Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 634
Filtrar
1.
Arch Microbiol ; 206(10): 394, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39245770

RESUMEN

Escherichia coli can colonise the urogenital tract of individuals without causing symptoms of infection, in a condition referred to as asymptomatic bacteriuria (ABU). ABU isolates can protect the host against symptomatic urinary tract infections (UTIs) by bacterial interference against uropathogenic E. coli (UPEC). The aim of this study was to investigate the genotypic and phenotypic characteristics of five ABU isolates from midstream urine samples of adults. Comparative genomic and phenotypic analysis was conducted including an antibiotic resistance profile, pangenome analysis, and a putative virulence profile. Based on the genome analysis, the isolates consisted of one from phylogroup A, three from phylogroup B2, and one from phylogroup D. Two of the isolates, PUTS 58 and SK-106-1, were noted for their lack of antibiotic resistance and virulence genes compared to the prototypic ABU strain E. coli 83,972. This study provides insights into the genotypic and phenotypic profiles of uncharacterised ABU isolates, and how relevant fitness and virulence traits can impact their potential suitability for therapeutic bacterial interference.


Asunto(s)
Antibacterianos , Bacteriuria , Farmacorresistencia Bacteriana Múltiple , Infecciones por Escherichia coli , Genotipo , Fenotipo , Infecciones Urinarias , Escherichia coli Uropatógena , Humanos , Bacteriuria/microbiología , Escherichia coli Uropatógena/genética , Escherichia coli Uropatógena/efectos de los fármacos , Escherichia coli Uropatógena/aislamiento & purificación , Escherichia coli Uropatógena/clasificación , Infecciones por Escherichia coli/microbiología , Farmacorresistencia Bacteriana Múltiple/genética , Infecciones Urinarias/microbiología , Antibacterianos/farmacología , Virulencia/genética , Filogenia , Adulto , Factores de Virulencia/genética , Genoma Bacteriano , Pruebas de Sensibilidad Microbiana
2.
BMC Microbiol ; 24(1): 344, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39271999

RESUMEN

BACKGROUND: In the present study, we aimed to determine the frequency of the csgA, fimH, mrkD, foc, papaGI, papGII and papGIII genes, to provide and to design fimbrial adhesin gene (FAG) patterns and profiles for the isolated uropathogenic Escherichia coli (UPEC) strains. METHODS: The enrollment of 108 positive urine samples was performed during seven months, between January 2022 and July 2022. The UPEC strains were confirmed through the standard microbiological and biochemical tests. The antimicrobial susceptibility test was performed through the Kirby-Bauer disc diffusion method. Molecular screening of FAGs was done through the polymerase chain reaction technology. The statistical analyses including chi square and Fisher's exact tests were performed to interpret the obtained results in the present study. RESULTS: As the main results, the antimicrobial resistance (AMR) patterns, multi- (MDR) and extensively drug-resistance (XDR) patterns and FAG patterns were designed and provided. fimH (93.3%), csgA (90.4%) and papG (37.5%) (papGII (30.8%)) genes were recognized as the top three FAGs, respectively. Moreover, the frequency of csgA-fimH gene profile was identified as the top FAG pattern (46.2%) among the others. The isolates bearing csgA-fimH gene profile were armed with a versatile of phenotypic AMR patterns. In the current study, 27.8%, 69.4% and 1.9% of the UPEC isolates were detected as extended-spectrum ß-lactamases (ESBLs) producers, MDR and XDR strains, respectively. CONCLUSIONS: In conclusion, detection, providing and designing of patterns and profiles in association with FAGs, AMR feature in UPEC strains give us an effective option to have a successful and influential prevention for both of UTIs initiation and AMR feature.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Proteínas Fimbrias , Fimbrias Bacterianas , Infecciones Urinarias , Escherichia coli Uropatógena , Escherichia coli Uropatógena/genética , Escherichia coli Uropatógena/efectos de los fármacos , Humanos , Proteínas de Escherichia coli/genética , Infecciones por Escherichia coli/microbiología , Infecciones Urinarias/microbiología , Proteínas Fimbrias/genética , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/genética , Fimbrias Bacterianas/metabolismo , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Adhesinas de Escherichia coli/genética , Adhesinas de Escherichia coli/metabolismo , Femenino , Adulto , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Masculino , Farmacorresistencia Bacteriana Múltiple/genética , Persona de Mediana Edad , Adulto Joven , Adolescente , Proteínas Bacterianas
3.
Braz J Microbiol ; 55(3): 2727-2738, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39222218

RESUMEN

Due to the increasing occurrence of drug resistant urinary tract infections (UTI) among children, there is a need to investigate alternative effective treatment protocols such as nanoparticles. Flagella and fimbriae are primary factors contributing the virulence of urinary tract infecting bacteria. The aim of this study was to assess the antibacterial effects of zinc oxide nanoparticles which have been synthesized using both chemical and green methods on multi-drug resistant (MDR) uropathogenic bacteria encoding fli and fim genes and investigating their binding ability to bacterial appendage proteins. A total of 30 urine culture samples were collected from children under 2 years old diagnosed with urinary tract infection. The isolates underwent antibiotic suseptibility assessment and the isolates demonstrating MDR were subjected to molecular amplification of fimG (fimbrial) and fliD and fliT (flagellal) genes. The confirmation of cellular appendages was achieved through silver nitrate staining. The antibacterial efficacy of the synthetized nanoparticles was assessed using the micro and macrodilution methods. The successful binding of nanoparticles to bacterial appendage proteins was confirmed through mobility shift and membrane filter assays. The dimensions of chemically synthesized ZnO nanoparticles and green nanoparticles were measured at 30 nm and 85 nm, respectively, with the exhibition of hexagonal geometries. The nanoparticles synthesized through chemical and green methods exhibited minimum inhibitory concentrations (MIC) of 0.0062-0.025 g/L and 0.3 g/L, respectively. The ability of ZnO nanoparticles to bind bacterial appendage proteins and to combat MDR uropathogenic bacteria are promising for new treatment protocols against UTI in children in future.


Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana Múltiple , Flagelos , Infecciones Urinarias , Óxido de Zinc , Óxido de Zinc/farmacología , Óxido de Zinc/química , Óxido de Zinc/metabolismo , Antibacterianos/farmacología , Humanos , Infecciones Urinarias/microbiología , Infecciones Urinarias/tratamiento farmacológico , Flagelos/efectos de los fármacos , Flagelos/genética , Flagelos/metabolismo , Pruebas de Sensibilidad Microbiana , Fimbrias Bacterianas/genética , Fimbrias Bacterianas/metabolismo , Fimbrias Bacterianas/efectos de los fármacos , Nanopartículas/química , Lactante , Nanopartículas del Metal/química
4.
BMC Complement Med Ther ; 24(1): 301, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143605

RESUMEN

BACKGROUND: In recent years, antibiotic resistance has emerged as a global health concern in bacterial infections such as urinary tract infections (UTIs). Uropathogenic Escherichia coli is the most frequent organism responsible for both simple and complex UTIs. Staphylococcus aureus and Pseudomonas aeruginosa are frequently associated with complicated UTIs. Sri Lanka has significant resources of medicinal plants used to cure UTIs in Ayurvedic and traditional medicine. METHODS: Agar well diffusion and broth microdilution methods were used to determine the antibacterial activity of the methanolic extract of ten medicinal plants against P. aeruginosa ATCC27853, S.aureus ATCC25923, E.coli ATCC25922 and their UTI positive strains extracted from positive culture plates. As a preliminary toxicity assay, the Brine Shrimp Lethality Assay (BSLA) was used to determine its cytotoxicity. RESULTS: The methanolic fruits extract of P. emblica demonstrated the highest antibacterial activity against both E. coli ATCC25922 and E. coli UTI-positive strains. B. diffusa roots extract exhibited the highest activity against S. aureus ATCC25923, while T. chebula fruits extract showed the highest activity against the S. aureus UTI-positive strain. T. involucrata roots extract displayed the highest activity against P. aeruginosa ATCC27853, and Z. officinale rhizomes extract showed the highest activity against the P. aeruginosa UTI-positive strain. Moreover, the plant mixture showed the most substantial antibacterial effect against P. aeruginosa ATCC27853. However, the methanolic seed extract of C. melo did not exhibit any antimicrobial effects against the selected organisms. All plant material, including the plant mixture, showed cytotoxicity according to the BSLA. CONCLUSION: All the methanolic extracts including P. emblica fruits, O. tenuiflorum whole plant, T. chebula fruits, Z. officinale rhizome, T. terrestris roots, T. involucrata roots, A. lanata whole plant. B. diffusa roots and A. falcatus roots showed antimicrobial effects against selected strains except C. melo seed extract. The results of the present study evidently supports the traditional and ayurvedic use of these plants for the treatment of UTIs. This paves the way for another praise for new plant-based therapeutic product development for the treatment of UTIs. However, further toxicity studies are needed for medicinal dose determination.


Asunto(s)
Antibacterianos , Artemia , Pruebas de Sensibilidad Microbiana , Extractos Vegetales , Plantas Medicinales , Pseudomonas aeruginosa , Animales , Artemia/efectos de los fármacos , Extractos Vegetales/farmacología , Antibacterianos/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Infecciones Urinarias/tratamiento farmacológico , Infecciones Urinarias/microbiología , Staphylococcus aureus/efectos de los fármacos , Sri Lanka
5.
Biofilm ; 8: 100214, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39184815

RESUMEN

Biofilm growth facilitates the interaction of uropathogenic Escherichia coli (UPEC) with the host environment. The extracellular polymeric substances (EPS) of UPEC biofilms are composed prominently of curli amyloid fiber and cellulose polysaccharide. When the organism is propagated as a colony biofilm on agar media, these macromolecules can generate pronounced macroscopic structures. Moreover, curli/cellulose associate tightly with Congo red, generating a characteristic pink-to-red staining pattern when the media is supplemented with this dye. Among different clinical isolates of UPEC, changes in the abundance of curli/cellulose can lead to diverse colony biofilm phenotypes on a strain-by-strain basis. Nevertheless, for any given isolate, these phenotypes are classically homogenous throughout the colony biofilm. Here, we report that a subset of clinical UPEC isolates display heterogenous 'peppermint' colony biofilms, with distinct pale and red subpopulations. Through isolation of these subpopulations and whole genome sequencing, we demonstrate various emergent mutations associated with the phenomenon, including within the gene encoding the outer membrane lipoprotein nlpI. Deletion of nlpI within independent strain-backgrounds increased biofilm rugosity, while its overexpression induced the peppermint phenotype. Upregulation of EPS-associated proteins and transcripts was likewise observed in the absence of nlpI. Overall, these results demonstrate that EPS elaboration in UPEC is impacted by nlpI. More broadly, this phenomenon of intra-strain colony biofilm heterogeneity may be leveraged as a tool to identify additional members within the broad collection of genes that regulate or otherwise affect biofilm formation.

6.
Front Cell Infect Microbiol ; 14: 1401462, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39091675

RESUMEN

Introduction: Bacterial urinary tract infections (UTI) are among the most common infectious diseases worldwide. The rise of multidrug-resistant (MDR) uropathogenic Escherichia coli (UPEC) UTI cases is a significant threat to healthcare systems. Several probiotic bacteria have been proposed as an alternative to combat MDR UTI. Lactic acid bacteria in the genus Limosilactobacillus are some of the most studied and used probiotics. However, strain-specific effects play a critical role in probiotic properties. L. reuteri KUB-AC5 (AC5), isolated from the chicken gut, confers antimicrobial and immunobiotic effects against some human pathogens. However, the antibacterial and immune modulatory effects of AC5 on UPEC have never been explored. Methods: Here, we investigated both the direct and indirect effects of AC5 against UPEC isolates (UTI89, CFT073, and clinical MDR UPEC AT31) in vitro. Using a spot-on lawn, agar-well diffusion, and competitive growth assays, we found that viable AC5 cells and cell-free components of this probiotic significantly reduced the UPEC growth of all strains tested. The human bladder epithelial cell line UM-UC-3 was used to assess the adhesion and pathogen-attachment inhibition properties of AC5 on UPEC. Results and discussion: Our data showed that AC5 can attach to UM-UC-3 and decrease UPEC attachment in a dose-dependent manner. Pretreatment of UPEC-infected murine macrophage RAW264.7 cells with viable AC5 (multiplicity of infection, MOI = 1) for 24 hours enhanced macrophage-killing activity and increased proinflammatory (Nos2, Il6, and Tnfa) and anti-inflammatory (Il10) gene expression. These findings indicate the gut-derived AC5 probiotic could be a potential urogenital probiotic against MDR UTI.


Asunto(s)
Limosilactobacillus reuteri , Macrófagos , Probióticos , Escherichia coli Uropatógena , Probióticos/farmacología , Escherichia coli Uropatógena/efectos de los fármacos , Escherichia coli Uropatógena/inmunología , Limosilactobacillus reuteri/fisiología , Animales , Ratones , Macrófagos/inmunología , Macrófagos/microbiología , Humanos , Urotelio/microbiología , Infecciones Urinarias/microbiología , Infecciones Urinarias/prevención & control , Línea Celular , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/prevención & control , Células RAW 264.7 , Células Epiteliales/microbiología , Pollos , Adhesión Bacteriana/efectos de los fármacos
7.
Acta Microbiol Immunol Hung ; 71(3): 197-205, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39037809

RESUMEN

Urinary tract infections are becoming difficult to treat every year due to antibiotic resistance. Uropathogenic Escherichia coli (UPEC) isolates pose a threat with a combined expression of multidrug-resistance and biofilm formation. ST131 clone is a high-risk pandemic clone due to its strong association with antimicrobial resistance, which has been reported frequently in recent years. This study aims to define risk factors, clinical outcomes, and bacterial genetics associated with ST131/O25b UPEC. In this study, antibiotic susceptibility and species-level identification of 61 clinical E. coli strains were determined by automated systems. Detection of extended-spectrum beta-lactamases was assessed by double-disk synergy test. Biofilm formation was quantified by spectrophotometric method. Virulence genes (iutA, sfa cnf-1, iroN, afa, papA, fimA), antibiotic resistance genes (blaCTX-M, blaTEM, blaSHV, blaOXA, qnrA, qnrB, qnrS, ant(2')-Ia, ant(3)-Ia, aac(3)-IIa, mcr-1, mcr-2, mcr-3, mcr-4) were investigated by PCR. The following beta-lactamase genes were identified, blaTEM (n = 53, 86.8%), blaCTX-M (n = 59, 96.7%), blaSHV (n = 47, 77.0%), and blaOXA-1 (n = 27, 44.2%). Our data revealed that 93.4% of (57/61) E. coli isolates were biofilm-producers. O25pabBspe and trpA2 were investigated for the presence of ST131/O25b clone. Among multidrug resistant isolates, co-existence of O25pabBspe and trpA2 was detected in 29 isolates (47.5%). The fimH30 and H30Rx subclones were detected in four isolates that are strong biofilm-producers. These results suggest that clinical E. coli strains may become reservoirs of virulence and antibiotic resistance genes. This study demonstrates a significant difference in biofilm formation between E. coli ST131 and non-ST131 isolates. Moreover, 86.21% (n = 25) of ST131 isolates produced strong to moderate biofilms, while only 43.75% (n = 14) of non-ST131 isolates showed the ability to form strong biofilms. Presence of iutA and fimA genes in the majority of ST131 strains showed an important role in biofilm formation. These findings suggest application of iutA and fimA gene suppressors in treatment of infections caused by biofilm-producing drug-resistant ST131 strains.


Asunto(s)
Antibacterianos , Biopelículas , Infecciones por Escherichia coli , Escherichia coli Uropatógena , Factores de Virulencia , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Humanos , Infecciones por Escherichia coli/microbiología , Antibacterianos/farmacología , Factores de Virulencia/genética , Escherichia coli Uropatógena/efectos de los fármacos , Escherichia coli Uropatógena/genética , Escherichia coli Uropatógena/fisiología , Escherichia coli Uropatógena/aislamiento & purificación , Femenino , Masculino , Adulto , Persona de Mediana Edad , Pruebas de Sensibilidad Microbiana , Anciano , beta-Lactamasas/genética , Adulto Joven , Infecciones Urinarias/microbiología , Adolescente , Niño , Farmacorresistencia Bacteriana/genética , Anciano de 80 o más Años , Farmacorresistencia Bacteriana Múltiple/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/fisiología
8.
Pak J Med Sci ; 40(6): 1122-1128, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38952491

RESUMEN

Objective: Identification of MBL, AmpC and ESBLs in colistin intrinsic and acquired resistant uropathogenic gram negative bacteria. Method: Urine samples were collected from Hayatabad Medical Complex, Peshawar during 17 January to 30 June 2019. Collected urine samples were aseptically transported microbiology lab of Health Research Institution (HRI), National Institute of Health (NIH), Khyber Medical College, Peshawar and streaked on different media. Positive growth was identified by API-10s. Antibiotic sensitivity profile was done by Modified Kirby Bauer disc diffusion method. Detection of metallo ßlactamases (MBL) production by Imipenem EDTA synergy test, Double Disc Synergy Test (DDST) for detection of ESBLs and D-test for the detection of inducible AmpC beta lactamases test was used. Colistin resistance was identified via broth micro dilution according to CLSI manual. Colistin resistant bacteria was divided in two categories; acquired and intrinsic resistant bacteria according to CLSI manual. Results: Out of 2000 urine samples, 281(14%) gram-negative bacteria were isolated. Among positive samples, acquired colistin resistant bacteria were 241 and intrinsic resistant bacteria were 40 isolates. MBL was produce by twenty one (11.7%) E.coli and seventeen (40.5%) Pseudomonas aeruginosa. E. coli, Pseudomonas aeruginosa, Klebsiella Pneumoniae, Serratia Oderifora and Proteus Marblis were ESBLs producing bacteria. AmpC production was prevalent in fourteen (7.8%) E. coli and twelve (28.6%) Pseudomonas aeruginosa. Fifty-five samples showed resistance to colistin out of 241 samples. In colistin resistant bacteria, two E.coli were MBL, ESBLs, while one E.coli was ESBLs, AmpC co-producing bacteria. The most prevalent extended drug resistant bacteria were Pseudomonas aeruginosa (28.6%) and Escherichia coli (6.1%), While 155(86.6%) Escherichia coli, 25 (59.5%) Pseudomonas aeruginosa and 22 (95.7%) Serratia Oderifora was multi drug resistant bacteria. Conclusion: Current study concluded that ESBL, MBL AmpC enzymes and their co-expression was observed with colistin resistance in E.coli and Pseudomonas aeruginosa.

9.
Front Microbiol ; 15: 1422747, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38863749

RESUMEN

Uropathogenic Escherichia coli (UPEC) is the most common cause of urinary tract infections (UTIs) in humans. Testosterone negatively impacts UTIs by affecting the immune response, leading to higher susceptibility of chronic cystitis in individuals with elevated testosterone levels, regardless of gender. Current research is mostly focused on how testosterone affects the host response to UPEC, but not so much is known about how testosterone directly affect UPEC virulence. The aim of the present study was to investigate the impact of testosterone exposure on the virulence of UPEC. We found that testosterone directly increases UPEC growth, endotoxin release and biofilm formation. We also found that testosterone-stimulated CFT073 increased colonization and invasion of bladder epithelial cells. Testosterone-stimulated CFT073 also increased the release of IL-1ß and LDH from bladder epithelial cells. Additionally, by using a Caenorhabditis elegans survival assay we also showed that testosterone decreased the survival of CFT073 infected C. elegans worms. Taken together, our findings show that testosterone directly increases the virulence traits of UPEC.

10.
J Infect Dev Ctries ; 18(5): 761-769, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38865401

RESUMEN

BACKGROUND: Uropathogenic Escherichia coli (UPEC) isolates, have a wide variety of virulence factors to promote colonization and survival in the urinary tract. This study aimed to evaluate adhesin genes, biofilm formation ability, antibiotic resistance profiles of UPEC strains, and the related risk factors in patients with UTIs caused by drug-resistant UPEC. METHODOLOGY: A total of 105 UPEC isolates were evaluated for biofilm formation using 96-well microtiter plates, the presence of adhesin genes by PCR assay and the antimicrobial susceptibility pattern using the disk diffusion method. Demographic and clinical characteristics of patients were investigated to identify predisposing factors for drug-resistant isolates. RESULTS: Out of 105 UPEC isolates, 84.8% were positive for biofilm formation. Biofilm-producing isolates exhibited a significantly higher prevalence of fimH, kpsMTII, csgA, afa/draBC, and pap adhesin genes compared to non-biofilm-producing strains (p < 0.05). The results also revealed that 52.4% of the isolates were ESBL-producing, and 84.8% were multidrug-resistant (MDR). Further analysis of antibiotic susceptibility among ESBL-producing strains showed the highest resistance rates to ampicillin, ciprofloxacin, and trimethoprim-sulfamethoxazole. Conversely, the highest susceptibility, in addition to carbapenems, was observed for fosfomycin, amikacin, cefoxitin, and nitrofurantoin. We identified hypertension as a potential risk factor for infection with ESBL-producing UPEC strains. CONCLUSIONS: Our results revealed a significant rate of drug resistance among UPEC isolates obtained from UTIs in our region. This underscores the importance of monitoring the empirical use of antibiotics and identifying specific risk factors in our geographical area to guide the selection of appropriate empirical treatment for UTIs.


Asunto(s)
Biopelículas , Infecciones por Escherichia coli , Infecciones Urinarias , Escherichia coli Uropatógena , Humanos , Irán/epidemiología , Escherichia coli Uropatógena/genética , Escherichia coli Uropatógena/efectos de los fármacos , Infecciones Urinarias/microbiología , Infecciones Urinarias/epidemiología , Femenino , Factores de Riesgo , Masculino , Biopelículas/crecimiento & desarrollo , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/epidemiología , Adulto , Persona de Mediana Edad , Anciano , Adulto Joven , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Factores de Virulencia/genética , Adhesinas de Escherichia coli/genética , Adolescente , Niño , Adhesinas Bacterianas/genética , Anciano de 80 o más Años , Farmacorresistencia Bacteriana Múltiple/genética , Reacción en Cadena de la Polimerasa , Preescolar
11.
Iran J Public Health ; 53(3): 508-523, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38919304

RESUMEN

Background: Uropathogenic Escherichia coli is a major cause of urinary tract infections (UTIs). This systematic review and meta-analysis was conducted to determine the prevalence of antibiotic-resistant uropathogenic E. coli among Iranian children with confirmed bacterial UTIs from 2012 to 2022. Methods: A systematic review was performed by searching PubMed, Scopus, Google Scholar, Web of Science, MagIran, Iranian Scientific Information Database, IranMedex, and Iranian Research Institute for Information Science and Technology. The antibiotic-specific pooled prevalence estimates were calculated by applying a random-effects model. Freeman-Tukey Double Arcsine transformation was applied. I-squared statistic, and Cochran's Q test were computed and meta-regression was conducted on latitude of sampling location. Results: The literature search retrieved 2159 articles, among which 19 articles were included. The highest antibiotic resistance was related to doxycycline, ticarcillin-clavulanic acid, cefazolin, cefuroxime, and amoxycillin-clavulanic acid, 59%, 57%, 54%, 53%, and 52%, respectively. Meta-regression on the latitude was statistically significant for nitrofurantoin (P=0.05). Conclusion: Resistant uropathogenic Escherichia coli strains were observed in the majority of confirmed bacterial UTIs among Iranian children. The most effective antibiotics for uropathogens were colistin, meropenem, and imipenem.

12.
Virulence ; 15(1): 2367648, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38899601

RESUMEN

The emergence of multidrug-resistant bacteria poses a significant threat to human health, necessitating a comprehensive understanding of their underlying mechanisms. Uropathogenic Escherichia coli (UPEC), the primary causative agent of urinary tract infections, is frequently associated with multidrug resistance and recurrent infections. To elucidate the mechanism of resistance of UPEC to beta-lactam antibiotics, we generated ampicillin-resistant UPEC strains through continuous exposure to low and high levels of ampicillin in the laboratory, referred to as Low AmpR and High AmpR, respectively. Whole-genome sequencing revealed that both Low and High AmpR strains contained mutations in the marR, acrR, and envZ genes. The High AmpR strain exhibited a single additional mutation in the nlpD gene. Using protein modeling and qRT-PCR analyses, we validated the contributions of each mutation in the identified genes to antibiotic resistance in the AmpR strains, including a decrease in membrane permeability, increased expression of multidrug efflux pump, and inhibition of cell lysis. Furthermore, the AmpR strain does not decrease the bacterial burden in the mouse bladder even after continuous antibiotic treatment in vivo, implicating the increasing difficulty in treating host infections caused by the AmpR strain. Interestingly, ampicillin-induced mutations also result in multidrug resistance in UPEC, suggesting a common mechanism by which bacteria acquire cross-resistance to other classes of antibiotics.


Asunto(s)
Ampicilina , Antibacterianos , Farmacorresistencia Bacteriana Múltiple , Infecciones por Escherichia coli , Mutación , Infecciones Urinarias , Escherichia coli Uropatógena , Escherichia coli Uropatógena/genética , Escherichia coli Uropatógena/efectos de los fármacos , Animales , Farmacorresistencia Bacteriana Múltiple/genética , Infecciones Urinarias/microbiología , Infecciones por Escherichia coli/microbiología , Ratones , Antibacterianos/farmacología , Ampicilina/farmacología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Femenino , Humanos , Pruebas de Sensibilidad Microbiana , Secuenciación Completa del Genoma
13.
Microbiol Resour Announc ; 13(7): e0019224, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38842343

RESUMEN

Uropathogenic Escherichia coli (UPEC) remains the main etiological agent of urinary tract infections affecting females and males. The draft genome sequence of three strains of UPEC isolated from senior citizens and pregnant women in the state of Puebla, Mexico, is reported here.

14.
Cureus ; 16(5): e60613, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38894805

RESUMEN

Background and objective Urinary tract infections (UTIs) are a common infectious disease affecting people of various ages and genders and are prevalent in different geographical locations. However, the way Gram-positive and Gram-negative (UTI) germs react to antibiotic treatment varies significantly. The coronavirus disease 2019 (COVID-19) pandemic has increased the frequency of secondary bacterial superinfection, leading to a spike in ongoing recommendations for antibiotic treatment, both therapeutic and preventative. In this study, we aimed to assess uropathogenic bacterial resistance and shed light on how COVID-19 epidemic waves influence the evolution of bacterial resistance. Materials and methods A cross-sectional study was conducted, assessing the different isolates of the uropathogen in all COVID-19 waves by using convenience sampling from August 2020 till the end of 2023. The VITEK-2 compact system employing industry-standard bacteriological tests to identify the bacteria and confirm their antibiotic susceptibility was utilized. Results Of the total 3877 patients, 381 (9.8%) and 3483 (89.8%) had positive and negative microbial growth, respectively. Of the 381 (9.8%) positive cases, 130 (34%) were male and 251 (65%) were female; 138 (43.3%) patients in the age range of 15-40 years developed sporadic UTIs attributed to Gram-negative bacteria. Alternatively, patients over 40 years had the highest prevalence rate (n = 180, 56.6%). The most common strains of Gram-negative and Gram-positive bacteria were Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), with 278 (88.8%) and 13 (20.9%) cases respectively. People with Gram-negative bacteria who were not hospitalized were very resistant to trimethoprim/sulfamethoxazole (n = 219, 69.1%), cefotaxime (n = 193, 60.9%), ampicillin (n = 192, 60.6%), and amoxicillin/clavulanic acid (176, 55.5%). While high sensitivity to meropenem (n = 14, 4.4%) and imipenem (n = 13, 4.1%) was observed, hospitalized individuals had higher levels of resistance and great sensitivity to the same antibiotics. S. aureus and Enterococcus faecalis (E. faecalis) were commonly present. Hospitalized patients were less sensitive to benzylpenicillin, ampicillin, and oxacillin, and there was a big rise in resistance to cefoxitin in the community. Conclusions In this study, Gram-negative germs among females were predominantly observed with extremely high multi-drug resistance (MDR). The most effective antibiotics against Gram-positive germs included linezolid, vancomycin, and nitrofurantin, while those against Gram-negative bacteria were meropenem and amikacin. Clinicians should be regularly updated and informed about antibiotic selection through routine monitoring of uropathogenic bacteria's susceptibility. Moreover, we recommend changes to the local antibiotic policy regarding the selection of UTIs; further multicentric and high-volume studies are required to gain deeper insights into the topic.

15.
Microbiol Resour Announc ; 13(6): e0002724, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38771045

RESUMEN

Urinary tract infections (UTIs) caused by multidrug-resistant and extended-spectrum ß-lactamase-producing uropathogenic Escherichia coli are a worldwide concern. We report the draft genome of E. coli U13824 isolated from a female outpatient with UTI. This genome's availability strengthens the genomic surveillance of antimicrobial resistance and the spreading of these strains.

16.
Vaccines (Basel) ; 12(5)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38793786

RESUMEN

MV140 is an inactivated whole-cell bacterial mucosal vaccine with proven clinical efficacy against recurrent urinary tract infections (UTIs). These infections are primarily caused by uropathogenic E. coli (UPEC) strains, which are unique in their virulence factors and remarkably diverse. MV140 contains a non-UPEC strain, suggesting that it may induce an immune response against different UPEC-induced UTIs in patients. To verify this, we experimentally evaluated the cellular and humoral responses to UTI89, a prototypical UPEC strain, in mice vaccinated with MV140, as well as the degree of protection achieved in a UPEC UTI89 model of acute cystitis. The results show that both cellular (Th1/Th17) and antibody (IgG/IgA) responses to UTI89 were induced in MV140-immunized mice. MV140 vaccination resulted in an early increased clearance of UTI89 viable bacteria in the bladder and urine following transurethral infection. This was accompanied by a highly significant increase in CD4+ T cells in the bladder and an increase in urinary neutrophils. Collectively, our results support that MV140 induces cross-reactive humoral and cellular immune responses and cross-protection against UPEC strains.

17.
BMC Microbiol ; 24(1): 190, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816687

RESUMEN

BACKGROUND: Urinary tract infections (UTIs) are common bacterial infections, primarily caused by uropathogenic Escherichia coli (UPEC), leading to significant health issues and economic burden. Although antibiotics have been effective in treating UPEC infections, the rise of antibiotic-resistant strains hinders their efficacy. Hence, identifying novel bacterial targets for new antimicrobial approaches is crucial. Bacterial factors required for maintaining the full virulence of UPEC are the potential target. MepM, an endopeptidase in E. coli, is involved in the biogenesis of peptidoglycan, a major structure of bacterial envelope. Given that the bacterial envelope confronts the hostile host environment during infections, MepM's function could be crucial for UPEC's virulence. This study aims to explore the role of MepM in UPEC pathogenesis. RESULTS: MepM deficiency significantly impacted UPEC's survival in urine and within macrophages. Moreover, the deficiency hindered the bacillary-to-filamentous shape switch which is known for aiding UPEC in evading phagocytosis during infections. Additionally, UPEC motility was downregulated due to MepM deficiency. As a result, the mepM mutant displayed notably reduced fitness in causing UTIs in the mouse model compared to wild-type UPEC. CONCLUSIONS: This study provides the first evidence of the vital role of peptidoglycan endopeptidase MepM in UPEC's full virulence for causing UTIs. MepM's contribution to UPEC pathogenesis may stem from its critical role in maintaining the ability to resist urine- and immune cell-mediated killing, facilitating the morphological switch, and sustaining motility. Thus, MepM is a promising candidate target for novel antimicrobial strategies.


Asunto(s)
Infecciones por Escherichia coli , Infecciones Urinarias , Escherichia coli Uropatógena , Infecciones Urinarias/microbiología , Escherichia coli Uropatógena/genética , Escherichia coli Uropatógena/patogenicidad , Escherichia coli Uropatógena/enzimología , Escherichia coli Uropatógena/efectos de los fármacos , Animales , Ratones , Infecciones por Escherichia coli/microbiología , Virulencia , Endopeptidasas/genética , Endopeptidasas/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Femenino , Peptidoglicano/metabolismo , Macrófagos/microbiología , Macrófagos/inmunología , Humanos , Modelos Animales de Enfermedad
18.
Infect Genet Evol ; 121: 105600, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38692501

RESUMEN

Urinary tract infections (UTI) caused by uropathogenic Escherichia coli (UPEC) pose a global health concern. Resistance mechanisms, including genetic mutations in antimicrobial target genes, efflux pumps, and drug deactivating enzymes, hinder clinical treatment. These resistance factors often spread through mobile genetic elements. Molecular techniques like whole genome sequencing (WGS), multilocus sequence typing (MLST), and phylotyping help decode bacterial genomes and categorise resistance genes. In this study, we analysed 57 UPEC isolates from different UTI patients following EUCAST guidelines. A selection of 17 representative strains underwent WGS, phylotyping, MLST, and comparative analysis to connect laboratory susceptibility data with predictive genomics based on key resistance genes and chromosomal mutations in antimicrobial targets. Trimethoprim resistance consistently correlated with dfr genes, with six different alleles detected among the isolates. These dfr genes often coexisted with class 1 integrons, with the most common gene cassette combining dfr and aadA. Furthermore, 52.9% of isolates harboured the blaTem-1 gene, rendering resistance to ampicillin and amoxicillin. Ciprofloxacin-resistant strains exhibited mutations in GyrA, GyrB and ParC, plasmid-mediated quinolone resistance genes (qnrb10), and aac(6')-Ib-cr5. Nitrofurantoin resistance in one isolate stemmed from a four amino acid deletion in NfsB. These findings illustrate the varied strategies employed by UPEC to resist antibiotics and the correlation between clinical susceptibility testing and molecular determinants. As molecular testing gains prominence in clinical applications, understanding key resistance determinants becomes crucial for accurate susceptibility testing and guiding effective antimicrobial therapy.


Asunto(s)
Antibacterianos , Infecciones por Escherichia coli , Pruebas de Sensibilidad Microbiana , Infecciones Urinarias , Escherichia coli Uropatógena , Secuenciación Completa del Genoma , Escherichia coli Uropatógena/genética , Escherichia coli Uropatógena/efectos de los fármacos , Humanos , Secuenciación Completa del Genoma/métodos , Infecciones por Escherichia coli/microbiología , Antibacterianos/farmacología , Infecciones Urinarias/microbiología , Irlanda , Genoma Bacteriano , Farmacorresistencia Bacteriana/genética , Filogenia , Fenotipo , Tipificación de Secuencias Multilocus , Femenino , Masculino
19.
Microbiologyopen ; 13(3): e1411, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38706434

RESUMEN

Traditional bacteriocin screening methods often face limitations due to diffusion-related challenges in agar matrices, which can prevent the peptides from reaching their target organism. Turbidimetric techniques offer a solution to these issues, eliminating diffusion-related problems and providing an initial quantification of bacteriocin efficacy in producer organisms. This study involved screening the cell-free supernatant (CFS) from eight uncharacterized asymptomatic bacteriuria (ABU) isolates and Escherichia coli 83972 for antimicrobial activity against clinical uropathogenic E. coli (UPEC) strains using turbidimetric growth methods. ABU isolates exhibiting activity against five or more UPEC strains were further characterized (PUTS 37, PUTS 58, PUTS 59, S-07-4, and SK-106-1). The inhibition of the CFS by proteinase K suggested that the antimicrobial activity was proteinaceous in nature, potentially bacteriocins. The activity of E. coli PUTS 58 and SK-106-1 was enhanced in an artificial urine medium, with both inhibiting all eight UPECs. A putative microcin H47 operon was identified in E. coli SK-106-1, along with a previously identified microcin V and colicin E7 in E. coli PUTS 37 and PUTS 58, respectively. These findings indicate that ABU bacteriocin-producers could serve as viable prophylactics and therapeutics in the face of increasing antibiotic resistance among uropathogens.


Asunto(s)
Bacteriuria , Infecciones por Escherichia coli , Escherichia coli Uropatógena , Escherichia coli Uropatógena/efectos de los fármacos , Escherichia coli Uropatógena/genética , Bacteriuria/microbiología , Humanos , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/tratamiento farmacológico , Bacteriocinas/farmacología , Bacteriocinas/genética , Nefelometría y Turbidimetría , Bioensayo/métodos , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Infecciones Urinarias/microbiología
20.
PeerJ ; 12: e17336, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38784397

RESUMEN

Background: Urinary tract infections (UTIs) are very common worldwide. According to their symptomatology, these infections are classified as pyelonephritis, cystitis, or asymptomatic bacteriuria (AB). Approximately 75-95% of UTIs are caused by uropathogenic Escherichia coli (UPEC), which is an extraintestinal bacterium that possesses virulence factors for bacterial adherence and invasion in the urinary tract. In addition, UPEC possesses type 6 secretion systems (T6SS) as virulence mechanisms that can participate in bacterial competition and in bacterial pathogenicity. UPEC UMN026 carries three genes, namely, ECUMN_0231, ECUMN_0232, and ECUMN_0233, which encode three uncharacterized proteins related to the T6SS that are conserved in strains from phylogroups B2 and D and have been proposed as biomarkers of UTIs. Aim: To analyze the frequency of the ECUMN_0231, ECUMN_0232, ECUMN_0233, and vgrG genes in UTI isolates, as well as their expression in Luria Bertani (LB) medium and urine; to determine whether these genes are related to UTI symptoms or bacterial competence and to identify functional domains on the putative proteins. Methods: The frequency of the ECUMN and vgrG genes in 99 clinical isolates from UPEC was determined by endpoint PCR. The relationship between gene presence and UTI symptomatology was determined using the chi2 test, with p < 0.05 considered to indicate statistical significance. The expression of the three ECUMN genes and vgrG was analyzed by RT-PCR. The antibacterial activity of strain UMN026 was determined by bacterial competence assays. The identification of functional domains and the docking were performed using bioinformatic tools. Results: The ECUMN genes are conserved in 33.3% of clinical isolates from patients with symptomatic and asymptomatic UTIs and have no relationship with UTI symptomatology. Of the ECUMN+ isolates, only five (15.15%, 5/33) had the three ECUMN and vgrG genes. These genes were expressed in LB broth and urine in UPEC UMN026 but not in all the clinical isolates. Strain UMN026 had antibacterial activity against UPEC clinical isolate 4014 (ECUMN-) and E. faecalis but not against isolate 4012 (ECUMN+). Bioinformatics analysis suggested that the ECUMN genes encode a chaperone/effector/immunity system. Conclusions: The ECUMN genes are conserved in clinical isolates from symptomatic and asymptomatic patients and are not related to UTI symptoms. However, these genes encode a putative chaperone/effector/immunity system that seems to be involved in the antibacterial activity of strain UMN026.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Chaperonas Moleculares , Infecciones Urinarias , Escherichia coli Uropatógena , Escherichia coli Uropatógena/inmunología , Escherichia coli Uropatógena/genética , Escherichia coli Uropatógena/patogenicidad , Humanos , Infecciones Urinarias/microbiología , Infecciones Urinarias/inmunología , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Infecciones por Escherichia coli/inmunología , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/inmunología , Proteínas de Escherichia coli/metabolismo , Femenino , Factores de Virulencia/genética , Factores de Virulencia/inmunología , Masculino , Persona de Mediana Edad , Adulto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA