Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 14(17)2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39269090

RESUMEN

Over the past few decades, remarkable breakthroughs and progress have been achieved in ultrafast laser processing technology. Notably, the remarkable high-aspect-ratio processing capabilities of ultrafast lasers have garnered significant attention to meet the stringent performance and structural requirements of materials in specific applications. Consequently, high-aspect-ratio microstructure processing relying on nonlinear effects constitutes an indispensable aspect of this field. In the paper, we review the new features and physical mechanisms underlying ultrafast laser processing technology. It delves into the principles and research achievements of ultrafast laser-based high-aspect-ratio microstructure processing, with a particular emphasis on two pivotal technologies: filamentation processing and Bessel-like beam processing. Furthermore, the current challenges and future prospects for achieving both high precision and high aspect ratios simultaneously are discussed, aiming to provide insights and directions for the further advancement of high-aspect-ratio processing.

2.
Materials (Basel) ; 17(15)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39124321

RESUMEN

Ultrafast laser technology has moved from ultrafast to ultra-strong due to the development of chirped pulse amplification technology. Ultrafast laser technology, such as femtosecond lasers and picosecond lasers, has quickly become a flexible tool for processing brittle and hard materials and complex micro-components, which are widely used in and developed for medical, aerospace, semiconductor applications and so on. However, the mechanisms of the interaction between an ultrafast laser and brittle and hard materials are still unclear. Meanwhile, the ultrafast laser processing of these materials is still a challenge. Additionally, highly efficient and high-precision manufacturing using ultrafast lasers needs to be developed. This review is focused on the common challenges and current status of the ultrafast laser processing of brittle and hard materials, such as nickel-based superalloys, thermal barrier ceramics, diamond, silicon dioxide, and silicon carbide composites. Firstly, different materials are distinguished according to their bandgap width, thermal conductivity and other characteristics in order to reveal the absorption mechanism of the laser energy during the ultrafast laser processing of brittle and hard materials. Secondly, the mechanism of laser energy transfer and transformation is investigated by analyzing the interaction between the photons and the electrons and ions in laser-induced plasma, as well as the interaction with the continuum of the materials. Thirdly, the relationship between key parameters and ultrafast laser processing quality is discussed. Finally, the methods for achieving highly efficient and high-precision manufacturing of complex three-dimensional micro-components are explored in detail.

3.
Micromachines (Basel) ; 15(5)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38793205

RESUMEN

In this contribution, we present novel results on top-down drilling in silicon, the most important semiconductor material, focusing specifically on the influence of the laser parameters. We compare the holes obtained with repetitive single pulses, as well as in different MHz- and GHz-burst regimes. The deepest holes were obtained in GHz-burst mode, where we achieved holes of almost 1 mm depth and 35 µm diameter, which corresponds to an aspect ratio of 27, which is higher than the ones reported so far in the literature, to the best of our knowledge. In addition, we study the influence of the energy repartition within the burst in GHz-burst mode.

4.
Materials (Basel) ; 17(5)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38473580

RESUMEN

Materials processing with ultrashort laser pulses is one of the most important approaches when it comes to machining with very high accuracy. High pulse repetition rates and high average laser power can be used to attain high productivity. By tightly focusing the laser beam, the irradiances on the workpiece can exceed 1013 W/cm2, and thus cause usually unwanted X-ray emission. Pulsed laser processing of micro holes exhibits two typical features: a gradual increase in the irradiated surface within the hole and, with this, a decrease in the local irradiance. This and the shielding by the surrounding material diminishes the amount of ionizing radiation emitted from the process; therefore, both effects lead to a reduction in the potential X-ray exposure of an operator or any nearby person. The present study was performed to quantify this self-shielding of the X-ray emission from laser-drilled micro holes. Percussion drilling in standard air atmosphere was investigated using a laser with a wavelength of 800 nm a pulse duration of 1 ps, a repetition rate of 1 kHz, and with irradiances of up to 1.1·1014 W/cm. The X-ray emission was measured by means of a spectrometer. In addition to the experimental results, we present a model to predict the expected X-ray emission at different angles to the surface. These calculations are based on raytracing simulations to obtain the local irradiance, from which the local X-ray emission inside the holes can be calculated. It was found that the X-ray exposure measured in the surroundings strongly depends on the geometry of the hole and the measuring direction, as predicted by the theoretical model.

5.
Nanomaterials (Basel) ; 14(4)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38392694

RESUMEN

Ultrafast laser processing possesses unique outlooks for the synthesis of novel nanoarchitectures and their further applications in the field of life science. It allows not only the formation of multi-element nanostructures with tuneable performance but also provides various non-invasive laser-stimulated modalities. In this work, we employed ultrafast laser processing for the manufacturing of silicon-gold nanocomposites (Si/Au NCs) with the Au mass fraction variable from 15% (0.5 min ablation time) to 79% (10 min) which increased their plasmonic efficiency by six times and narrowed the bandgap from 1.55 eV to 1.23 eV. These nanostructures demonstrated a considerable fs laser-stimulated hyperthermia with a Au-dependent heating efficiency (~10-20 °C). The prepared surfactant-free colloidal solutions showed good chemical stability with a decrease (i) of zeta (ξ) potential (from -46 mV to -30 mV) and (ii) of the hydrodynamic size of the nanoparticles (from 104 nm to 52 nm) due to the increase in the laser ablation time from 0.5 min to 10 min. The electrical conductivity of NCs revealed a minimum value (~1.53 µS/cm) at 2 min ablation time while their increasing concentration was saturated (~1012 NPs/mL) at 7 min ablation duration. The formed NCs demonstrated a polycrystalline Au nature regardless of the laser ablation time accompanied with the coexistence of oxidized Au and oxidized Si as well as gold silicide phases at a shorter laser ablation time (<1 min) and the formation of a pristine Au at a longer irradiation. Our findings demonstrate the merged employment of ultrafast laser processing for the design of multi-element NCs with tuneable properties reveal efficient composition-sensitive photo-thermal therapy modality.

6.
Micromachines (Basel) ; 14(11)2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-38004928

RESUMEN

Femtosecond laser material processing (FLMP) was used to make an X-ray mask in a 500 µm thick tungsten sheet without the use of any chemical etch methods. The laser produced an 800 nm wavelength at a 1 kHz repetition rate and a pulse width of 100 fs. The laser beam arrival at the tungsten sheet was synchronized to a computer numerically controlled (CNC) stage that allowed for motion in the XYZθ directions. The X-ray mask design was made using CAD/CAM software (Alphacam 2019 R1) and it consisted of linear, circular, and 45° angle features that covered an area of 10 mm × 10 mm. A total of 70 laser beam passes at a moderate laser energy of 605.94 J/cm2 were used to make through-cut features into the tungsten sheet. The morphology of the top view (laser incident, LS) images showed cleaner and smoother cut edges relative to the bottom view (laser exit, LE) images. It was found that the size dimensions of the through-cut features on the LE surfaces were better aligned with the CAD dimensions than those of the LS surfaces. The focused laser beam produced inclined cut surfaces as the beam made the through cut from the LS to the LE of the tungsten sheet. The circular features at the LS surface deviated toward being oval-like on the LE surface, which could be compensated for in future CAD designs. The dependence of the CNC processing speed on the thickness of the etch depth was determined to have a third-order exponential decay relationship, thereby producing a theoretical model that will be useful for future investigators to predict the required experimental parameters needed to achieve a known etch depth in tungsten. This is the first study that has demonstrated the capability of using a femtosecond laser to machine through-cut an X-ray mask in a 500 µm thick tungsten sheet with no involvement of a wet etch or any other such supporting process.

7.
Micromachines (Basel) ; 14(9)2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37763917

RESUMEN

In this contribution, we present a comparative study on top-down drilling in sodalime glass, with a femtosecond laser operating in single-pulse, MHz-burst and GHz-burst modes, respectively. We investigate the hole depth, drilling rate, and hole morphology for these three regimes while keeping the same experimental conditions. We demonstrate that, for both burst regimes, the burst length has to be adapted for optimizing the hole depth. In the GHz-burst regime, the lower the ablation rate the longer the holes. The three drilling regimes lead to different hole morphologies, where the GHz-burst mode results in the best hole quality featuring glossy inner walls and an almost cylindrical morphology. Furthermore, we obtain crack-free holes, the deepest measuring 3.7 mm in length and 25 µm in entrance diameter corresponding to an aspect ratio of 150, which is the highest aspect ratio reported thus far with femtosecond GHz-burst drilling to the best of our knowledge.

8.
Micromachines (Basel) ; 14(6)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37374744

RESUMEN

The femtosecond GHz-burst mode laser processing has attracted much attention in the last few years. Very recently, the first percussion drilling results obtained in glasses using this new regime were reported. In this study, we present our latest results on top-down drilling in glasses, focusing specifically on the influence of burst duration and shape on the hole drilling rate and the quality of the drilled holes, wherein holes of very high quality with a smooth and glossy inner surface can be obtained. We show that a decreasing energy repartition of the pulses within the burst can increase the drilling rate, but the holes saturate at lower depths and present lower quality than holes drilled with an increasing or flat energy distribution. Moreover, we give an insight into the phenomena that may occur during drilling as a function of the burst shape.

9.
Nanomaterials (Basel) ; 12(20)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36296847

RESUMEN

Laser fabrication of metallic superhydrophobic surfaces (SHSs) for anti-frosting has recently attracted considerable attention. Effective anti-frosting SHSs require the efficient removal of condensed microdroplets through self-propelled droplet jumping, which is strongly influenced by the surface morphology. However, detailed analyses of the condensate self-removal capability of laser-structured surfaces are limited, and guidelines for laser processing parameter control for fabricating rationally structured SHSs for anti-frosting have not yet been established. Herein, a series of nanostructured copper-zinc alloy SHSs are facilely constructed through ultrafast laser processing. The surface morphology can be properly tuned by adjusting the laser processing parameters. The relationship between the surface morphologies and condensate self-removal capability is investigated, and a guideline for laser processing parameterization for fabricating optimal anti-frosting SHSs is established. After 120 min of the frosting test, the optimized surface exhibits less than 70% frost coverage because the remarkably enhanced condensate self-removal capability reduces the water accumulation amount and frost propagation speed (<1 µm/s). Additionally, the material adaptability of the proposed technique is validated by extending this methodology to other metals and metal alloys. This study provides valuable and instructive insights into the design and optimization of metallic anti-frosting SHSs by ultrafast laser processing.

10.
Materials (Basel) ; 15(9)2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35591318

RESUMEN

Femtosecond direct laser writing is a well-established and robust technique for the fabrication of photonic structures. Herein, we report on the fabrication of buried waveguides in AgPO3 silver metaphosphate glasses, as well as, on the erase and re-writing of those structures, by means of a single femtosecond laser source. Based on the fabrication procedure, the developed waveguides can be erased and readily re-inscribed upon further femtosecond irradiation under controlled conditions. Namely, for the initial waveguide writing the employed laser irradiation power was 2 J/cm2 with a scanning speed of 5 mm/s and a repetition rate of 200 kHz. Upon enhancing the power to 16 J/cm2 while keeping constant the scanning speed and reducing the repetition rate to 25 kHz, the so formed patterns were readily erased. Then, upon using a laser power of 2 J/cm2 with a scanning speed of 1 mm/s and a repetition rate of 200 kHz the waveguide patterns were re-written inside the glass. Scanning electron microscopy (SEM) images at the cross-section of the processed glasses, combined with spatial Raman analysis revealed that the developed write/erase/re-write cycle, does not cause any structural modification to the phosphate network, rendering the fabrication process feasible for reversible optoelectronic applications. Namely, it is proposed that this non-ablative phenomenon lies on the local relaxation of the glass network caused by the heat deposited upon pulsed laser irradiation. The resulted waveguide patterns Our findings pave the way towards new photonic applications involving infinite cycles of write/erase/re-write processes without the need of intermediate steps of typical thermal annealing treatments.

11.
Materials (Basel) ; 15(6)2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35329706

RESUMEN

Soft X-ray emissions during the processing of industrial materials with ultrafast lasers are of major interest, especially against the background of legal regulations. Potentially hazardous soft X-rays, with photon energies of >5 keV, originate from the fraction of hot electrons in plasma, the temperature of which depends on laser irradiance. The interaction of a laser with the plasma intensifies with growing plasma expansion during the laser pulse, and the fraction of hot electrons is therefore enhanced with increasing pulse duration. Hence, pulse duration is one of the dominant laser parameters that determines the soft X-ray emission. An existing analytical model, in which the fraction of hot electrons was treated as a constant, was therefore extended to include the influence of the duration of laser pulses on the fraction of hot electrons in the generated plasma. This extended model was validated with measurements of H (0.07) dose rates as a function of the pulse duration for a constant irradiance of about 3.5 × 1014 W/cm2, a laser wavelength of 800 nm, and a pulse repetition rate of 1 kHz, as well as for varying irradiance at the laser wavelength of 1030 nm and pulse repetition rates of 50 kHz and 200 kHz. The experimental data clearly verified the predictions of the model and confirmed that significantly decreased dose rates are generated with a decreasing pulse duration when the irradiance is kept constant.

12.
ACS Appl Mater Interfaces ; 14(2): 3446-3454, 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-34981913

RESUMEN

Plasmonic metasurfaces based on the extraordinary optical transmission (EOT) effect can be designed to efficiently transmit specific spectral bands from the visible to the far-infrared regimes, offering numerous applications in important technological fields such as compact multispectral imaging, biological and chemical sensing, or color displays. However, due to their subwavelength nature, EOT metasurfaces are nowadays fabricated with nano- and micro-lithographic techniques, requiring many processing steps and carrying out in expensive cleanroom environments. In this work, we propose and experimentally demonstrate a novel, single-step process for the rapid fabrication of high-performance mid- and long-wave infrared EOT metasurfaces employing ultrafast direct laser writing. Microhole arrays composing extraordinary transmission metasurfaces were fabricated over an area of 4 mm2 in timescales of units of minutes, employing single pulse ablation of 40 nm thick Au films on dielectric substrates mounted on a high-precision motorized stage. We show how by carefully characterizing the influence of only three key experimental parameters on the processed micro-morphologies (namely, laser pulse energy, scan velocity, and beam shaping slit), we can have on-demand control of the optical characteristics of the extraordinary transmission effect in terms of transmission wavelength, quality factor, and polarization sensitivity of the resonances. To illustrate this concept, a set of EOT metasurfaces having different performances and operating in different spectral regimes has been successfully designed, fabricated, and tested. Comparison between transmittance measurements and numerical simulations has revealed that all the fabricated devices behave as expected, thus demonstrating the high performance, flexibility, and reliability of the proposed fabrication method. We believe that our findings provide the pillars for mass production of EOT metasurfaces with on-demand optical properties and create new research trends toward single-step laser fabrication of metasurfaces with alternative geometries and/or functionalities.

13.
Materials (Basel) ; 14(22)2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34832151

RESUMEN

Controlling the formation of high aspect ratio void channels inside glass is important for applications like the high-speed dicing of glass. Here, we investigate void formation using ultrafast Bessel beams in the single shot illumination regime. We characterize the morphology of the damages as a function of pulse energy, pulse duration, and position of the beam inside fused silica, Corning Eagle XG, and Corning Gorilla glass. While a large set of parameters allow for void formation inside fused silica, the operating window is much more restricted for Eagle XG and Gorilla glass. The transient formation of a molten layer around voids enables us interpreting the evolution of the morphology with pulse energy and duration.

14.
Molecules ; 26(21)2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34770736

RESUMEN

Ultrafast lasers micromachining results depend on both the processing parameters and the material properties. The obtained thermal effects are negligible if a good combination of processing parameters is chosen. However, optimizing the processing parameters leading to the required surface quality on a given material can be quite complex and time consuming. We developed a semi-empirical model to estimate the heat accumulation on a surface as a function of the laser fluence, scanning speed and repetition rate. The simulation results were correlated with experimental ones on different materials, and compared with the transient temperature distributions calculated using an analytical solution to the heat transfer equation. The predictions of the proposed model allow evaluating the heat distribution on the surface, as well as optimizing the ultrafast laser micromachining strategy, yielding negligible thermal damage.

15.
Nanomaterials (Basel) ; 11(5)2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34065199

RESUMEN

Microstructures and nanostructures can be used to reduce the adhesion of the cells on the auxiliary material. Therefore, the aim of our work was to fabricate laser-induced hierarchical microstructures and nanostructures by femtosecond laser-treatment (wavelength 1040 nm, pulse length 350 fs, repetition rates in the kHz range) to reduce the cell adhesion. Additionally, surface chemistry modification by optimized electrochemical anodization was used to further reduce the cell adhesion. For testing, flat plates and bone screws made of Ti-6Al-4V were used. Bone-forming cells (human osteoblasts from the cell line SAOS-2) were grown on the bone implants and additional test samples for two to three weeks. After the growth period, the cells were characterized by scanning electron microscopy (SEM). While earlier experiments with fibroblasts had shown that femtosecond laser-processing followed by electrochemical anodization had a significant impact on cell adhesion reduction, for osteoblasts the same conditions resulted in an activation of the cells with increased production of extracellular matrix material. Significant reduction of cell adhesion for osteoblasts was only obtained at pre-anodized surfaces. It could be demonstrated that this functionalization by means of femtosecond laser-processing can result in bone screws that hinder the adhesion of osteoblasts.

16.
Nanomaterials (Basel) ; 10(12)2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33339399

RESUMEN

Ultrafast laser processing with the formation of periodic surface nanostructures on the 15×(Ti/Zr)/Si multilayers is studied in order to the improve cell response. A novel nanocomposite structure in the form of 15x(Ti/Zr)/Si multilayer thin films, with satisfying mechanical properties and moderate biocompatibility, was deposited by ion sputtering on an Si substrate. The multilayer 15×(Ti/Zr)/Si thin films were modified by femtosecond laser pulses in air to induce the following modifications: (i) mixing of components inside of the multilayer structures, (ii) the formation of an ultrathin oxide layer at the surfaces, and (iii) surface nano-texturing with the creation of laser-induced periodic surface structure (LIPSS). The focus of this study was an examination of the novel Ti/Zr multilayer thin films in order to create a surface texture with suitable composition and structure for cell integration. Using the SEM and confocal microscopies of the laser-modified Ti/Zr surfaces with seeded cell culture (NIH 3T3 fibroblasts), it was found that cell adhesion and growth depend on the surface composition and morphological patterns. These results indicated a good proliferation of cells after two and four days with some tendency of the cell orientation along the LIPSSs.

17.
ACS Appl Mater Interfaces ; 12(6): 7805-7814, 2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-31972085

RESUMEN

Preventing condensation frosting is crucial for air conditioning units, refrigeration systems, and other cryogenic equipment. Coalescence-induced self-propelled jumping of condensed microdroplets on superhydrophobic surfaces serves as a favorable strategy against condensation frosting. In previous reports, efforts were dedicated to enhance the efficiency of self-propelled jumping by constructing appropriate surface structures on superhydrophobic surfaces. However, the incorporation of surface structures results in larger area available for condensation to occur, leading to an increase in total amount of condensed water on the surface and partially counteracts the effect of promoted jumping on removing condensed water from the surface. In this paper, we focus on the competing effects between condensing and self-propelled jumping on promoting and preventing water accumulation, respectively. A series of micro- and nanostructured superhydrophobic surfaces are designed and prepared. The condensation process and self-propelled jumping behavior of microdroplets on the surfaces are investigated. Thousands of jumping events are statistically analyzed to acquire a comprehensive understanding of antifrosting potential of superhydrophobic surfaces with self-propelled jumping of condensed microdroplets. Further frosting experiments shows that the surface with the lowest amount of accumulated water exhibits the best antifrosting performance, which validates our design strategy. This work offers new insights into the rational design and fabrication of antifrosting materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA