Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Biotechnol J ; 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39164883

RESUMEN

The salinization of soil constitutes a substantial hindrance to the advancement of sustainable agriculture. Our research seeks to elucidate the role of a Rab GTPase-activating protein (RabGAP) family member, SlRabGAP22, in salt tolerance and its translational regulation under salt stress in tomatoes, employing gene-editing techniques and ribosome profiling methodologies. Findings demonstrate that SlRabGAP22 acts as a positive regulator of tomato salt tolerance, with four predicted upstream open reading frames (uORFs) classified into three categories. Functional uORFs were found to be negative regulation. Editing these uORFs along with altering their classifications and characteristics mitigated the inhibitory effects on primary ORFs and fine-tuned gene expression. Enhanced tomato salt tolerance was attributed to improved scavenging of reactive oxygen species, reduced toxicity Na+, and diminished osmotic stress effects. Furthermore, we conducted genome-wide analysis of ORFs to lay the foundation for further research on uORFs in tomatoes. In summary, our findings offer novel perspectives and important data for the enhancement of genetic traits via uORF-based strategies and translational regulation against the backdrop of salt stress.

2.
bioRxiv ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39091764

RESUMEN

Advances in sequencing technology have unveiled examples of nucleus-encoded polycistronic genes, once considered rare. Exclusively polycistronic transcripts are prevalent in green algae, although the mechanism by which multiple polypeptides are translated from a single transcript is unknown. Here, we used bioinformatic and in vivo mutational analyses to evaluate competing mechanistic models for polycistronic expression in green algae. High-confidence manually curated datasets of bicistronic loci from two divergent green algae, Chlamydomonas reinhardtii and Auxenochlorella protothecoides, revealed 1) a preference for weak Kozak-like sequences for ORF 1 and 2) an underrepresentation of potential initiation codons before ORF 2, which are suitable conditions for leaky scanning to allow ORF 2 translation. We used mutational analysis in Auxenochlorella protothecoides to test the mechanism. In vivo manipulation of the ORF 1 Kozak-like sequence and start codon altered reporter expression at ORF 2, with a weaker Kozak-like sequence enhancing expression and a stronger one diminishing it. A synthetic bicistronic dual reporter demonstrated inversely adjustable activity of green fluorescent protein expressed from ORF 1 and luciferase from ORF 2, depending on the strength of the ORF 1 Kozak-like sequence. Our findings demonstrate that translation of multiple ORFs in green algal bicistronic transcripts is consistent with episodic leaky ribosome scanning of ORF 1 to allow translation at ORF 2. This work has implications for the potential functionality of upstream open reading frames found across eukaryotic genomes and for transgene expression in synthetic biology applications.

3.
Semin Cell Dev Biol ; 154(Pt B): 138-154, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-37357122

RESUMEN

Cellular stress is an intrinsic part of cell physiology that underlines cell survival or death. The ability of mammalian cells to regulate global protein synthesis (aka translational control) represents a critical, yet underappreciated, layer of regulation during the stress response. Various cellular stress response pathways monitor conditions of cell growth and subsequently reshape the cellular translatome to optimize translational outputs. On the molecular level, such translational reprogramming involves an intricate network of interactions between translation machinery, RNA-binding proteins, mRNAs, and non-protein coding RNAs. In this review, we will discuss molecular mechanisms, signaling pathways, and targets of translational control that contribute to cellular adaptation to stress and to cell survival or death.


Asunto(s)
Biosíntesis de Proteínas , Transducción de Señal , Animales , Biosíntesis de Proteínas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Muerte Celular , Mamíferos/genética
4.
Genes (Basel) ; 14(8)2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37628688

RESUMEN

Advances in next-generation sequencing methodologies have facilitated the assembly of an ever-increasing number of genomes. Gene annotations are typically conducted via specialized software, but the most accurate results require additional manual curation that incorporates insights derived from functional and bioinformatic analyses (e.g., transcriptomics, proteomics, and phylogenetics). In this study, we improved the annotation of the Leishmania donovani (strain HU3) genome using publicly available data from the deep sequencing of ribosome-protected mRNA fragments (Ribo-Seq). As a result of this analysis, we uncovered 70 previously non-annotated protein-coding genes and improved the annotation of around 600 genes. Additionally, we present evidence for small upstream open reading frames (uORFs) in a significant number of transcripts, indicating their potential role in the translational regulation of gene expression. The bioinformatics pipelines developed for these analyses can be used to improve the genome annotations of other organisms for which Ribo-Seq data are available. The improvements provided by these studies will bring us closer to the ultimate goal of a complete and accurately annotated L. donovani genome and will enhance future transcriptomics, proteomics, and genetics studies.


Asunto(s)
Leishmania donovani , Perfilado de Ribosomas , Leishmania donovani/genética , Perfilación de la Expresión Génica , ARN Mensajero/genética , Ribosomas/genética
5.
Balkan J Med Genet ; 26(1): 51-56, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37576790

RESUMEN

Sexual development (SD) is a complex process with strict spatiotemporal regulation of gene expression. Despite advancements in molecular diagnostics, disorders of sexual development (DSD) have a diagnostic rate of ~50%. Androgen insensitivity syndrome (AIS) represents the most common form of 46,XY DSD, with a spectrum of defects in androgen action. Considering the importance of very strict regulation of the SD, it is reasonable to assume that the genetic cause for proportion of the DSD lies in the non-coding part of the genome that regulates proper gene functioning. Here we present a patient with partial AIS (PAIS) due to a mosaic de novo c.-547C>T pathogenic variant in the 5'UTR of androgen receptor (AR) gene. The same mutation was previously described as inherited, in two unrelated patients with complete AIS (CAIS). Thus, our case further confirms the previous findings that variable gene expressivity could be attributed to mosaicism. Mutations in 5'UTR could create new upstream open reading frames (uORFs) or could disrupt the existing one. A recent systematic genome-wide study identified AR as a member of a subset of genes where modifications of uORFs represents an important disease mechanism. Only a small number of studies are reporting non-coding mutations in the AR gene and our case emphasizes the importance of molecular testing of the entire AR locus in AIS patients. The introduction of new methods for comprehensive molecular testing in routine genetic diagnosis, accompanied with new tools for in sillico analysis could improve the genetic diagnosis of AIS, and DSD in general.

6.
Cells ; 12(2)2023 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-36672194

RESUMEN

Upon oxidative stress, mammalian cells rapidly reprogram their translation. This is accompanied by the formation of stress granules (SGs), cytoplasmic ribonucleoprotein condensates containing untranslated mRNA molecules, RNA-binding proteins, 40S ribosomal subunits, and a set of translation initiation factors. Here we show that arsenite-induced stress causes a dramatic increase in the stop-codon readthrough rate and significantly elevates translation reinitiation levels on uORF-containing and bicistronic mRNAs. We also report the recruitment of translation termination factors eRF1 and eRF3, as well as ribosome recycling and translation reinitiation factors ABCE1, eIF2D, MCT-1, and DENR to SGs upon arsenite treatment. Localization of these factors to SGs may contribute to a rapid resumption of mRNA translation after stress relief and SG disassembly. It may also suggest the presence of post-termination, recycling, or reinitiation complexes in SGs. This new layer of translational control under stress conditions, relying on the altered spatial distribution of translation factors between cellular compartments, is discussed.


Asunto(s)
Arsenitos , Animales , Codón de Terminación , Arsenitos/farmacología , Arsenitos/metabolismo , Ribosomas/metabolismo , Gránulos de Estrés , Biosíntesis de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Estrés Oxidativo , Mamíferos/metabolismo
7.
Plant Commun ; 4(2): 100457, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36199246

RESUMEN

Translational regulation is a critical step in the process of gene expression and governs the synthesis of proteins from mRNAs. Many studies have revealed translational regulation in plants in response to various environmental stimuli. However, there have been no studies documenting the comprehensive landscape of translational regulation and allele-specific translational efficiency in multiple plant tissues, especially those of rice, a main staple crop that feeds nearly half of the world's population. Here we used RNA sequencing and ribosome profiling data to analyze the transcriptome and translatome of an elite hybrid rice, Shanyou 63 (SY63), and its parental varieties Zhenshan 97 and Minghui 63. The results revealed that gene expression patterns varied more among tissues than among varieties at the transcriptional and translational levels. We identified 3392 upstream open reading frames (uORFs), and the uORF-containing genes were enriched in transcription factors. Only 668 of 13 492 long non-coding RNAs could be translated into peptides. Finally, we discovered numerous genes with allele-specific translational efficiency in SY63 and demonstrated that some cis-regulatory elements may contribute to allelic divergence in translational efficiency. Overall, these findings may improve our understanding of translational regulation in rice and provide information for molecular breeding research.


Asunto(s)
Oryza , Biosíntesis de Proteínas , Biosíntesis de Proteínas/genética , Ribosomas/genética , Oryza/genética , Perfilado de Ribosomas , Alelos
8.
Cancers (Basel) ; 14(24)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36551517

RESUMEN

Recent technological advances have facilitated the detection of numerous non-canonical human peptides derived from regulatory regions of mRNAs, long non-coding RNAs, and other cryptic transcripts. In this review, we first give an overview of the classification of these novel peptides and summarize recent improvements in their annotation and detection by ribosome profiling, mass spectrometry, and individual experimental analysis. A large fraction of the novel peptides originates from translation at upstream open reading frames (uORFs) that are located within the transcript leader sequence of regular mRNA. In humans, uORF-encoded peptides (uPeptides) have been detected in both healthy and malignantly transformed cells and emerge as important regulators in cellular and immunological pathways. In the second part of the review, we focus on various functional implications of uPeptides. As uPeptides frequently act at the transition of translational regulation and individual peptide function, we describe the mechanistic modes of translational regulation through ribosome stalling, the involvement in cellular programs through protein interaction and complex formation, and their role within the human leukocyte antigen (HLA)-associated immunopeptidome as HLA uLigands. We delineate how malignant transformation may lead to the formation of novel uORFs, uPeptides, or HLA uLigands and explain their potential implication in tumor biology. Ultimately, we speculate on a potential use of uPeptides as peptide drugs and discuss how uPeptides and HLA uLigands may facilitate translational inhibition of oncogenic protein messages and immunotherapeutic approaches in cancer therapy.

9.
Mol Cell ; 82(15): 2885-2899.e8, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35841888

RESUMEN

Translated small open reading frames (smORFs) can have important regulatory roles and encode microproteins, yet their genome-wide identification has been challenging. We determined the ribosome locations across six primary human cell types and five tissues and detected 7,767 smORFs with translational profiles matching those of known proteins. The human genome was found to contain highly cell-type- and tissue-specific smORFs and a subset that encodes highly conserved amino acid sequences. Changes in the translational efficiency of upstream-encoded smORFs (uORFs) and the corresponding main ORFs predominantly occur in the same direction. Integration with 456 mass-spectrometry datasets confirms the presence of 603 small peptides at the protein level in humans and provides insights into the subcellular localization of these small proteins. This study provides a comprehensive atlas of high-confidence translated smORFs derived from primary human cells and tissues in order to provide a more complete understanding of the translated human genome.


Asunto(s)
Regulación de la Expresión Génica , Ribosomas , Genoma Humano/genética , Humanos , Sistemas de Lectura Abierta/genética , Biosíntesis de Proteínas , Proteínas/metabolismo , ARN/metabolismo , Ribosomas/genética , Ribosomas/metabolismo
10.
Int J Mol Sci ; 23(14)2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35887068

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is characterized by the accumulation of lipids in the liver. Given the high prevalence of NAFLD, its evolution to nonalcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC) is of global concern. Therapies for managing NASH-driven HCC can benefit from targeting factors that play a continuous role in NAFLD evolution to HCC. Recent work has shown that postprandial liver translation exacerbates lipid accumulation through the activity of a translation factor, eukaryotic initiation factor 6 (eIF6). Here, we test the effect of eIF6 inhibition on the progression of HCC. Mice heterozygous for eIF6 express half the level of eIF6 compared to wt mice and are resistant to the formation of HCC nodules upon exposure to a high fat/high sugar diet combined with liver damage. Histology showed that nodules in eIF6 het mice were smaller with reduced proliferation compared to wt nodules. By using an in vitro model of human HCC, we confirm that eIF6 depletion reduces the growth of HCC spheroids. We also tested three pharmacological inhibitors of eIF6 activity-eIFsixty-1, eIFsixty-4, and eIFsixty-6-and all three reduced eIF6 binding to 60S ribosomes and limited the growth of HCC spheroids. Thus, inhibition of eIF6 activity is feasible and limits HCC formation.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Factores Eucarióticos de Iniciación/antagonistas & inhibidores , Factores Eucarióticos de Iniciación/genética , Factores Eucarióticos de Iniciación/metabolismo , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Ratones , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Factores de Iniciación de Péptidos/antagonistas & inhibidores , Factores de Iniciación de Péptidos/genética , Factores de Iniciación de Péptidos/metabolismo
11.
Int J Mol Sci ; 23(14)2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35887167

RESUMEN

In amyotrophic lateral sclerosis (ALS) patients, loss of cellular homeostasis within cortical and spinal cord motor neurons triggers the activation of the integrated stress response (ISR), an intracellular signaling pathway that remodels translation and promotes a gene expression program aimed at coping with stress. Beyond its neuroprotective role, under regimes of chronic or excessive stress, ISR can also promote cell/neuronal death. Given the two-edged sword nature of ISR, many experimental attempts have tried to establish the therapeutic potential of ISR enhancement or inhibition in ALS. This review discusses the complex interplay between ISR and disease progression in different models of ALS, as well as the opportunities and limitations of ISR modulation in the hard quest to find an effective therapy for ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/terapia , Muerte Celular , Progresión de la Enfermedad , Humanos , Neuronas Motoras/metabolismo
12.
Methods Mol Biol ; 2428: 41-62, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35171472

RESUMEN

Protein synthesis is a highly regulated essential process. As such, it is subjected to substantial regulation in response to stress. One hallmark of the Integrated Stress Response (ISR) is the immediate shutdown of most translation through phosphorylation of the alpha subunit of translation initiation factor eIF2 and activation of eIF4E binding proteins. While these posttranslational modifications largely inhibit cap-dependent translation, many mRNA resist this inhibition by alternative translation mechanisms involving cis-regulatory sequences and structures in 5' transcript leaders, including upstream Open Reading Frames (uORFs), Internal Ribosome Entry Sites (IRESes), and Cap-Independent Translation Elements (CITEs). Studies of uORF and IRES activity are often performed on a gene-by-gene basis; however, high-throughput methods have recently emerged. Here, we describe a protocol for Polysome Library Sequencing (PoLib-Seq; Fig. 1), a multiplexed assay of reporter gene translation that can be used during the ISR. A designer library of reporter RNAs are transfected into tissue-culture cells, and their translation is assayed via sucrose gradient fractionation followed by high-throughput sequencing. As an example, we include PoLib-seq results simultaneously assaying translation of wildtype and uORF mutant human ATF4 reporter RNAs, recapitulating the known function of uORF1 in resisting translational inhibition during the ISR.


Asunto(s)
Biosíntesis de Proteínas , Ribosomas , Humanos , Sistemas de Lectura Abierta , Polirribosomas/metabolismo , ARN Mensajero/genética , Ribosomas/metabolismo
13.
Methods Mol Biol ; 2404: 331-351, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34694618

RESUMEN

Eukaryotic upstream Open Reading Frames (uORFs) are short translated regions found in many transcript leaders (Barbosa et al. PLoS Genet 9:e1003529, 2013; Zhang et al. Trends Biochem Sci 44:782-794, 2019). Modern transcript annotations and ribosome profiling studies have found thousands of AUG-initiated uORFs, and many more uORFs initiated by near-cognate codons (CUG, GUG, UUG, etc.). Their translation generally decreases the expression of the main encoded protein by preventing ribosomes from reaching the main ORF of each gene, and by inducing nonsense mediated decay (NMD) through premature termination. Under many cellular stresses, uORF containing transcripts are de-repressed due to decreased translation initiation (Young et al. J Biol Chem 291:16927-16935, 2016). Traditional experimental evaluation of uORFs involves comparing expression from matched uORF-containing and start-codon mutated transcript leader reporter plasmids. This tedious process has precluded analysis of large numbers of uORFs. We recently used FACS-uORF to simultaneously assay thousands of yeast uORFs in order to evaluate the impact of codon usage on their functions (Lin et al. Nucleic Acids Res 2:1-10, 2019). Here, we provide a step-by-step protocol for this assay.


Asunto(s)
Saccharomyces cerevisiae , Regiones no Traducidas 5' , Codón/metabolismo , Sistemas de Lectura Abierta , Biosíntesis de Proteínas , Ribosomas/genética , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética
14.
Front Immunol ; 12: 692937, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34497604

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) kills thousands of people worldwide every day, thus necessitating rapid development of countermeasures. Immunoinformatics analyses carried out here in search of immunodominant regions in recently identified SARS-CoV-2 unannotated open reading frames (uORFs) have identified eight linear B-cell, one conformational B-cell, 10 CD4+ T-cell, and 12 CD8+ T-cell promising epitopes. Among them, ORF9b B-cell and T-cell epitopes are the most promising followed by M.ext and ORF3c epitopes. ORF9b40-48 (CD8+ T-cell epitope) is found to be highly immunogenic and antigenic with the highest allele coverage. Furthermore, it has overlap with four potent CD4+ T-cell epitopes. Structure-based B-cell epitope prediction has identified ORF9b61-68 to be immunodominant, which partially overlaps with one of the linear B-cell epitopes (ORF9b65-69). ORF3c CD4+ T-cell epitopes (ORF3c2-16, ORF3c3-17, and ORF3c4-18) and linear B-cell epitope (ORF3c14-22) have also been identified as the candidate epitopes. Similarly, M.ext and 7a.iORF1 (overlap with M and ORF7a) proteins have promising immunogenic regions. By considering the level of antigen expression, four ORF9b and five M.ext epitopes are finally shortlisted as potent epitopes. Mutation analysis has further revealed that the shortlisted potent uORF epitopes are resistant to recurrent mutations. Additionally, four N-protein (expressed by canonical ORF) epitopes are found to be potent. Thus, SARS-CoV-2 uORF B-cell and T-cell epitopes identified here along with canonical ORF epitopes may aid in the design of a promising epitope-based polyvalent vaccine (when connected through appropriate linkers) against SARS-CoV-2. Such a vaccine can act as a bulwark against SARS-CoV-2, especially in the scenario of emergence of variants with recurring mutations in the spike protein.


Asunto(s)
Antígenos Virales/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Proteínas de la Nucleocápside de Coronavirus/inmunología , SARS-CoV-2/inmunología , Secuencia de Aminoácidos/genética , Antígenos Virales/genética , COVID-19/inmunología , COVID-19/virología , Vacunas contra la COVID-19/genética , Vacunas contra la COVID-19/uso terapéutico , Biología Computacional , Proteínas de la Nucleocápside de Coronavirus/genética , Diseño de Fármacos , Mapeo Epitopo , Epítopos de Linfocito B/genética , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito T/genética , Epítopos de Linfocito T/inmunología , Humanos , Sistemas de Lectura Abierta/genética , Sistemas de Lectura Abierta/inmunología , SARS-CoV-2/genética , Análisis de Secuencia de Proteína , Vacunas Combinadas/genética , Vacunas Combinadas/inmunología
15.
Biomedicines ; 9(8)2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34440115

RESUMEN

ATP-binding cassette subfamily E member 1 (ABCE1) belongs to the ABC protein family of transporters; however, it does not behave as a drug transporter. Instead, ABCE1 actively participates in different stages of translation and is also associated with oncogenic functions. Ribosome profiling analysis in colorectal cancer cells has revealed a high ribosome occupancy in the human ABCE1 mRNA 5'-leader sequence, indicating the presence of translatable upstream open reading frames (uORFs). These cis-acting translational regulatory elements usually act as repressors of translation of the main coding sequence. In the present study, we dissect the regulatory function of the five AUG and five non-AUG uORFs identified in the human ABCE1 mRNA 5'-leader sequence. We show that the expression of the main coding sequence is tightly regulated by the ABCE1 AUG uORFs in colorectal cells. Our results are consistent with a model wherein uORF1 is efficiently translated, behaving as a barrier to downstream uORF translation. The few ribosomes that can bypass uORF1 (and/or uORF2) must probably initiate at the inhibitory uORF3 or uORF5 that efficiently repress translation of the main ORF. This inhibitory property is slightly overcome in conditions of endoplasmic reticulum stress. In addition, we observed that these potent translation-inhibitory AUG uORFs function equally in cancer and in non-tumorigenic colorectal cells, which is consistent with a lack of oncogenic function. In conclusion, we establish human ABCE1 as an additional example of uORF-mediated translational regulation and that this tight regulation contributes to control ABCE1 protein levels in different cell environments.

16.
Prog Mol Biol Transl Sci ; 182: 439-476, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34175050

RESUMEN

Translational control plays a fundamental role in the regulation of gene expression in eukaryotes. Modulating translational efficiency allows the cell to fine-tune the expression of genes, spatially control protein localization, and trigger fast responses to environmental stresses. Translational regulation involves mechanisms acting on multiple steps of the protein synthesis pathway: initiation, elongation, and termination. Many cis-acting elements present in the 5' UTR of transcripts can influence translation at the initiation step. Among them, the Kozak sequence impacts translational efficiency by regulating the recognition of the start codon; upstream open reading frames (uORFs) are associated with inhibition of translation of the downstream protein; internal ribosomal entry sites (IRESs) can promote cap-independent translation. CRISPR-Cas technology is a revolutionary gene-editing tool that has also been applied to the regulation of gene expression. In this chapter, we focus on the genome editing approaches developed to modulate the translational efficiency with the aim to find novel therapeutic approaches, in particular acting on the cis-elements, that regulate the initiation of protein synthesis.


Asunto(s)
Edición Génica , Terapia Genética , Regiones no Traducidas 5' , Sistemas de Lectura Abierta , Biosíntesis de Proteínas/genética
17.
BMC Bioinformatics ; 22(1): 336, 2021 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-34147079

RESUMEN

BACKGROUND: With the rapid growth in the use of high-throughput methods for characterizing translation and the continued expansion of multi-omics, there is a need for back-end functions and streamlined tools for processing, analyzing, and characterizing data produced by these assays. RESULTS: Here, we introduce ORFik, a user-friendly R/Bioconductor API and toolbox for studying translation and its regulation. It extends GenomicRanges from the genome to the transcriptome and implements a framework that integrates data from several sources. ORFik streamlines the steps to process, analyze, and visualize the different steps of translation with a particular focus on initiation and elongation. It accepts high-throughput sequencing data from ribosome profiling to quantify ribosome elongation or RCP-seq/TCP-seq to also quantify ribosome scanning. In addition, ORFik can use CAGE data to accurately determine 5'UTRs and RNA-seq for determining translation relative to RNA abundance. ORFik supports and calculates over 30 different translation-related features and metrics from the literature and can annotate translated regions such as proteins or upstream open reading frames (uORFs). As a use-case, we demonstrate using ORFik to rapidly annotate the dynamics of 5' UTRs across different tissues, detect their uORFs, and characterize their scanning and translation in the downstream protein-coding regions. CONCLUSION: In summary, ORFik introduces hundreds of tested, documented and optimized methods. ORFik is designed to be easily customizable, enabling users to create complete workflows from raw data to publication-ready figures for several types of sequencing data. Finally, by improving speed and scope of many core Bioconductor functions, ORFik offers enhancement benefiting the entire Bioconductor environment. AVAILABILITY: http://bioconductor.org/packages/ORFik .


Asunto(s)
Biosíntesis de Proteínas , Ribosomas , Regiones no Traducidas 5' , Secuenciación de Nucleótidos de Alto Rendimiento , Sistemas de Lectura Abierta/genética , Ribosomas/genética , Ribosomas/metabolismo
18.
Curr Opin Plant Biol ; 63: 102073, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34186463

RESUMEN

Protein synthesis is a fundamental process for life and, as such, plays a crucial role in the adaptation to energy, developmentaland environmental conditions. For these reasons, and despite the general conservation of the eukaryotic translational machinery, it is not surprising that organisms with different lifestyles have evolved distinct mechanisms of regulation to adapt translation initiation to their intrinsic growth and development. Plants have clear peculiarities compared with other eukaryotes that have also extended to translation control. This review describes the plant-specific mechanisms for regulation of translation initiation, with a focus on those that modulate the eIF4F complexes, central translational regulatory hubs in all eukaryotes, and highlights the latest discoveries on the signaling pathways that regulate their constituents and activity.


Asunto(s)
Factor 4F Eucariótico de Iniciación , Plantas , Biosíntesis de Proteínas , Factor 4F Eucariótico de Iniciación/genética , Factor 4F Eucariótico de Iniciación/metabolismo , Plantas/genética , Plantas/metabolismo
19.
Int J Mol Sci ; 22(7)2021 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-33916772

RESUMEN

Global population growth and climate change are posing increasing challenges to the production of a stable crop supply using current agricultural practices. The generation of genetically modified (GM) crops has contributed to improving crop stress tolerance and productivity; however, many regulations are still in place that limit their commercialization. Recently, alternative biotechnology-based strategies, such as gene-edited (GE) crops, have been in the spotlight. Gene-editing technology, based on the clustered regularly interspaced short palindromic repeats (CRISPR) platform, has emerged as a revolutionary tool for targeted gene mutation, and has received attention as a game changer in the global biotechnology market. Here, we briefly introduce the concept of upstream open reading frames (uORFs) editing, which allows for control of the translation of downstream ORFs, and outline the potential for enhancing target gene expression by mutating uORFs. We discuss the current status of developing stress-tolerant crops, and discuss uORF targets associated with salt stress-responsive genes in rice that have already been verified by transgenic research. Finally, we overview the strategy for developing GE crops using uORF editing via the CRISPR-Cas9 system. A case is therefore made that the mutation of uORFs represents an efficient method for developing GE crops and an expansion of the scope of application of genome editing technology.


Asunto(s)
Sistemas CRISPR-Cas , Productos Agrícolas/genética , Edición Génica , Sistemas de Lectura Abierta , Plantas Modificadas Genéticamente/genética
20.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33579822

RESUMEN

Polycistronic gene expression, common in prokaryotes, was thought to be extremely rare in eukaryotes. The development of long-read sequencing of full-length transcript isomers (Iso-Seq) has facilitated a reexamination of that dogma. Using Iso-Seq, we discovered hundreds of examples of polycistronic expression of nuclear genes in two divergent species of green algae: Chlamydomonas reinhardtii and Chromochloris zofingiensis Here, we employ a range of independent approaches to validate that multiple proteins are translated from a common transcript for hundreds of loci. A chromatin immunoprecipitation analysis using trimethylation of lysine 4 on histone H3 marks confirmed that transcription begins exclusively at the upstream gene. Quantification of polyadenylated [poly(A)] tails and poly(A) signal sequences confirmed that transcription ends exclusively after the downstream gene. Coexpression analysis found nearly perfect correlation for open reading frames (ORFs) within polycistronic loci, consistent with expression in a shared transcript. For many polycistronic loci, terminal peptides from both ORFs were identified from proteomics datasets, consistent with independent translation. Synthetic polycistronic gene pairs were transcribed and translated in vitro to recapitulate the production of two distinct proteins from a common transcript. The relative abundance of these two proteins can be modified by altering the Kozak-like sequence of the upstream gene. Replacement of the ORFs with selectable markers or reporters allows production of such heterologous proteins, speaking to utility in synthetic biology approaches. Conservation of a significant number of polycistronic gene pairs between C. reinhardtii, C. zofingiensis, and five other species suggests that this mechanism may be evolutionarily ancient and biologically important in the green algal lineage.


Asunto(s)
Chlorophyta/genética , Regulación Bacteriana de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Sistemas de Lectura Abierta , Proteínas de Plantas/metabolismo , ARN Mensajero/genética , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA