Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Luminescence ; 39(9): e4874, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39252570

RESUMEN

The capped CdS-ZnS quantum dots (QDs) were synthesized with various thiol capping agents of glycolic acid (TGA), mercaptosuccinic acid (MSA), and L-cysteine (LCY) and used as fluorescence probe for determination of Cu (II) ions. The method of two-level three-factor full-factorial experiment design was used to achieve the best optical fluorescence emission. Results revealed that Cu (II) ions can effectively quench the emission of QDs, and the fluorescence intensity is linearly decreased with increasing Cu (II) ion concentration. The limit of detection for CdS-ZnS@ QDs capped with TGA, MSA, and LCY was obtained at 1.15 × 10-7, 1.32 × 10-7, and 2.19 × 10-7 mol L-1, respectively, with linear dynamic range of 3.13 × 10-6 to 1.41 × 10-4 mol L-1. Luminescence quantum yields of CdS-ZnS@LCY, CdS-ZnS@MSA, and CdS-ZnS@TGA were obtained at 4.17, 1.92, and 2.47, respectively. Results indicated that no significant quenching occurred in the presence of the other metal ions. The binding constant (Kb) of capped CdS-ZnS@ QDs with Cu2+ and the other metal ions was also investigated and discussed. The Kb value for Cu2+ was obtained considerably more than that the other ions. This work presents a new and sensitive method for determination of Cu2+ ion.


Asunto(s)
Compuestos de Cadmio , Cobre , Colorantes Fluorescentes , Puntos Cuánticos , Compuestos de Sulfhidrilo , Sulfuros , Propiedades de Superficie , Compuestos de Zinc , Puntos Cuánticos/química , Cobre/química , Cobre/análisis , Sulfuros/química , Compuestos de Zinc/química , Compuestos de Cadmio/química , Compuestos de Sulfhidrilo/química , Compuestos de Sulfhidrilo/análisis , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Espectrometría de Fluorescencia , Fluorescencia , Iones/química , Iones/análisis
2.
J Plant Res ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39242481

RESUMEN

Athyrium yokoscense is hypertolerant to cadmium (Cd) and can grow normally under a high Cd concentration despite Cd being a highly toxic heavy metal. To mitigate Cd stress in general plant species, Cd is promptly chelated with a thiol compound and is isolated into vacuoles. Generated active oxygen species (ROS) in the cytoplasm are removed by reduced glutathione. However, we found many differences in the countermeasures in A. yokoscense. Thiol compounds accumulated in the stele of the roots, although a long-term Cd exposure induced Cd accumulation in the aerial parts. Synchrotron radiation-based X-ray fluorescence (SR-XRF) analysis indicated that a large amount of Cd was localized in the cell walls of the roots. Overexpression of AyNramp5a, encoding a representative Fe and Mn transporter of A. yokoscense, increased both Cd uptake and Fe and Mn uptake in rice calli under the Cd exposure conditions. Organic acids are known to play a key role in reducing Cd availability to the plants by forming chelation and preventing its entry in free form into the roots. In A. yokoscense roots, Organic acids were abundantly detected. Investigating the chemical forms of the Cd molecules by X-ray absorption fine structure (XAFS) analysis detected many compounds with Cd-oxygen (Cd-O) binding in A. yokoscense roots, whereas in the aerial parts, the ratio of the compounds with Cd-sulfur (Cd-S) binding was increased. Together, our results imply that the strong Cd tolerance of A. yokoscense is an attribute of the following two mechanisms: Cd-O compound formation in the cell wall is a barrier to reduce Cd uptake into aerial parts. Thiol compounds in the region of root stele are involved in detoxication of Cd by formation of Cd-S compounds.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124667, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-38906059

RESUMEN

As a kind of commonly-used synthetic materials for many pesticides, thiol compounds, once being leaked, can cause serious harm to the environment and humans. Therefore, the efficient detection of thiol compounds is essential. In this study developed a turn-on fluorescent probe (Cu@Zn-CP) for the highly sensitive fluorescence detection of thiol compounds. The probe was constructed based on a zinc coordination polymer (Zn-CP), whose fluorescence was quenched through the effective doping of Cu2+ ions. After the introduction of methyl thioglycolate (MTC), a rapid fluorescence turn-on response was generated within 90 s with a low detection limit of 23 ppb. Even after being reused for five cycles, the sensor maintains excellent detection performance and demonstrates good recyclability. It can also detect MTC in river water, with a spike recovery rate between 98-103 %. Furthermore, the designed Cu@Zn-CP exhibits good universality for detecting multifarious thiol compounds, including L-cysteine, glutathione, monothioglycerol, and 2-hydroxy-1-ethanethiol. This result provides a potential recyclable fluorescent sensor for thiol compounds.

4.
J Sci Food Agric ; 104(9): 5533-5540, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38357986

RESUMEN

BACKGROUND: Sorbitol as a sweetener is often thought to be unable to participate in the Maillard reaction causing browning. However, browning of a system was found to be significant when sorbitol was mixed with glycine and heated. The thiol compounds glutathione and cysteine were added to the system, and the inhibition mechanism of the two on the browning of the system was studied by combining the changes of precursor substances, intermediate products and browning degree. RESULTS: When the concentration of thiol compounds reached 25 mg mL-1, both could make the browning inhibition of the system more than 80%, and the accumulated glucose concentration was reduced to <35% of the control. The production of 3-deoxyglucosone, a precursor of melanoidin, was significantly reduced. CONCLUSION: Glutathione and cysteine directly inhibited the production of substrates in the sorbitol/glycine system, reduced glucose accumulation through competitive consumption and captured highly active intermediates through sulfhydryl groups. This has implications for the browning control of food systems containing sugar alcohols. © 2024 Society of Chemical Industry.


Asunto(s)
Glucosa , Glicina , Reacción de Maillard , Sorbitol , Compuestos de Sulfhidrilo , Sorbitol/farmacología , Sorbitol/química , Glicina/farmacología , Glicina/química , Glicina/análogos & derivados , Compuestos de Sulfhidrilo/química , Compuestos de Sulfhidrilo/metabolismo , Glucosa/metabolismo , Calor , Edulcorantes/química , Edulcorantes/farmacología , Polímeros/química , Desoxiglucosa/análogos & derivados
5.
J Chromatogr A ; 1719: 464757, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38394785

RESUMEN

Monitoring changes in the content of chiral thiol compounds in the human body is crucial for the early diagnosis of oxidative stress-related diseases and the exploration of their pathogenesis. To address this, we synthesized a novel isotope mass spectrometry (MS) probe, denoted as (R)-(5-(3-isothiocyanato (13C) pyrrolidin-1-yl)-5-oxopentyl) triphenylphosphonium (N13CS-OTPP), with triphenylphosphine as its parent structure. In this study, we established a new ultra-high-performance liquid chromatography high-resolution mass spectrometry (UHPLCHRMS) relative quantitative method to monitor chiral thiol compounds in human urine under varying oxidative stress conditions. This method relies on the ratio of 12C/13C isotope-labeled peak areas. To assess the chiral separation efficiency of N13CS-OTPP, we employed three types of thiol compounds (D/L-GSH, D/L-Cys, and D/L-Hcy) and observed separation degrees (Rs) ranging from 1.82 to 1.89. We further validated the accuracy and feasibility of our relative quantitative methods using D/L-Cys-as a model compound. N12C/13CS-OTPP-Cys-exhibited excellent linearity (R2 = 0.9993-0.9994) across different molar ratios (D/L-Cys = 10:1, 4:1, 2:1, 1:1, 1:2, 1:4, 1:10) and achieved a low limit of detection (LOD) of 2.5 fmol. Additionally, we monitored the dynamic changes in urine D/L-Cys-and D/L-Hcy ratios in 12 healthy volunteers (six males and six females) under various oxidative stress states. We generated fitting curves and investigated the trends in chiral thiol compounds in vivo. This study introduces a novel method for the relative quantitative monitoring of chiral thiol compounds in different oxidative stress states within the human body. It also presents a new strategy for understanding the pathogenesis of related diseases resulting from the abnormal metabolism of thiol compounds.


Asunto(s)
Isótopos , Compuestos Organofosforados , Masculino , Femenino , Humanos , Espectrometría de Masas , Cisteína , Cromatografía Líquida de Alta Presión/métodos
6.
Environ Sci Pollut Res Int ; 30(51): 110970-110980, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37798526

RESUMEN

Two non-metallicolous and metallicolous populations of harmel plants were compared regarding the role of proline, cysteine, reducing sugars, hydrogen peroxide (H2O2), glutathione, thiol compounds, organic acids, total free amino acids, and lipid peroxidation in detoxification and tolerance of silver stress (0, 1, 2.5, 5, 10 ppm Ag). The results of the present research state that the effects of Ag were increased total free amino acids, glutathione, organic acids, proline, reducing sugars, thiol compounds, and cysteine, so the accumulation of these compounds was higher in metallicolous populations than non-metallicolous. On the other hand, non-metallicolous populations showed higher content of lipid peroxidation and H2O2 than metallicolous populations under Ag stresses. Also, the accumulation of phytochelatins (PC) was observed with increasing Ag concentration, which shows that compared to glutathione, non-protein thiols have a higher concentration. The number of organic acids (malic acids, fumaric, oxalic, and citric) except acetic acid increased in the leaves of harmel in both populations. According to the results of this research, the harmel metallophilic population has a crucial role in the tolerance and detoxification of Ag stress, so the antioxidant responses of the plant against Ag stress in the non-metallicolous population were lower than the metallicolous population. Based on the above results, it can be concluded that the harmel plant has a detoxification mechanism to deal with high concentrations of Ag.


Asunto(s)
Aminoácidos , Fitoquelatinas , Fitoquelatinas/metabolismo , Aminoácidos/metabolismo , Plata , Cisteína , Peróxido de Hidrógeno/metabolismo , Glutatión/metabolismo , Antioxidantes/metabolismo , Plantas/metabolismo , Prolina/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Azúcares
7.
Environ Sci Pollut Res Int ; 30(45): 100799-100813, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37644262

RESUMEN

Over the past few years, there has been a rising interest in employing biochar (BC) and biofertilizers (BF) as a means of restoring soils that have been polluted by heavy metals. The primary objective of this study was to examine how the application of BC and BF affects the ability of cotton plants to withstand Pb toxicity at varying concentrations (0, 500, and 1000 mg/kg soil). The findings revealed that exposure to Pb stress, particularly at the 1000 mg/kg level, led to a decline in the growth and biomass of cotton plants. Pb toxicity triggered oxidative damage, impaired the photosynthetic apparatus, and diminished the levels of photosynthetic pigments. By increasing the expression of Rubisco-S, Rubisco-L, P5CR, and PRP5 genes and regulating proline metabolism, BC and BF increased the levels of proline and photosynthetic pigments and protected the photosynthetic apparatus. The application of BC and BF resulted in an upregulation of genes such as CuZnSOD, FeSOD, and APX1, as well as an increase in the activity of the glyoxalase system and antioxidant enzymes. These changes enhanced the antioxidant capacity of the plants and provided protection to membrane lipids from oxidative stress caused by Pb. The inclusion of BC and BF offered protection to photosynthesis and other essential intracellular processes in leaves by minimizing the transfer of Pb to leaves and promoting the accumulation of thiol compounds. This protective effect helped mitigate the negative impact of the toxic metal Pb on leaf function. By improving plant tolerance, reducing metal transfer, strengthening the antioxidant defense system, and enhancing the level of protective substances, these amendments show promise as valuable tools in tackling heavy metal pollution.

8.
Foods ; 12(14)2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37509751

RESUMEN

Five volatile thiol compounds (methanethiol, ethanethiol, 2-mercapto-1-ethanol, 2-furfurylthiol, and 2-methyl-3-furanethiol) in fermented grains of sauce-aroma baijiu were determined using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The samples were pre-treated using a modified QuEChERS method. 4,4'-Dithiodipyridine (DTDP) derivatization reaction improved the detectability and stability of volatile thiol compounds. From the end of the first round to the end of the seventh round of fermentation and different fermentation states from the fifth round of fermented grains of the sauce-aroma baijiu production process were analyzed. The results showed that the concentrations of methanethiol (67.64-205.37 µg/kg), ethanethiol (1.22-1.76 µg/kg), 2-furfurylthiol (0.51-3.03 µg/kg), and 2-methyl-3-furanthiol (1.70-12.74 µg/kg) were increased with the number of fermentation rounds. Methanethiol, 2-furfurylthiol, and 2-methyl-3-furanthiol increased during fermentation and distillation in the fifth round. Fermentation and distillation were important stages for their widespread production. After distillation, there were still a large number of volatile thiol compounds in the fermented grains. The thermal reaction was of great significance in the formation of these thiols.

9.
J Inorg Biochem ; 242: 112158, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36773444

RESUMEN

The interactions of V(V) and L-cysteine, thioacetic acid and ethanethiol were studied in aqueous solution using chromatographic and spectral analysis. The chromatographic determination of V(V) and V(IV) species in the presence of thiols was enabled by inducing the ligand exchange reaction with EDTA as the competing ligand. Analytical setup allowed investigation of the possible redox and structural transformations of V(V) in the presence of thiols used over a wide pH range. Obtained data strongly suggest that the reduction of V(V) is proton catalyzed in case of L-cysteine and thioacetic acid. In the case of ethanethiol, the reduction did not seem to be proton dependent, as no reduction was observed above pH = 2. Thus, reduction was inhibited by the deprotonation of L-cysteine and thioacetic acid, with L-cysteine being the strongest reducing agent of V(V), followed by thioacetic acid and finally ethanethiol. Apart from structural thiol properties, the reduction reaction seems to be influenced by the aqueous V(V) speciation due to the observed nonlinear kinetics. In the case of all investigated thiols, the formation of V(V)-thioester intermediate species was an essential step for V(V) reduction. The structural properties of the V(IV)-thiol complexes were also found to be pH-dependent.


Asunto(s)
Cisteína , Protones , Ligandos , Concentración de Iones de Hidrógeno , Compuestos de Sulfhidrilo/química , Oxidación-Reducción , Análisis Espectral , Agua/química
10.
Chemosphere ; 312(Pt 1): 137151, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36368531

RESUMEN

Pomegranate trees are tropical and subtropical shrubs with nutritional benefits and pharmaceutical and therapeutic uses. Antioxidative systems protect the structure and function of cellular membranes. This study demonstrated the connection between oxidative stress generated by excess nanoparticles ZnO (ZnO-NPs) accumulation in pomegranate calli and the involvement of thiol groups and volatile and semi-volatile compounds in alleviating this stress. The effect of the non-enzymatic antioxidant system was studied using callus treated with three levels of ZnO-NPs or bulk particles (ZnO-BPs). With rising ZnO levels in the media, callus growth was gradually decreased by ZnO in both forms (NPs and BPs). Malondialdehyde (MDA) measurements revealed that different concentrations of both forms promoted lipid peroxidation. The supply of both forms had a considerable stimulatory influence on the cysteine (Cys) content in calli. Raised ZnO-NP concentrations increased glutathione (GSH) and non-protein thiols (NPTs) content in calli, but higher ZnO-BP concentrations lowered their content. Conversely, ZnO-NP levels reduced the protein thiols (PTs) content in calli, but ZnO-BP concentrations increased their content. GC-MS analysis was employed to investigate the volatile and semi-volatile chemical profiles within calli following exposure to 0 and 150 µg mL-1 of ZnO in both forms. GC-MS analysis detected 77, 67, and 83 compounds in ZnO-treated calli, of which 14, 16, and 20 with a similarity value greater than 70%, based on a NIST library, were recognized as metabolites for ZnO untreated and NPs- and BPs-treated calli, respectively. Six substances, including five alkanes and one morphinan, showed similarities in metabolite composition between control and NPs- or BPs-treated calli. ZnO-NPs-treated calli contained two alkane compounds only similar to the control, but ZnO-BPs-treated calli had six metabolites, including four alkanes, one carboxylic acid, and one ester. However, eight alkanes were similar within the callus treated with NPs and BPs.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Granada (Fruta) , Óxido de Zinc , Óxido de Zinc/química , Compuestos de Sulfhidrilo , Nanopartículas del Metal/química , Estrés Oxidativo , Nanopartículas/química , Antioxidantes/metabolismo , Glutatión/metabolismo , Alcanos
11.
Environ Sci Pollut Res Int ; 30(1): 884-898, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35907074

RESUMEN

Arsenic (As) traces have been reported worldwide in vegetables and crops cultivated in As-polluted soils. Being carcinogenic, the presence of As in edibles is of great concern as it ultimately reaches humans and animals through the food chain. Besides, As toxicity adversely affects the growth, physiology, metabolism, and productivity of crops. In the present study, Trigonella foenum-graecum (Fenugreek) was exposed to the As stress (0, 50, 100, and 150 µM sodium arsenate) for a week. Further, evaluation of As accumulation in roots and shoots, magnitude and visualization of oxyradicals, and thiol-based defence offered by Fenugreek was assessed. The root and leaf accumulated 258-453 µg g-1 dry wt (DW) and 81.4-102.1 µg g-1 DW of As, respectively. An arsenic-mediated decline in the growth index and increase in oxidative stress was noted. Arsenic stress modulated the content of thiol compounds; especially cysteine content increased from 0.36 to 0.43 µmole g-1 FW protein was noted. Random Amplified Polymorphic DNA (RAPD)-based analysis showed DNA damage in As-treated plants. Health risk assessment parameters showed that As concentration in the consumable plant shoot was below the critical hazard level (hazard quotient < 1). Moreover, T. foenum-graecum showed varied responses to As-induced oxidative stress with applied concentrations (150 µM being more toxic than lower concentrations). In addition, the RAPD profile and level of thiol compounds were proved significant biomarkers to assess the As toxicity in plants. The conclusion of this study will help users of fenugreek to have a clue and create awareness regarding the consumption.


Asunto(s)
Arsénico , Trigonella , Humanos , Animales , Arsénico/toxicidad , Arsénico/metabolismo , Técnica del ADN Polimorfo Amplificado Aleatorio , Extractos Vegetales/farmacología , Daño del ADN , Compuestos de Sulfhidrilo/metabolismo
12.
Anal Sci ; 39(3): 369-374, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36576651

RESUMEN

Nitroxyl radicals are known to electrochemically oxidize thiols as well as alcohols and amines. In this study, a preliminary investigation of the electrochemical reaction of thiols with 9-azabicyclo[3.3.1]nonane N-oxyl (ABNO), 2-azaadamantane N-oxyl (AZADO), and nortropine N-oxyl (NNO), which are highly active due to their bicyclo structures, for use in electrochemical analysis was performed and the results were compared with those for a typical nitroxyl radical compound, 2,2,6,6-tetramethylpiperidine N-oxyl (TEMPO). Mercaptopropane sulfonic acid (MPS) was used as a model compound to investigate the electrochemical response in aqueous solution. In addition, electrochemical detection of glutathione, a biological thiol molecule, was performed.

13.
Chemosphere ; 305: 135080, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35623425

RESUMEN

Rice can potentially pose serious health risks due to its higher arsenic (As) uptake. Sulfur (S) is not only an essential macronutrient, but it also has the ability to decrease As accumulation. In the present study, a hydroponic experiment was conducted to investigate the mechanisms underlying the effects of S on the As uptake and transport at different S (pre-)treatments and additional supply levels. It was found that additional S supply decreased As content by 20%-50% in both S-deficient and S-normal pre-treated shoots compared to the no S supply throughout the treatment; As root-to-shoot translocation factors was reduced by 7%-46% with S supply. On the one hand, additional S supply could elevate levels of thiol compounds (by 15%-280%) and increase the As percentage in soluble cytosol of roots. Additional S supply also enhanced the casparian strip development of rice roots, which could block As transfer in roots apoplast pathway. Moreover, additional S supply lead to the down-regulation of OsLsi2 expression (e.g., reduced by 71% by S at 2 mmol L-1 with the S-normal pre-treatment). Sulfur also promoted the biotransformation of As(III) in shoots into less toxic As species; reducing the As(III) proportion by 25% by 2 mmol L-1 of S under S-normal pre-treatment. These results suggest that S could play an important role in the inhibition of As transfer and the detoxification of As in rice by enhancing root retention (the vacuole sequestration), impeding transportation pathway of root apoplast, and regulating As-related gene expression. Thus, providing a basis for the potential application of S in rice production in As-contaminated paddy soil.


Asunto(s)
Arsénico , Oryza , Contaminantes del Suelo , Arsénico/análisis , Oryza/metabolismo , Raíces de Plantas/metabolismo , Suelo , Contaminantes del Suelo/análisis , Azufre/metabolismo
14.
Cureus ; 14(1): e20929, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35145818

RESUMEN

Introduction Primary myelofibrosis (PM) has a lower overall survival rate than other myeloproliferative neoplasms, and leukemic transformation is the most common cause of death. Increased oxidative stress has an important role in leukemic transformation in these patients. In this study, we aimed to find an answer to the question, "Could Ruxolitinib, which has been widely used in patients with myelofibrosis in recent years, have a role in reducing oxidative stress in these patients?". Methods A total of 106 patients with PM and 111 healthy volunteers were included in this study. We collected the serum samples of healthy volunteers and patients with myelofibrosis at the time of diagnosis and one month after the initiation of Ruxolitinib treatment. Ischemia modified albumin (IMA), native thiol, total thiol, and disulfide levels were studied. The disulfide/native thiol, disulfide/total thiol, and native thiol/total thiol ratios were calculated. Results IMA, native thiol, total thiol, disulfide levels, disulfide/native thiol, and disulfide/total thiol ratios at the time of diagnosis were significantly different in patients with myelofibrosis compared to the control group (p=0.001). Ruxolitinib significantly reduced oxidative stress when the measurements in the first month after Ruxolitinib were compared with those at the time of diagnosis (p=0.001). In patients with ASXL1 mutation, intermediate-2 risk, and high-risk according to the Dipps-plus score, the decrease in oxidative stress in the first month of treatment was more significant than at the time of diagnosis. Conclusion Ruxolitinib may be an effective treatment for reducing oxidative stress in patients with PM. The reduction in oxidative stress parameters with treatment in patients with ASXL1 mutation, intermediate-2, and high-risk patients was observed to be higher.

15.
Toxicon ; 205: 31-37, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34822873

RESUMEN

Patulin (PAT) is a toxic mycotoxin usually contaminated apple juices, which leads to a serious food safety issue in the world. Thiol-compounds are a class of compounds containing the thiol (-SH) group themselves or obtained the -SH group by physical or chemical modification. They have the ability to efficiently remove patulin in apple juices with manifested negligible effects on juice quality. This review investigates the latest development in the removal of patulin using thiol-compounds, including the removal efficiencies and mechanisms of patulin, the factors influencing the removal efficiency of patulin, as well as the toxicities of thiol-compounds and safety of juices after detoxification. This review shows that thiol-compounds are promising materials for the removal or degradation of patulin in the contaminated juices.


Asunto(s)
Patulina , Inocuidad de los Alimentos , Patulina/toxicidad , Compuestos de Sulfhidrilo
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 267(Pt 2): 120517, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34739892

RESUMEN

A novel optical γ-aminobutyric acid (GABA)-based sensor was developed on interacting thiol compounds and o-phthalaldehyde (OPA) to form thiacetal compounds. Then, the thiacetal interacts with the GABA molecule to form an isoindole compound. The effects of four thiol compounds on the stability of the resulting isoindole compound were assessed. The 2-mercaptoethanol, "one of the most used derivatizing agents," is unexpectedly the least stable; while, 16-mercaptohexadecanoic acid resulted in the most durable isoindole compound. The developed sensor showed the capability for detecting GABA within a wide concentration range spanning from 500 nmol L-1 to 100 µmol L-1. The detection limit was about 330 nmol L-1, which indicated the high sensitivity of the developed sensor compared with those previously reported. The findings illustrated the ability to detect GABA at the physiological pH (pH = 7.4) without adjusting the pH value, opening the door for real applications. Furthermore, the sensor could detect various GABA concentrations in human serum with good recovery percentages (98% to 101.4%). In addition, this assay was applied to monitor GABA release from the SH-SY5Y cell line to convert glutamate into GABA. This result indicates the capability of the proposed assay for visually monitoring the release of GABA neurotransmitters.


Asunto(s)
Colorimetría , Ácido gamma-Aminobutírico , Ácido Glutámico , Humanos , Neurotransmisores , o-Ftalaldehído
17.
Biosci Biotechnol Biochem ; 85(9): 1932-1936, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34279569

RESUMEN

Generally, volatile thiols are hard to be measured with electrospray-ionization-type LC-MS due to the volatility. Therefore, we here evaluated the pretreatment of their S-bimanyl derivatization by monobromobimane to enable the detection as nonvolatile derivative. Consequently, we successfully developed the convenient and efficient method through the quantitative analysis of 2-furanmethanethiol (volatile thiol odorant of coffee aroma) in coffee bean.


Asunto(s)
Cromatografía Liquida/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Compuestos de Sulfhidrilo/análisis , Café/química , Volatilización
18.
J Agric Food Chem ; 69(18): 5416-5427, 2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-33908777

RESUMEN

Chinese Korean ethnic rice wine, a traditional fermented wine made from rice or corn, has antioxidant and antihypertensive activities. Although the determination of amino acids and other nutrients in rice wine has been reported, the existence of chiral thiol compounds has not been published in the literature. Therefore, we established a highly sensitive and selective ultrahigh-performance liquid chromatography-high-resolution mass spectrometry method for simultaneous determination and chiral separation of dl-Cys-GSH, dl-Cys-Cys, and dl-Cys-Hcy based on (R)-(5-(3-isothiocyanatopyrrolidin-1-yl)-5-oxopentyl) triphenylphosphonium derivatization. Three thiol diastereomers were completely separated on a YMC Triart C18 (2.0 × 150 mm, 1.9 µm) column with a resolution value (Rs) ≥ 1.52. The correlation coefficients were ≥0.9996, limit of detection was 2.40-7.20 fmol, and mean recoveries were 83.33-98.59%. Furthermore, fitted curves for dynamic changes in three kinds of chiral thiols in 10 human urine samples after drinking rice wine were drawn. Meanwhile, the metabolic changes in d/l-thiol compounds in human urine were investigated.


Asunto(s)
Vino , China , Cromatografía Líquida de Alta Presión , Humanos , República de Corea , Compuestos de Sulfhidrilo , Vino/análisis
19.
Int J Phytoremediation ; 23(1): 10-17, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32633546

RESUMEN

Floating ferns of the genus Salvinia have great potential for phytoremediation of heavy metals. To date, the effect of essential metals on the accumulation and transport of toxic metals by aquatic ferns has not been suitably established. The aim of this study was to compare the ability of floating leaves of Salvinia minima and Salvinia rotundifolia species to accumulate Cr from Cr(VI solutions containing very low (0.02 mg L-1) and low (5 mg L-1) Zn concentrations. After 7-day metal-exposure period, results showed that Zn increased Cr accumulation in S. minima leaves whereas in S. rotundifolia decreased significantly. Contrarily Zn accumulation did not show great differences between species. This fact may indicate that Zn interfere Cr(VI) uptake by S. rotundifolia. Bioconcentration factor (BCF) and translocation factor (TF) were affected differently by Zn in both Salvinia species. Membrane stability index (MSI) of both Salvinia species was decreased significantly by 5 mg L-1 Zn concentration. Zn ions also increased hydrogen peroxide accumulation in fronds of Salvinia species. Total thiols (TT), non-protein thiols (NPT) and protein-bound thiols (PBT) were differentially affected by Cr(VI) and Zn ions. This study provides evidences on the involvement of different mechanisms against Cr(VI)/Zn toxicity in S. minima and S rotundifolia species.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Biodegradación Ambiental , Cromo , Compuestos de Sulfhidrilo , Contaminantes Químicos del Agua/toxicidad , Zinc
20.
Bioorg Med Chem ; 29: 115902, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33302045

RESUMEN

ß-lactam antibiotics have long been the mainstay for the treatment of bacterial infections. New Delhi metallo-ß-lactamase 1 (NDM-1) is able to hydrolyze nearly all ß-lactam antibiotics and even clinically used serine-ß-lactamase inhibitors. The wide and rapid spreading of NDM-1 gene among pathogenic bacteria has attracted extensive attention, therefore high potency NDM-1 inhibitors are urgently needed. Here we report a series of structure-guided design of D-captopril derivatives that can inhibit the activity of NDM-1 in vitro and at cellular levels. Structural comparison indicates the mechanisms of inhibition enhancement and provides insights for further inhibitor optimization.


Asunto(s)
Antibacterianos/química , Captopril/química , Inhibidores de beta-Lactamasas/química , beta-Lactamasas/metabolismo , Antibacterianos/metabolismo , Antibacterianos/farmacología , Proteínas Bacterianas/química , Sitios de Unión , Captopril/metabolismo , Captopril/farmacología , Cristalografía por Rayos X , Descubrimiento de Drogas , Farmacorresistencia Microbiana/efectos de los fármacos , Humanos , Hidrólisis/efectos de los fármacos , Modelos Moleculares , Unión Proteica , Relación Estructura-Actividad , Compuestos de Sulfhidrilo/química , Inhibidores de beta-Lactamasas/metabolismo , Inhibidores de beta-Lactamasas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA