Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 8(9)2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32825654

RESUMEN

Innate immune molecules, SP-A1 (6A2, 6A4) and SP-A2 (1A0, 1A3), differentially affect young mouse survival after infection. Here, we investigated the impact of SP-A variants on the survival of aged mice. hTG mice carried a different SP-A1 or SP-A2 variant and SP-A-KO were either infected with Klebsiella pneumoniae or exposed to filtered air (FA) or ozone (O3) prior to infection, and their survival monitored over 14 days. In response to infection alone, no gene- or sex-specific (except for 6A2) differences were observed; variant-specific survival was observed (1A0 > 6A4). In response to O3, gene-, sex-, and variant-specific survival was observed with SP-A2 variants showing better survival in males than females, and 1A0 females > 1A3 females. A serendipitous, and perhaps clinically important observation was made; mice exposed to FA prior to infection exhibited significantly better survival than infected alone mice. 1A0 provided an overall better survival in males and/or females indicating a differential role for SP-A genetics. Improved ventilation, as provided by FA, resulted in a survival of significant magnitude in aged mice and perhaps to a lesser extent in young mice. This may have clinical application especially within the context of the current pandemic.

2.
Front Immunol ; 9: 2404, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30459763

RESUMEN

Surfactant protein A (SP-A) is involved in lung innate host defense and surfactant-related functions. The human SFTPA1 and SFTPA2 genes encode SP-A1 and SP-2 proteins, and each gene has been identified with numerous genetic variants. SP-A1 and SP-A2 differentially enhance bacterial phagocytosis. Sex differences have been observed in pulmonary disease and in survival of wild type and SP-A knockout (KO) mice. The impact of human SP-A variants on survival after infection is unknown. In this study, we determined whether SP-A variants differentially affect survival of male and female mice infected with Klebsiella pneumoniae. Transgenic (TG) mice, where each carries a different human (h) SP-A1 (6A2, 6A4), SP-A2 (1A0, 1A3) variant or both variants SP-A1/SP-A2 (6A2/1A0, co-ex), and SP-A- KO, were utilized. The hTG and KO mice were infected intratracheally with K. pneumoniae bacteria, and groups of KO mice were treated with SP-A1 or SP-A2 either prior to and/or at the time of infection and survival for both experimental groups was monitored over 14 days. The binding of purified SP-A1 and SP-A2 proteins to phagocytic and non-phagocytic cells and expression of cell surface proteins in alveolar macrophages (AM) from SP-A1 and SP-A2 mice was examined. We observed gene-, variant-, and sex-specific (except for co-ex) differences with females showing better survival: (a) Gene-specific differences: co-ex = SP-A2 > SP-A1 > KO (both sexes); (b) Variant-specific survival co-ex (6A2/1A0) = 1A0 > 1A3 = 6A2 > 6A4 (both sexes); (c) KO mice treated with SPs (SP-A1 or SP-A2) proteins exhibit significantly (p < 0.05) better survival; (d) SP-A1 and SP-A2 differentially bind to phagocytic, but not to non-phagocytic cells, and AM from SP-A1 and SP-A2 hTG mice exhibit differential expression of cell surface proteins. Our results indicate that sex and SP-A genetics differentially affect survival after infection and that exogenous SP-A1/SP-A2 treatment significantly improves survival. We postulate that the differential SP-A1/SP-A2 binding to the phagocytic cells and the differential expression of cell surface proteins that bind SP-A by AM from SP-A1 and SP-A2 mice play a role in this process. These findings provide insight into the importance of sex and innate immunity genetics in survival following infection.


Asunto(s)
Predisposición Genética a la Enfermedad , Variación Genética , Interacciones Huésped-Patógeno/genética , Infecciones por Klebsiella/genética , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/fisiología , Proteína A Asociada a Surfactante Pulmonar/genética , Animales , Femenino , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/mortalidad , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Fagocitos/inmunología , Fagocitos/metabolismo , Pronóstico , Factores Sexuales
3.
Respir Res ; 19(1): 23, 2018 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-29394894

RESUMEN

BACKGROUND: Surfactant Protein-A (SP-A) is a major protein component of surfactant and plays a role in surfactant-related functions and innate immunity. Human SP-A consists of two functional genes, SFTPA1 and SFTPA2, encoding SP-A1 and SP-A2 proteins, respectively and each is identified with numerous genetic variants. These differentially enhance bacterial phagocytosis, with SP-A2 variants being more effective than SP-A1. METHODS: Lung functions of humanized transgenic (hTG) mice that carry different SP-A1 and SP-A2 variants or both variants SP-A1/SP-A2 (6A2/1A0, co-ex), as well as SP-A knockout (KO), were studied. The animals were connected to a flexiVent system to obtain forced oscillation technique (FOT) measurements and the data were analyzed using various models. Lung function was assessed after infection (baseline) and following inhaled methacholine concentrations (0-50 mg/mL). RESULTS: Here, we investigated the role of SP-A variants on airway function after Klebsiella pneumoniae (Kp) infection (baseline) and following inhaled methacholine. We found that: 1) in the absence of methacholine no significant differences were observed between SP-A1 and SP-A2 variants and/or SP-A knockout (KO) except for sex differences in most of the parameters studied. 2) In response to methacholine, i) sex differences were observed that were reverse of those observed in the absence of methacholine; ii) SP-A2 (1A3) gene variant in males exhibited increased total and central airway resistance (Rrs and Rn) versus all other variants; iii) In females, SP-A2 (1A3) and SP-A1 (6A2) variants had similar increases in total and central airway resistance (Rrs and Rn) versus all other variants; iv) Allele-specific differences were observed, a) with SP-A2 (1A3) exhibiting significantly higher lung functions versus SP-A2 (1A0) in both sexes, except for Crs, and b) SP-A1 (6A2, 6A4) had more diverse changes in lung function in both sexes. CONCLUSION: We conclude that, in response to infection and methacholine, SP-A variants differentially affect lung function and exhibit sex-specific differences consistent with previously reported findings of functional differences of SP-A variants. Thus, the observed changes in respiratory function mechanics provide insight into the role and importance of genetic variation of innate immune molecules, such as SP-A, on mechanical consequences of lung function after infection and inhaled substances.


Asunto(s)
Inmunidad Innata/fisiología , Infecciones por Klebsiella/genética , Klebsiella pneumoniae , Proteína A Asociada a Surfactante Pulmonar/genética , Caracteres Sexuales , Animales , Femenino , Variación Genética/fisiología , Humanos , Infecciones por Klebsiella/inmunología , Pulmón/inmunología , Pulmón/microbiología , Pulmón/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Proteína A Asociada a Surfactante Pulmonar/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA