Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Bull (Beijing) ; 69(2): 197-208, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37993338

RESUMEN

Resolving low sulfur reaction activity and severe polysulfide dissolution remains challenging in metal-sulfur batteries. Motivated by a theoretical prediction, herein, we strategically propose nitrogen-vacancy tantalum nitride (Ta3N5-x) impregnated inside the interconnected nanopores of nitrogen-decorated carbon matrix as a new electrocatalyst for regulating sulfur redox reactions in room-temperature sodium-sulfur batteries. Through a pore-constriction mechanism, the nitrogen vacancies are controllably constructed during the nucleation of Ta3N5-x. The defect manipulation on the local environment enables well-regulated Ta 5d-orbital energy level, not only modulating band structure toward enhanced intrinsic conductivity of Ta-based materials, but also promoting polysulfide stabilization and achieving bifunctional catalytic capability toward completely reversible polysulfide conversion. Moreover, the interconnected continuous Ta3N5-x-in-pore structure facilitates electron and sodium-ion transport and accommodates volume expansion of sulfur species while suppressing their shuttle behavior. Due to these attributes, the as-developed Ta3N5-x-based electrode achieves superior rate capability of 730 mAh g-1 at 3.35 A g-1, long-term cycling stability over 2000 cycles, and high areal capacity over 6 mAh cm-2 under high sulfur loading of 6.2 mg cm-2. This work not only presents a new sulfur electrocatalyst candidate for metal-sulfur batteries, but also sheds light on the controllable material design of defect structure in hopes of inspiring new ideas and directions for future research.

2.
Nanomaterials (Basel) ; 13(11)2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37299611

RESUMEN

Metal nitrides show excellent photothermal stability and conversion properties, which have the potential for photothermal therapy (PTT) for cancer. Photoacoustic imaging (PAI) is a new non-invasive and non-ionizing biomedical imaging method that can provide real-time guidance for precise cancer treatment. In this work, we develop polyvinylpyrrolidone-functionalized tantalum nitride nanoparticles (defined as TaN-PVP NPs) for PAI-guided PTT of cancer in the second near-infrared (NIR-II) window. The TaN-PVP NPs are obtained by ultrasonic crushing of massive tantalum nitride and further modification by PVP to obtain good dispersion in water. Due to their good absorbance in the NIR-II window, TaN-PVP NPs with good biocompatibility have obvious photothermal conversion performance, realizing efficient tumor elimination by PTT in the NIR-II window. Meanwhile, the excellent PAI and photothermal imaging (PTI) capabilities of TaN-PVP NPs are able to provide monitoring and guidance for the treatment process. These results indicate that TaN-PVP NPs are qualified for cancer photothermal theranostics.

3.
Materials (Basel) ; 16(7)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37048901

RESUMEN

The nanohardness, elastic modulus, anti-wear, and deformability characteristics of TiAl(100-x)-xTaN composites containing 0, 2, 4, 6, 8, and 10 wt.% of TaN were investigated via nanoindentation technique in the present study. The TiAl(100-x)-xTaN composites were successfully fabricated via the spark plasma sintering technique (SPS). The microstructure and phase formation of the TiAl sample constitute a duplex structure of γ and lamellar colonies, and TiAl2, α-Ti, and TiAl phases, respectively. The addition of TaN results in a complex phase formation and pseudo duplex structure. The depth-sensing indentation evaluation of properties was carried out at an ambient temperature through a Berkovich indenter at a prescribed load of 100 mN and a holding time of 10 s. The nanoindentation result showed that the nanohardness and elastic modulus characteristics increased as the TaN addition increased but exhibited a slight drop when the reinforcement was beyond 8 wt.%. At increasing TaN addition, the yield strain (HEr), yield pressure (H3Er2), and elastic recovery index (WeWt) increased, while the plasticity index (WpWt) and the ratio of plastic and elastic work (RPE) reduced. The best mechanical properties were attained at the 8 wt.%TaN addition.

4.
ACS Appl Mater Interfaces ; 15(6): 7969-7977, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36734937

RESUMEN

Tantalum nitride (Ta3N5) has gained significant attention as a potential photoanode material, yet it has been challenged by material quality issues. Defect-induced trap states are detrimental to the performance of any semiconductor material. Beyond influencing the performance of Ta3N5 films, defects can also accelerate the degradation in water during desired electrochemical applications. Defect passivation has provided an enormous boost to the development of many semiconductor materials but is currently in its infancy for Ta3N5. This is in part due to a lack of experimental understanding regarding the spatial and energetic distribution of trap states throughout Ta3N5 thin films. Here, we employ drive-level capacitance profiling (DLCP) to experimentally resolve the spatial and energetic distribution of trap states throughout Ta3N5 thin films. The density of deeper energetic traps is found to reach ∼2.5 to 6 × 1022 cm-3 at the interfaces of neat Ta3N5 thin films, over an order of magnitude greater than the bulk. In addition to the spatial profile of deep trap states, we report neat Ta3N5 thin films to be highly n-type in nature, owning a free carrier density of ∼9.74 × 1017 cm-3. This information, coupled with the present understanding of native oxide layers on Ta3N5, has facilitated the rational design of a targeted passivation strategy that simultaneously provides a means for catalyst immobilization. Loading catalyst via silatrane moieties suppresses the density of defects at the surface of Ta3N5 thin films by two orders of magnitude, while also reducing the free carrier density of films by over one order of magnitude, effectively dedoping the films to ∼2.40 × 1016 cm-3. The surface passivation of Ta3N5 films translates to suppressed defect-induced trapping and recombination of photoexcited carriers, as determined through absorption, photoluminescence, and transient photovoltage. This illustrates how developing a deeper understanding of the distribution and influence of defects in Ta3N5 thin films has the potential to guide future works and ultimately accelerate the integration and development of high-performance Ta3N5 thin film devices.

5.
Molecules ; 28(3)2023 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-36770767

RESUMEN

Electrochemical hydrogen evolution is a highly efficient way to produce hydrogen, but since it is limited by high-cost electrocatalysts, the preparation of high-efficiency electrocatalysts with fewer or free noble metals is important. Here, Ta3N5 nanobelt (NB)-loaded Ru nanoparticle (NP) hybrids with various ratios, including 1~10 wt% Ru/Ta3N5, are constructed to electrocatalyze water splitting for a hydrogen evolution reaction (HER) in alkaline media. The results show that 5 wt% Ru/Ta3N5 NBs have good HER properties with an overpotential of 64.6 mV, a Tafel slope of 84.92 mV/dec at 10 mA/cm2 in 1 M of KOH solution, and good stability. The overpotential of the HER is lower than that of Pt/C (20 wt%) at current densities of 26.3 mA/cm2 or more. The morphologies and structures of the materials are characterized by scanning electron microscopy and high-resolution transmission electron microscopy, respectively. X-ray photoelectron energy spectroscopy (XPS) demonstrates that a good HER performance is generated by the synergistic effect and electronic transfer of Ru to Ta3N5. Our electrochemical analyses and theoretical calculations indicate that Ru/Ta3N5 interfaces play an important role as real active sites.

6.
Micromachines (Basel) ; 13(9)2022 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-36144034

RESUMEN

Highly durable and antimicrobial tantalum nitride/copper (TaN/Cu) nanocomposite coatings were deposited on D-9 stainless steel substrates by pulsed magnetron sputtering. The Cu content in the coating was varied in the range of 1.42-35.42 atomic % (at.%). The coatings were characterized by electron probe microanalyzer, X-ray diffraction, scanning electron microscope and atomic force microscope. The antibacterial properties of the TaN/Cu coatings against gram-negative Pseudomonas aeruginosa were evaluated using a cell culture test. The peak hardness and Young's modulus of TaN/Cu with 10.46 at.% Cu were 24 and 295 GPa, respectively, which amounted to 15 and 41.67% higher than Cu-free TaN. Among all, TaN/Cu with 10.46 at.% exhibited the lowest friction coefficient. The TaN/Cu coatings exhibited significantly higher antibacterial activity than Cu-free TaN against Pseudomonas aeruginosa. On TaN, the bacterial count was about 4 × 106 CFU, whereas it was dropped to 1.2 × 102 CFU in case of TaN/Cu with 10.46 at.% Cu. The bacterial count was decreased from 9 to 6 when the Cu content increased from 25.54 to 30.04 at.%. Live bacterial cells were observed in the SEM images of TaN, and dead cells were found on TaN/Cu. Overall, TaN/Cu with 10.46 at.% Cu was found to be a potential coating composition in terms of higher antimicrobial activity and mechanical durability.

7.
Materials (Basel) ; 15(9)2022 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-35591688

RESUMEN

In this article, the depositions and functional characterizations of Ta-N and Ta-Al-N coatings for protection purposes, grown by reactive high-power impulse magnetron sputtering onto silicon substrates, are described. Nitride films were grown while changing the substrate polarization voltage (i.e., the applied bias voltage) during the process. Moreover, the effects of adding Al to form a ternary system and the resulting variation of the coatings' mechanical and tribological properties have been widely investigated by nanoindentation, scratch, and wear tests. Micro-Raman characterization has been applied to the wear tracks to explore the comprehensive tribo-environment and wear mechanism. Interestingly, Ta-Al-N films, despite significantly improved mechanical properties, show a premature failure with respect to Ta-N coatings. The wear mechanisms of Ta-N and Ta-Al-N systems were revealed to be very different. Indeed, Ta-Al-N films suffer higher oxidation phenomena during wear, with the formation of an oxidized surface tribofilm and a reduced wear resistance, while Ta-N coatings undergo plastic deformation at the wear surface, with a slightly adhesive effect.

8.
Angew Chem Int Ed Engl ; 60(16): 9003-9008, 2021 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-33556216

RESUMEN

The synthesis of polynitrogen compounds is of great importance due to their potential as high-energy-density materials (HEDM), but because of the intrinsic instability of these compounds, their synthesis and stabilization is a fundamental challenge. Polymeric nitrogen units which may be stabilized in compounds with metals at high pressure are now restricted to non-branched chains with an average N-N bond order of 1.25, limiting their HEDM performances. Herein, we demonstrate the synthesis of a novel polynitrogen compound TaN5 via a direct reaction between tantalum and nitrogen in a diamond anvil cell at circa 100 GPa. TaN5 is the first example of a material containing branched all-single-bonded nitrogen chains [N5 5- ]∞ . Apart from that we discover two novel Ta-N compounds: TaN4 with finite N4 4- chains and the incommensurately modulated compound TaN2-x , which is recoverable at ambient conditions.

9.
J Funct Biomater ; 11(2)2020 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-32295032

RESUMEN

Biodegradable Mg alloys have appeared as the most appealing metals for biomedical applications, particularly as temporary bone implants. However, issues regarding high corrosion rate and biocompatibility restrict their application. Hence, in the present work, nanostructured clinoenstatite (CLT, MgSiO3)/tantalum nitride (TaN) was deposited on the Mg-Ca-Zn alloy via electrophoretic deposition (EPD) along with physical vapor deposition (PVD) to improve the corrosion and biological characteristics of the Mg-Ca-Zn alloy. The TaN intermediate layer with bubble like morphology possessed a compact and homogenous structure with a thickness of about 950 nm while the thick CLT over-layer (~15 µm) displayed a less compact structure containing nano-porosities as well as nanoparticles with spherical morphology. The electrochemical tests demonstrated that the as prepared CLT/TaN film is able to substantially increase the anticorrosion property of Mg-Ca-Zn bare alloy. Cytocompatibility outcomes indicated that formation of CLT and TaN on the Mg bare alloy surface enhanced cell viability, proliferation and growth, implying excellent biocompatibility. Taken together, the CLT/TaN coating exhibits appropriate characteristic including anticorrosion property and biocompatibility in order to employ in biomedical files.

10.
Appl Microsc ; 50(1): 7, 2020 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-33580437

RESUMEN

Tantalum nitride (TaNx) thin films were grown utilizing an inductively coupled plasma (ICP) assisted direct current (DC) sputtering, and 20-100% improved microhardness values were obtained. The detailed microstructural changes of the TaNx films were characterized utilizing transmission electron microscopy (TEM), as a function of nitrogen gas fraction and ICP power. As nitrogen gas fraction increases from 0.05 to 0.15, the TaNx phase evolves from body-centered-cubic (b.c.c.) TaN0.1, to face-centered-cubic (f.c.c.) δ-TaN, to hexagonal-close-packing (h.c.p.) ε-TaN phase. By increasing ICP power from 100 W to 400 W, the f.c.c. δ- TaN phase becomes the main phase in all nitrogen fractions investigated. The higher ICP power enhances the mobility of Ta and N ions, which stabilizes the δ-TaN phase like a high-temperature regime and removes the micro-voids between the columnar grains in the TaNx film. The dense δ-TaN structure with reduced columnar grains and micro-voids increases the strength of the TaNx film.

11.
ACS Appl Mater Interfaces ; 11(17): 15457-15466, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30964262

RESUMEN

Tantalum nitride is a promising photoanode material for solar water splitting, but further study and practical use are constrained by the harsh conditions of the synthesis from Ta metal. Here, we report the direct deposition of crystalline Ta3N5 on fluorine-doped tin oxide (FTO) substrate via a custom-built atomic layer deposition (ALD) system. A combination of TaCl5 (Ta precursor) and ammonia (N source) was sequentially pulsed into the ALD reactor with the substrate heated to 550 °C to deposit compact and thin films of Ta3N5 with controllable thicknesses on FTO substrates. Importantly, it is shown that the FTO is chemically and structurally stable under the reducing conditions of ammonia at 550 °C. These electrodes produced an exceptional photocurrent onset potential of ∼0.3 V versus reversible hydrogen electrode (RHE) with a maximum photocurrent of ∼2.4 mA cm-2 at 1.23 V versus RHE. Results of photoelectrochemical investigations as a function of film thickness and illumination direction reveal that the performance of Ta3N5 is controlled by a hole diffusion length of ∼50 nm. These results are crucial for the successful integration of Ta3N5 in efficient unassisted water-splitting applications.

12.
ACS Appl Mater Interfaces ; 9(41): 35988-35997, 2017 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-28952716

RESUMEN

A metal-interlayer-semiconductor (M-I-S) structure with excellent thermal stability and electrical performance for a nonalloyed contact scheme is developed, and considerations for designing thermally stable M-I-S structure are demonstrated on the basis of n-type germanium (Ge). A thermal annealing process makes M-I-S structures lose their Fermi-level unpinning and electron Schottky barrier height reduction effect in two mechanisms: (1) oxygen (O) diffusion from the interlayer to the contact metal due to high reactivity of a pure metal contact with O and (2) interdiffusion between the contact metal and semiconductor through grain boundaries of the interlayer. A pure metal contact such as titanium (Ti) provides very poor thermal stability due to its high reactivity with O. A structure with a tantalum nitride (TaN) metal contact and a titanium dioxide (TiO2) interlayer exhibits moderate thermal stability up to 400 °C because TaN has much lower reactivity with O than with Ti. However, the TiO2 interlayer cannot prevent the interdiffusion process because it is easily crystallized during thermal annealing and its grain boundaries act as diffusion path. A zinc oxide (ZnO) interlayer doped with group-III elements, such as an aluminum-doped ZnO (AZO) interlayer, acts as a good diffusion barrier due to its high crystallization temperature. A TaN/AZO/n-Ge structure provides excellent thermal stability above 500 °C as it can prevent both O diffusion and interdiffusion processes; hence, it exhibits Ohmic contact properties for all thermal annealing temperatures. This work shows that, to fabricate a thermally stable and low resistive M-I-S contact structure, the metal contact should have low reactivity with O and a low work-function, and the interlayer should have a high crystallization temperature and a low conduction band offset to Ge. Furthermore, new insights are provided for designing thermally stable M-I-S contact schemes for any semiconductor material that suffers from the Fermi-level pinning problem.

13.
ACS Appl Mater Interfaces ; 9(11): 9559-9566, 2017 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-28251847

RESUMEN

The photo(electro)chemical production of hydrogen by water splitting is an efficient and sustainable method for the utilization of solar energy. To improve photo(electro)catalytic activity, a Schottky-type barrier is typically useful to separate excited charge carriers in semiconductor electrodes. Here, we focused on studying the band diagrams and the Schottky-type barrier heights of Ta3N5, which is one of the most promising materials as a photoanode for water splitting. The band alignments of the undoped and n-type Ta3N5 with adsorbents in a vacuum were examined to determine how impurities and adsorbents affect the band positions and Fermi energies. The band edge positions as well as the density of surface states clearly depended on the density of ON impurities in the bulk and surface regions. Finally, the band diagrams of the n-type Ta3N5/water interfaces were calculated with an improved interfacial model to include the effect of electrode potential with explicit water molecules. We observed partial Fermi level pinning in our calculations at the Ta3N5/water interface, which affects the driving force for charge separation.

14.
Angew Chem Int Ed Engl ; 55(38): 11678-81, 2016 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-27510819

RESUMEN

The thermal reaction of diatomic tantalum nitride cation [TaN](+) with methane has been explored using FT-ICR mass spectrometry complemented by high-level quantum chemical calculation; based on this combined experimental/computational approach, mechanistic aspects of this novel, highly efficient C-N coupling process have been uncovered. In distinct contrast to [TaN](+) , its lighter congeners [VN](+) and [NbN](+) are inert towards methane under ambient conditions, and the origins of the remarkably variable efficiencies of the three metal nitrides are uncovered by CCSD(T) calculations.

15.
Chemistry ; 21(27): 9624-8, 2015 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-26032659

RESUMEN

One of the major hurdles that impedes the practical application of photoelectrochemical (PEC) water splitting is the lack of stable photoanodes with low onset potentials. Here, we report that the Ni(OH)x/MoO3 bilayer, acting as a hole-storage layer (HSL), efficiently harvests and stores holes from Ta3N5, resulting in at least 24 h of sustained water oxidation at the otherwise unstable Ta3N5 electrode and inducing a large cathodic shift of ≈600 mV in the onset potential of the Ta3N5 electrode.

16.
Angew Chem Int Ed Engl ; 54(10): 3047-51, 2015 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-25611198

RESUMEN

Cocatalysts have been extensively used to promote water oxidation efficiency in solar-to-chemical energy conversion, but the influence of interface compatibility between semiconductor and cocatalyst has been rarely addressed. Here we demonstrate a feasible strategy of interface wettability modification to enhance water oxidation efficiency of the state-of-the-art CoO(x)/Ta3N5 system. When the hydrophobic feature of a Ta3N5 semiconductor was modulated to a hydrophilic one by in situ or ex situ surface coating with a magnesia nanolayer (2-5 nm), the interfacial contact between the hydrophilic CoO(x) cocatalyst and the modified hydrophilic Ta3N5 semiconductor was greatly improved. Consequently, the visible-light-driven photocatalytic oxygen evolution rate of the resulting CoO(x)/MgO(in)-Ta3N5 photocatalyst is ca. 23 times that of the pristine Ta3N5 sample, with a new record (11.3%) of apparent quantum efficiency (AQE) under 500-600 nm illumination.

17.
Chemistry ; 20(49): 16384-90, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25314682

RESUMEN

Ta3 N5 is a promising photoanode candidate for photoelectrochemical water splitting, with a band gap of about 2.1 eV and a theoretical solar-to-hydrogen efficiency as high as 15.9 % under AM 1.5 G 100 mW cm(-2) irradiation. However, the presently achieved highest photocurrent (ca. 7.5 mA cm(-2) ) on Ta3 N5 photoelectrodes under AM 1.5 G 100 mW cm(-2) is far from the theoretical maximum (ca. 12.9 mA cm(-2) ), which is possibly due to serious bulk recombination (poor bulk charge transport and charge separation) in Ta3 N5 photoelectrodes. In this study, we show that volatilization of intentionally added Ge (5 %) during the synthesis of Ta3 N5 promotes the electron transport and thereby improves the charge-separation efficiency in bulk Ta3 N5 photoanode, which affords a 320 % increase of the highest photocurrent comparing with that of pure Ta3 N5 photoanode under AM 1.5 G 100 mW cm(-2) simulated sunlight.

18.
Angew Chem Int Ed Engl ; 53(28): 7295-9, 2014 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-24890044

RESUMEN

Photoelectrochemical (PEC) water splitting is an ideal approach for renewable solar fuel production. One of the major problems is that narrow bandgap semiconductors, such as tantalum nitride, though possessing desirable band alignment for water splitting, suffer from poor photostability for water oxidation. For the first time it is shown that the presence of a ferrihydrite layer permits sustainable water oxidation at the tantalum nitride photoanode for at least 6 h with a benchmark photocurrent over 5 mA cm(-2) , whereas the bare photoanode rapidly degrades within minutes. The remarkably enhanced photostability stems from the ferrihydrite, which acts as a hole-storage layer. Furthermore, this work demonstrates that it can be a general strategy for protecting narrow bandgap semiconductors against photocorrosion in solar water splitting.

19.
Small ; 10(15): 3038-44, 2014 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-24706456

RESUMEN

Multilayer Ta3 N5 hollow sphere-nanofilms with precisely tunable numbers of layers are successfully fabricated by the combination of oil-water interfacial self-assembly strategy and the controllable sol-gel reaction of precursors. The photoelectrochemical water splitting properties of the as-obtained Ta3 N5 hollow sphere-nanofilms are significantly enhanced and found to be highly dependent on the layer numbers of the nanofilms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA