins are amazing plant-derived colorants with highly valuable properties; however, their chemical and color instability issues limit their wide application in different food industry-related products such as active and intelligent packaging. In a previous study, it was demonstrated that anthocyanins could be stabilized into green plasticizers namely deep eutectic solvents (DESs). In this work, the fabrication of edible films by integrating anthocyanins along with DESs into biocompatible chitosan (CHT)-based formulations enriched with polyvinyl alcohol (PVA) and PVA nanoparticles was investigated. CHT/PVA-DES films' physical properties were characterized by scanning electron microscopy, water vapor permeability, swelling index, moisture sorption isotherm, and thermogravimetry analysis. Innovative red-to-blue formulation films were achieved for CHT/PVA nanoparticles (for 5 min of sonication) at a molar ratio 1:1, and with 10% of ternary DES (TDES)-containing malvidin-3-glucoside (0.1%) where the physical properties of films were enhanced. After immersion in solutions at different pH values, films submitted to pHs 5-8 were revealed to be more color stable and resistant with time than at acidic pH values.


Asunto(s)
Antocianinas , Quitosano , Alcohol Polivinílico , Solventes , Alcohol Polivinílico/química , Antocianinas/química , Quitosano/química , Solventes/química , Biopelículas/efectos de los fármacos , Nanopartículas/química , Embalaje de Alimentos/métodos , Concentración de Iones de Hidrógeno , Color , Permeabilidad
3.
Membranes (Basel) ; 14(5)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38786938

RESUMEN

Edible film biopolymers are gaining attention to tackle problems of plastic waste and food safety to alleviate environmental problems associated with plastic products in food packaging. In this study, caseinate-carboxymethyl chitosan (CA-CMCH) composite films were made with the incorporation of soybean oil (SO) using a casting technique. The influence of different soybean oil concentrations at 0, 0.5, and 1% (w/w) on physical, mechanical, barrier, and surface characteristics of films composed of caseinate-carboxymethyl chitosan (CA-CMCH) was evaluated. The brightest film (L* value of 95.95 ± 0.30) was obtained with the edible film made from the control group of samples with sodium caseinate (NaCA-100; 100% NaCA). The results also indicated that samples with 1% SO in NaCA-75 and CaCA-75 had lower water vapor permeability (WVP), while those with NaCA-50 and CaCA-50 showed higher values of WVP. For mechanical properties, this study found that incorporating soybean oil into the caseinate-carboxymethyl (CA-CMCH) composite films led to an enhancement of both tensile strength and elongation at break. The morphological structures, determined using SEM, of control and composite films showed compact and homogenous surfaces. Overall, the addition of soybean oil contributed to the improvement of the functional properties of the edible films, offering potential solutions to the environmental issues associated with plastic packaging and enhancing the safety and performance of food packaging.

4.
Data Brief ; 54: 110490, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38764452

RESUMEN

This article presents analyzed data on the antimicrobial, barrier, and mechanical properties inherent to films created by blending carrot pomace with wheat gluten and polyglycerol-3 plasticizer and combined with varying contents (0 wt.%, 3 wt.%, and 5 wt.%) of eugenol, a natural antimicrobial compound derived from essential oils. The integration of carrot pomace, wheat gluten, plasticizer, and eugenol involved meticulous mortar and pestle processing, ensuring a homogenous blend. Subsequently, the mixture was compression-molded in a hydraulic press to fabricate the films. Standard bacteria strains-Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 6538-are used in the antimicrobial evaluation, and antimicrobial efficacy is measured using OD600 measurements. Water vapor permeability (WVP) measurement effectively defines the films' potential to prevent water vapor infiltration. Mechanical properties are assessed by determining elastic modulus, tensile strength, and elongation at break, which together reveal the films' adaptive flexibility and durability. The dataset presented herein holds substantial promise for food packaging applications. Researchers in the food packaging industry can leverage the antimicrobial and barrier property data to design novel packaging materials, potentially enhancing shelf-life and food safety. Engineers and material scientists can utilize the mechanical properties data to develop structurally robust and flexible materials.

5.
Curr Res Food Sci ; 8: 100720, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38559379

RESUMEN

In the evolving landscape of food packaging, lipid-based edible films and coatings are emerging as a sustainable and effective solution for enhancing food quality and prolonging shelf life. This critical review aims to offer a comprehensive overview of the functional properties, roles, and fabrication techniques associated with lipid-based materials in food packaging. It explores the unique advantages of lipids, including waxes, resins, and fatty acids, in providing effective water vapor, gas, and microbial barriers. When integrated with other biopolymers, such as proteins and polysaccharides, lipid-based composite films demonstrate superior thermal, mechanical, and barrier properties. The review also covers the application of these innovative coatings in preserving a wide range of fruits and vegetables, highlighting their role in reducing moisture loss, controlling respiration rates, and maintaining firmness. Furthermore, the safety aspects of lipid-based coatings are discussed to address consumer and regulatory concerns.

6.
Heliyon ; 10(7): e29070, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38623235

RESUMEN

Banana pseudo-stem, often considered as an underutilized plant part was explored as a potential reinforced material to develop an eco-friendly biofilm for food packaging applications. In this study, Microcrystalline cellulose (MCC) was extracted from banana pseudo-stem by alkali and acid hydrolysis treatment. The extracted MCC was used as a reinforced material in different concentrated polyvinyl alcohol (PVA) matrix alone as well as both PVA and Carboxymethyl Cellulose (CMC) matrix to develop biofilm by solvent casting method. The synthesized MCC powder was characterized by scanning electron microscope to ensure its microcrystalline structure and to observe surface morphology. The biofilms composed of MCC, PVA, and CMC were assessed through Fourier-transform infrared spectroscopy (FTIR), mechanical properties, water content, solubility, swelling degree, moisture barrier property (Water Vapor Permeability - WVP), and light barrier property (Light Transmission and Transparency). The FTIR analysis showed the rich bonding between the materials of the biofilms. The film incorporating a combination of PVA, CMC, and MCC (S6) exhibited the highest tensile strength at 26.67 ± 0.152 MPa, making it particularly noteworthy for applications in food packaging. MCC incorporation increased the tensile strength. The WVP content of the films was observed low among the MCC-induced films which is parallel to other findings. The lowest WVP content was showed by 1% concentrated PVA with MCC (S4) (0.223 ± 0.020 10-9 g/Pahm). The WVP content of S6 film was also considerably low. MCC-incorporated films also acted as a good UV barrier. Transmittance of the MCC induced films at UV range were observed on average 38% (S2), 36% (S4) and 6% (S6) which were almost 6% lower than the control films. The S6 film demonstrated the lowest swelling capacity (1.42%) and water content, indicating a significantly low solubility of the film. The film formulated with mixing of PVA, CMC and MCC (S6) was ahead in terms of food packaging characteristics than other films. Also, the outcomes of this study point out that MCC can be a great natural resource for packaging applications and in that regard, banana pseudo-stem proves to be an excellent source for waste utilization.

7.
Gels ; 10(4)2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38667700

RESUMEN

Active packaging is an innovative approach to prolonge the shelf-life of food products while ensuring their quality and safety. Carbon dots (CDs) from biomass as active fillers for biopolymer films have been introduced to improve their bioactivities as well as properties. Gelatin/chitosan (G/C) blend films containing active guava leaf powder carbon dots (GL-CDs) at various levels (0-3%, w/w) were prepared by the solvent casting method and characterized. Thickness of the control increased from 0.033 to 0.041 mm when 3% GL-CDs were added (G/C-CD-3%). Young's modulus of the resulting films increased (485.67-759.00 MPa), whereas the tensile strength (26.92-17.77 MPa) and elongation at break decreased (14.89-5.48%) as the GL-CDs' level upsurged (p < 0.05). Water vapor barrier property and water contact angle of the film were enhanced when incorporated with GL-CDs (p < 0.05). GL-CDs had a negligible impact on film microstructure, while GL-CDs interacted with gelatin or chitosan, as determined by FTIR. The release of GL-CDs from blend films was more pronounced in water than in alcoholic solutions (10-95% ethanol). The addition of GL-CDs improved the UV light barrier properties and antioxidant activities of the resultant films in a dose-dependent manner. Thus, GL-CD-added gelatin/chitosan blend films with antioxidant activities could be employed as potential active packaging for the food industry.

8.
Polymers (Basel) ; 16(8)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38674953

RESUMEN

This study presents an analysis of films which consist of two layers; one layer is PVDF as the matrix, along with fillers BaTiO3 (BT), and the second is one bacterial nanocellulose (BNC) filled with Fe3O4. The mass fraction of BT in PVDF was 5%, and the samples were differentiated based on the duration of the mechanical activation of BT. This innovative PVDF laminate polymer with environmentally friendly fillers aligns with the concept of circular usage, resulting in a reduction in plastic content and potential improvement of the piezoelectric properties of the entire composite. This work presents new, multifunctional "green" packaging materials that potentially could be a good alternative to specific popular materials used for this purpose. The synthesis of the films was carried out using the hot press method. Tensile tests, water vapor permeability examination, and structural analyses using SEM-EDS and FTIR have been conducted. The sample PVDF/BT20/BNC/Fe3O4 exhibited the best barrier properties (impermeability to water vapor), while the highest tensile strength and toughness were exhibited by the PVDF/BT5/BNC/Fe3O4 sample.

9.
Int J Biol Macromol ; 266(Pt 1): 131173, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38554904

RESUMEN

Chia seed mucilage (CSM) film incorporated with 2, 4, and 6 % (w/w) nanoemulsion of cinnamon essential oil (CSM-2, CSM-4, CSM-6) were developed, and their physicochemical, mechanical, antioxidant, and antimicrobial properties were determined. According to the results, cinnamon EO nanoemulsion (CEN) had droplet size 196.07 ± 1.39 nm with PDI 0.47 ± 0.04. Moreover, CSM film had higher water solubility (99.37 ± 0.05 %) and WVP (8.55 ± 1.10 g/kPa h m2) than reinforced CSM films with CENCEN. The lowest water solubility (98.02 ± 0.01 %) and WVP (3.75 ± 0.80 g/kPa h m2) was observed in CSM-6 film. Moreover, the addition of CEN improved the homogeneity and density of films and the smoothness of the surface, being observed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The Fourier transform infrared (FTIR) spectroscopy also confirmed the incorporation of CEN within the film matrix. The CSM films' antioxidant (DPPH radical scavenging power) and antimicrobial (against Escherichia coli and Staphylococcus aureus) properties of CSM films were notably enhanced with the inclusion of CEN in a dose-dependent manner. The mechanical (tensile strength and elongation at break) of CSM films also was affected by the addition of CEN, TS decreased, and EAB increased (p < 0.05). The lowest TS (20.63 ± 1.39 MPa) and highest EAB (3.36 ± 0.61 %) was observed in CSM-4 film. However, CSM film was relatively dark with low opacity, and adding CEN slightly increased lightness (L*) and yellowness (b*) parameters. The superior antioxidant and barrier characteristics of the CSM edible film incorporated with CEN make it a potential candidate for product packaging and shelf-life extension.


Asunto(s)
Antioxidantes , Cinnamomum zeylanicum , Películas Comestibles , Emulsiones , Aceites Volátiles , Mucílago de Planta , Semillas , Aceites Volátiles/química , Aceites Volátiles/farmacología , Cinnamomum zeylanicum/química , Semillas/química , Antioxidantes/química , Antioxidantes/farmacología , Mucílago de Planta/química , Solubilidad , Antibacterianos/farmacología , Antibacterianos/química , Staphylococcus aureus/efectos de los fármacos , Embalaje de Alimentos/métodos
10.
Polymers (Basel) ; 16(4)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38399891

RESUMEN

Nowadays, as consumer expectations have increased worldwide, the importance of polymer materials performance has been raised to a new level. Efforts are required to produce a high-quality product that maintains its quality despite aging factors in certain geographical locations. In the experimental part of this study, polyester materials produced from conventional and recycled yarns, further intended for the production of sportswear, were exposed to natural weathering. Before and after the exposure, the following material properties were investigated: material surface appearance, material thickness, mass per unit area, horizontal and vertical density, surface roughness, tensile properties (force at break, elongation at break), water vapor permeability, liquid dispersion and drying of the material. The results indicate that the surface mass and thickness of all exposed polyester materials decreased after aging due to material shrinkage. The results indicated that prolonged aging negatively affected the values of elongation and force at break. The recycled material exhibited the highest overall decreases in elongation and force at break, but lower surface roughness. In addition, recycled material exhibited a shorter drying time than that of conventional material, both before and after aging.

11.
Food Chem ; 445: 138784, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38387319

RESUMEN

This work aimed to develop and characterize a colorimetric indicator films based on chitosan (CS), polyvinyl alcohol (PVA), and shikonin (SKN) from radix Lithospermi by casting method. The prepared films can serve as smart packaging for monitoring shrimp freshness which having excellent antimicrobial and antioxidant activity. The shikonin containing films have better hydrophobicity, barrier properties, and tensile strength. The release kinetics analysis shows that the loading amount causes a prolonged release of SKN from the prepared films. Increasing SKN in the CS/PVA film from 1 wt% to 2 wt% improved antibacterial effect for 24 h. Additionally, pH-sensitive color shifts from reddish (pH 2) to purple-bluish (pH 13) were visually seen in shikonin based solutions as well as films. The CS/PVA/SKN film detected shrimp deterioration at three temperatures (25, -20, and 4 °C) through color change. This study introduces a favorable approach for smart packaging in the food industry using multifunctional films.


Asunto(s)
Quitosano , Naftoquinonas , Alcohol Polivinílico , Alcohol Polivinílico/química , Quitosano/química , Colorimetría , Embalaje de Alimentos/métodos , Concentración de Iones de Hidrógeno , Antocianinas/química
12.
Int J Biol Macromol ; 254(Pt 2): 127791, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37923044

RESUMEN

The current study focuses on the preparation and characterization of potato starch-based biocomposite films by reinforcing them with banana fiber. The banana fibers were modified using ultrasonication and cellulase enzyme, individually and in combination. Both native and modified banana fibers underwent physical, morphological, FTIR, and crystallinity analyses. The resulting biocomposite films, created by incorporating native and treated banana fibers, were then evaluated for their mechanical, thermal, barrier, and biodegradable properties. The findings indicated that combining ultrasound with enzyme treatment of banana fibers in the potato starch matrix led to a substantial reduction in water-sorption and water-vapor permeability (0.156 g mm m-2 h-1 kPa-1) of the packaging films. Additionally, the mechanical properties (5.02 MPa-Tensile strength, 4.27 MPa-Sealability) of the films significantly improved with the inclusion of modified banana fibers. FTIR analysis revealed similar spectra for all modified samples, along with enhanced crystallinity. Moreover, the thermal stability of the developed films was enhanced by the incorporation of modified banana fibers. Scanning electron microscopy showed that the modified fibers exhibited smooth surfaces and an even distribution of spaces compared with the native fibers. The biocomposite films demonstrated biodegradation within 42 days. Furthermore, the packaging application was tested with grapes, which showed that the films could maintain storability for up to 8 days. Overall, these results suggest a promising eco-friendly method for producing packaging films with biocompatible, biodegradable, and non-toxic properties.


Asunto(s)
Musa , Solanum tuberosum , Vitis , Celulosa , Agua , Resistencia a la Tracción , Embalaje de Alimentos/métodos , Almidón , Permeabilidad
13.
Molecules ; 28(18)2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37764413

RESUMEN

In recent years, there has been a growing attempt to manipulate various properties of biodegradable materials to use them as alternatives to their synthetic plastic counterparts. Alginate is a polysaccharide extracted from seaweed or soil bacteria that is considered one of the most promising materials for numerous applications. However, alginate potential for various applications is relatively limited due to brittleness, poor mechanical properties, scaling-up difficulties, and high water vapor permeability (WVP). Choosing an appropriate plasticizer can alleviate the situation by providing higher flexibility, workability, processability, and in some cases, higher hydrophobicity. This review paper discusses the main results and developments regarding the effects of various plasticizers on the properties of alginate-based films during the last decades. The plasticizers used for plasticizing alginate were classified into different categories, and their behavior under different concentrations and conditions was studied. Moreover, the drawback effects of plasticizers on the mechanical properties and WVP of the films are discussed. Finally, the role of plasticizers in the improved processing of alginate and the lack of knowledge on some aspects of plasticized alginate films is clarified, and accordingly, some recommendations for more classical studies of the plasticized alginate films in the future are offered.

14.
ACS Appl Mater Interfaces ; 15(36): 42395-42403, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37655485

RESUMEN

We present a reusable and porous skin patch (RPS patch) capable of controlling adhesion force with a thermal-pneumatic method for repetitive use as well as improving moisture permeability for long-term use without skin troubles. Previous skin patches cause skin troubles due to high adhesion force (∼30 kPa) and low moisture permeability (∼382 g/m2/day), hindering them from repeatable and long-term use. We control the skin adhesion force of the RPS patch using thermopneumatic pressure generated by an embedded heater on multiple chamber arrays. The RPS patch controls the adhesion force ranging from 8 to 29 kPa on both dry and wet skin while keeping the stable adhesion force for 48 h. It shows repeatable adhesion up to 100 times, and the adhesion force is restored after the RPS patch is washed with water, thus enabling repetitive skin adhesion. We improve the moisture permeability of the RPS patch to 733 g/m2/day while maintaining the adhesion force by making the RPS patch with porous materials. The RPS patch shows no skin troubles for 7 days of attachment, thereby being available for long-term skin attachment. The RPS patch, having adhesion control capability and high moisture permeability, shows potential for use in daily life in biomedical applications, including wearable sensors, medical adhesives, and rehabilitation robots.


Asunto(s)
Vapor , Humanos , Porosidad , Fenómenos Físicos , Permeabilidad , Adherencias Tisulares
15.
Int J Biol Macromol ; 245: 125562, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37379948

RESUMEN

There has been a shift from use of petroleum-based plastics, causing serious environmental pollution, towards innovative and biodegradable edible packaging. The present study documents the development of composite edible films based on the flaxseed gum (FSG) modified by the incorporation of betel leaf extract (BLE). The films were assessed for physicochemical, mechanical, morphological, thermal, antimicrobial and structural characteristics. Scanning electron microscopy images indicated that the roughness decreased with an increase in BLE concentration. The water vapor permeability of the FSG-BLE films ranged from 4.68 to 1.59 × 10-9 g s- 1 m- 2 Pa- 1, lower than that of the control sample (6.77 × 10-9 g s- 1 m- 2 Pa- 1). The BLE4 (containing 10 % BLE) films had the highest tensile strength of 32.46 MPa compared to the control sample (21.23 MPa). Similarly, EAB and seal strength of the films incorporated with BLE were ameliorated. X-ray diffraction pattern and FTIR illustrated the shift of amorphous to crystalline behavior and a significant interaction among the BLE and FSG functional groups. Furthermore, the thermal stability of the treated films was not affected significantly however, they showed improved antimicrobial activity with the highest diameter of inhibition zone in the BLE4 sample. This study concluded that the FSG-BLE composite films (BLE4 in particular) can be considered as novel packaging material for food conservation coupled with a potential to enhance the shelf life of perishable food products.


Asunto(s)
Antiinfecciosos , Películas Comestibles , Lino , Piper betle , Lino/química , Embalaje de Alimentos/métodos , Antiinfecciosos/farmacología , Antiinfecciosos/química , Permeabilidad , Extractos Vegetales/farmacología , Extractos Vegetales/química
16.
Membranes (Basel) ; 13(5)2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37233527

RESUMEN

This work offers an ecologically friendly and facile approach for the modification of high-tonnage commercial polymers, including polypropylene (PP), high-density polyethylene (HDPE), and poly(ethylene terephthalate) (PET), and preparation of nanocomposite polymeric membranes via incorporation of modifying oligomer hydrophilic additives, such as poly(ethylene glycol) (PEG), poly(propylene glycol) (PPG), polyvinyl alcohol (PVA), and salicylic acid (SA). Structural modification is accomplished via the deformation of polymers in PEG, PPG, and water-ethanol solutions of PVA and SA when mesoporous membranes are loaded with oligomers and target additives. The content of target additives in nanocomposite membranes is controlled by tensile strain, and the level of loading can achieve 35-62 wt.% for PEG and PPG; the content of PVA and SA is controlled by their concentration in the feed solution. This approach allows for the simultaneous incorporation of several additives which are shown to preserve their functional performance in the polymeric membranes and their functionalization. The porosity, morphology, and mechanical characteristics of the prepared membranes were studied. The proposed approach allows an efficient and facile strategy for the surface modification of hydrophobic mesoporous membranes: depending on the nature and content of target additives, their water contact angle can be reduced to 30-65°. Water vapor permeability, gas selectivity, antibacterial, and functional properties of the nanocomposite polymeric membranes were described.

17.
Foods ; 12(6)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36981197

RESUMEN

Biopolymers of different natures (carbohydrates, proteins, etc.) recovered from by-products of industrial processes are increasingly being studied to obtain biomaterials as alternatives to conventional plastics, thus contributing to the implementation of a circular economy. The food industry generates huge amounts of by-products and waste, including unsold food products that reach the end of their shelf life and are no longer usable in the food chain. Milk proteins can be easily separated from dairy waste and adapted into effective bio-based polymeric materials. Firstly, this review describes the relevant properties of milk proteins and the approaches to modifying them for subsequent use. Then, we provide an overview of recent studies on the development of films and coatings based on milk proteins and, where available, their applications in food packaging. Comparisons among published studies were made based on the formulation as well as production conditions and technologies. The role of different additives and modifiers tested for the performances of films and coatings, such as water vapor permeability, tensile strength, and elongation at break, were reviewed. This review also outlines the limitations of milk-protein-based materials, such as moisture sensitivity and brittleness. Overall, milk proteins hold great potential as a sustainable alternative to petroleum-based polymers. However, their use in food packaging materials at an industrial level remains problematic.

18.
Artículo en Inglés | MEDLINE | ID: mdl-36913424

RESUMEN

It is an important initiative to reduce the building energy consumption using energy recovering ventilation (ERV) systems. The application of ERV systems is hindered by the low CO2 barrier performance of commercial total heat exchange membranes (THEMs) that lead to unsatisfactory indoor air refreshing rate, and there is an urgent need for THEMs that have improved CO2 barrier properties and effective energy recovery efficiencies. Here, we report the formation of novel ZIF/PA TFN THEMs based on ZIF-7-X nanoparticles (NPs) with "core-shell" structures and tunable particle sizes, formed from benzimidazole (BIM) ligands and BIM substituted by -NH2, -CH3, -C2H5, and -C3H7 functional groups. The NPs were mixed with pyr omellitic triformyl chloride (TMC) in the organic phase during the interface polymerization process to form ZIF/PA TFN membranes. The total heat exchange performance of ZIF/PA TFN membranes could be effectively modified by the type and quantity of ZIF-7-X NPs added. The CO2 barrier properties and water vapor permeability of ZIF/PA TFN membranes could be improved by the addition of optimal levels of ZIF-7-X NPs, showing low CO2 permeance of 7.76 GPU, high H2O permeance of 663.8 GPU, and excellent enthalpy exchange efficiency of 72.1%. This work provided an effective strategy for tuning not only the nanostructures of ZIF-7 fillers but also the CO2 barrier properties of the formed ZIF/PA TFN membranes.

19.
Adv Mater ; 35(1): e2206793, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36267034

RESUMEN

On-skin electronics that offer revolutionary capabilities in personalized diagnosis, therapeutics, and human-machine interfaces require seamless integration between the skin and electronics. A common question remains whether an ideal interface can be introduced to directly bridge thin-film electronics with the soft skin, allowing the skin to breathe freely and the skin-integrated electronics to function stably. Here, an ever-thinnest hydrogel is reported that is compliant to the glyphic lines and subtle minutiae on the skin without forming air gaps, produced by a facile cold-lamination method. The hydrogels exhibit high water-vapor permeability, allowing nearly unimpeded transepidermal water loss and free breathing of the skin underneath. Hydrogel-interfaced flexible (opto)electronics without causing skin irritation or accelerated device performance deterioration are demonstrated. The long-term applicability is recorded for over one week. With combined features of extreme mechanical compliance, high permeability, and biocompatibility, the ultrathin hydrogel interface promotes the general applicability of skin-integrated electronics.


Asunto(s)
Electrónica , Piel , Humanos , Metilgalactósidos , Hidrogeles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA