Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 407
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Carbohydr Polym ; 345: 122595, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39227114

RESUMEN

Cellulose nanocrystals (CNCs)-based stimuli responsive photonic materials demonstrate great application potential in mechanical and chemical sensors. However, due to the hydrophilic property of cellulose molecular, a significant challenge is to build a water-resistant photonic CNCs material. Here, inspired by butterfly wings with vivid structural color and superhydrophobic property, we have designed a CNCs based superhydrophobic iridescent film with hierarchical structures. The iridescent colored layer is ascribed to the chiral nematic alignment of CNCs, the superhydrophobic layer is ascribed to the micro-nano structures of polymer microspheres. Specially, superhydrophobic iridescent CNCs film could be used as an efficient colorimetric humidity sensor due to the existence of 'stomates' on superhydrophobic layer, which allowed the humid gas to enter into and out from the humidity responsive chiral nematic layers. Meanwhile, superhydrophobic iridescent films show out-standing self-cleaning and anti-fouling performance. Moreover, when the one side of the CNCs film was covered with superhydrophobic layer, the Janus film displays asymmetric expansion and bending behaviors as well as responsive structural colors in hydrous ethanol. This CNCs based hierarchical photonic materials have promising applications including photonic sensors suitable for extreme environment and smart photonic actuators.

2.
J Colloid Interface Sci ; 678(Pt B): 684-692, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39265339

RESUMEN

Color-tunable actuators with motion and color-changing functions have attracted considerable attention in recent years, yet it remains a challenge to achieve the autonomous regulation of motion and color. Inspired by Apatura ilia butterfly with dynamic structural color and Pelargonium carnosum plant with moisture responsive bilayer structure, an automatic color-tunable actuator is developed by integrating photonic crystals layer and hygroscopic layer. Taking advantage of the asymmetric hygroscopicity between two layers and the angle-dependent structural color of photonic crystals, this actuator can continuously self-flicker in humid environment by visual switching in structural color due to automated cyclic motion. The actuator is assembled into the self-flapping biomimetic butterfly with switchable color and the self-reporting information array with dynamic visual display, demonstrating its autoregulatory motion and color. This work provides a new strategy for developing automatic color-tunable actuator and suggests its potential in the intelligent robot and optical display.

3.
Small Methods ; : e2400447, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115353

RESUMEN

Various fascinating optical characteristics in organisms encourage scientists to develop biomimetic synthesis strategies and mimic their unique microstructure. Inspired by the Chameleon's skin with tunable color and superior flexibility, this work designs the evaporated-induced self-assembly technique to synthesize the chiral photonic crystal film. Ultrasonic-intensified and additive-assisted techniques synergistically optimize the film properties, on the aspects of optic and mechanic. The film shows considerable rigidity and superior flexibility, which can undergo multiple mechanical deformations. Without destroying the chiral nematic structure, the ultimate strain approaches 50%, which exceeds most cellulose-derived film materials. It also integrates excellent optical performance. The film color can cover the total visible region by tuning the photonic bandgap and has angle-dependent properties. It can make the response to humidity and solvents, and chromaticity variation reflects the degree of stimulation. Importantly, this structural-dependent color change is reversible. Lastly, the photonic crystal materials with excellent mechanics and unique optics have been applied in the security. The anti-counterfeiting material design contains photonic crystal ink, repeatable writing paper, information-hiding film, and color-changing labels, with the features of environmentally friendly, economical, non-destructive, and convenient for authentication.

4.
Chempluschem ; : e202400449, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39109458

RESUMEN

A magnetically responsive photonic crystal of colloidal nanosheets can exhibit a controllable structural color, offering diverse potential applications. In this study, we systematically investigated how the lateral sizes of graphene oxide (GO) nanosheets affect their magnetic responsiveness in a photonic system. Contrary to the prediction that larger lateral sizes of nanosheets would be more responsive to an applied magnetic field based on the magnetic energy of anisotropic materials, we discovered that GO nanosheets with larger lateral sizes in the photonic system scarcely responded to a 12 T magnetic field. The lack of magnetic response may be due to the strongly restricted rotational motion of GO nanosheets by mutual electrostatic forces. In contrast, GO nanosheets with medium lateral sizes readily responded to the 12 T magnetic field, forming a uniaxially oriented structure that resulted in a vivid structural color. However, smaller GO nanosheets displayed a less vivid structural color, possibly because of less structural ordering of GO nanosheets. Finally, we found that the photonic crystal of GO nanosheets with optimized lateral sizes responded effectively to the 12 T magnetic field across various GO concentrations, resulting in a vivid and tunable structural color.

5.
Nanotechnology ; 35(46)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39159657

RESUMEN

Amorphous arrays assembled from colloidal microspheres are a way that obtains angle-independent structural colors. In order to obtain additional properties, colloidal microspheres, which are constituent units, can be modified with other materials. Here, we utilized the silane-functionalized carbon quantum dots (SiCDs) by incorporating them into the Stöber reaction to fabricate Fe3O4@SiO2/SiCDs nanospheres with a core-shell structure. Amorphous colloidal arrays (ACAs) were constructed on commercial printing paper using Fe3O4@SiO2/SiCDs nanoparticles as structural units by a simple permeation assembly. Macroscopically, the prepared ACAs exhibit the magnetic properties of Fe3O4, while under sunlight, they display bright, angle-independent structural colors. Under ultraviolet light, the array shows significant fluorescence. This enables the presentation of multidimensional information under varying magnetic and lighting conditions. By adjusting the thickness of the outer SiO2/SiCDs composite layer, the optical properties and magnetism can be controlled easily. Moreover, due to the strong light absorption capability and high refractive index of Fe3O4, the digital patterns constructed with Fe3O4@SiO2/SiCDs nanospheres demonstrate excellent multi-level anti-counterfeiting characteristics, even under water exposure. The magnetic properties of Fe3O4@SiO2/SiCDs nanospheres, along with their distinct display characteristics under different optical environments, suggest their wide applicability in the fields of multifunctional anti-counterfeiting pigments, bioimaging, and sensing displays.

6.
Small ; : e2403525, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39087369

RESUMEN

Living organisms in nature possess diverse and vibrant structural colors generated from their intrinsic surface micro/nanostructures. These intricate micro/nanostructures can be harnessed to develop a new generation of colorful materials for various fields such as photonics, information storage, display, and sensing. Recent advancements in the fabrication of photonic crystals have enabled the preparation of structurally colored materials with customized geometries using 3D printing technologies. Here, a comprehensive review of the historical development of fabrication methods for photonic crystals is provided. Diverse 3D printing approaches along with the underlying mechanisms, as well as the regulation methods adopted to generate photonic crystals with structural color, are discussed. This review aims to offer the readers an overview of the state-of-the-art 3D printing techniques for photonic crystals, present a guide and considerations to fabricate photonic crystals leveraging different 3D printing methods.

7.
ACS Appl Mater Interfaces ; 16(34): 45632-45639, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39146238

RESUMEN

Monitoring chemical levels is crucial for safeguarding both the environment and public health. Elevated levels of ammonia, for instance, can harm both humans and aquatic ecosystems, often indicating contamination from agriculture, industry, or sewage. Developing portable, high-resolution, and affordable methods for in situ monitoring of ammonia is thus imperative. Plasmonic sensors offer a promising solution, detecting ammonia by correlating changes in their optical response to the target analyte's concentration. While they are highly sensitive and can be fabricated in a variety of portable and user-friendly formats, some still require reagents or expensive optical equipment, which hinder their widespread adoption. Here, we present a self-assembled nanoplasmonic colorimetric sensor capable of directly detecting ammonia concentrations in aqueous matrices. The proposed sensor exploits the plasmonic resonance of the nanostructures to transduce changes in the chemical environment into alterations in color, offering a label-free method for real-time analysis. The sensor is fabricated using a self-assembling technique compatible with low-cost mass production based on aluminum and aluminum oxide, ensuring affordability and avoiding the use of other toxic chemicals. We developed a model to predict ammonia concentrations based on visible color change of the sensor, achieving a detection limit of 8.5 ppm. Furthermore, to address the need for on-site detection, we integrated smartphone technology for real-time color change analysis, eliminating the need for expensive, bulky optical instruments. Indeed, our approach offers a cost-effective, portable, and user-friendly solution for ammonia detection in water without the need for chemical reagents or spectrometers, making it ideal for field applications. Interestingly, this platform extends its applicability beyond ammonia detection, enabling the monitoring of various chemicals using a smartphone, without the need for any additional costly equipment.


Asunto(s)
Amoníaco , Colorimetría , Teléfono Inteligente , Amoníaco/análisis , Colorimetría/instrumentación , Colorimetría/métodos , Contaminantes Químicos del Agua/análisis , Sistemas de Atención de Punto , Límite de Detección , Agua/química
8.
Angew Chem Int Ed Engl ; : e202413559, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39188146

RESUMEN

Stimuli responsive optical materials are attractive for many areas, from healthcare to art design. However, creating intricate color-changing patterns for visual information is still a challenge. This work describes the preparation of mechanochromic structural colored intricate pictures imprinted in cholesteric liquid crystal elastomers by using a chiral isosorbide molecular photo-switch. The photo-switch contains a photoisomerizable cinnamate moiety and was incorporated in a main chain liquid crystal oligomer with photopolymerizable acrylate end groups. After coating, the structural colored film was irradiated with ultraviolet (UV) light in air causing E/Z isomerization of the cinnamate units leading to a redshift of the structural color of the film. A grayscale photomask was used to spatially control the photoisomerization reaction and imprint colorful pictures such as portraits and landscapes, in the cholesteric liquid crystal films with high resolution. Photopolymerization in a nitrogen atmosphere led to a mechanochromic cholesteric liquid crystal elastomer with striking structural colors that blueshift upon strain independently. The sharp details of the patterns were preserved even under deformation and the system returned to the initial state upon strain removal. Our work offers a simple photo-switch approach to prepare stimuli responsive optical polymers imprinted with color-changing pictures of unprecedented complexity.

9.
J Colloid Interface Sci ; 677(Pt B): 704-718, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39163665

RESUMEN

Photonic ionogels with dual electrical and optical output have been intensively studied. However, tunable temperature-responsive photonic ionogel assembled by thermosensitive nanogels has not been studied yet. Herein, an innovative approach to fabricate photonic ionogels has been developed for smart wearable devices with tunable temperature sensitivity and structural color. Firstly, poly(isopropylacrylamide-r-phenylmaleanilic acid) P(NIPAm-r-NPMA) nanogels self-assemble into photonic crystals in 2-hydroxyethyl acrylate (HEA), water, and the ionic liquid of 1-ethyl-3-methylimidazolium trifluoromethanesulfonate. And then robust photonic ionogels are developed through a polymerization of 2-hydroxyethyl acrylate crosslinked by poly(ethylene glycol) diacrylate (PEGDA). The incorporation of the ionic liquid, 1-ethyl-3-methylimidazolium trifluoromethanesulfonate, enhances the mechanical strength of photonic ionogels and tunes the temperature-sensitivity of the ionogels, making them adaptable to various environmental conditions. The findings demonstrate that these ionogels can serve dual functions in smart wearable devices, combining electrical and optical signal outputs due to the conductivity of the ionic liquid and structural color from the nanogel assembly. The resultant photonic ionogels exhibit exceptional substrate adhesion, mechanical stability, and fast resilience. More significantly, the nanogels within these ionogels serve as the building blocks of photonic crystals (PCs) endow with angle-independent coloration and enhance stretchability beyond 200 %, while the stretchability of the ionogles without the nanogels is only about 100 %. Our photonic ionogels with tunable temperature-sensitivity and dual outputs will open an avenue to the development of the innovative smart wearable devices.

10.
Molecules ; 29(16)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39202820

RESUMEN

In this study, a glaze slurry was prepared with different contents of tricalcium phosphate. It was then applied to a fly ash microcrystalline ceramic billet and sintered at 1180 °C for 30 min to prepare the complex. The aim was to obtain a high value-added application of fly ash in order to reduce environmental pollution. The study systematically investigated the influence of the Ca3(PO4)2 content on the crystal phase evolution, physical-mechanical properties, and micro-morphology of the complex. The results showed that products sintered at 1180 °C with 8 wt% Ca3(PO4)2 demonstrated better performance, with a water absorption of 0.03% and a Vickers microhardness of 6.5 GPa. Additionally, the study observed a strong correlation between the Ca3(PO4)2 content and the opacity effect. A feasible opacity mechanism was also proposed to explain the variation of glaze colors and patterns with different contents of Ca3(PO4)2.

11.
Materials (Basel) ; 17(16)2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39203158

RESUMEN

Mechanochromic materials provide optical changes in response to mechanical stress and are of interest in a wide range of potential applications such as strain sensing, structural health monitoring, and encryption. Advanced manufacturing such as 3D printing enables the fabrication of complex patterns and geometries. In this work, classes of stretchable mechanochromic materials that provide visual color changes when tension is applied, namely, dyes, polymer dispersed liquid crystals, liquid crystal elastomers, cellulose nanocrystals, photonic nanostructures, hydrogels, and hybrid systems (combinations of other classes) are reviewed. For each class, synthesis and processing, as well as the mechanism of color change are discussed. To enable materials selection across the classes, the mechanochromic sensitivity of the different classes of materials are compared. Photonic systems demonstrate high mechanochromic sensitivity (Δnm/% strain), large dynamic color range, and rapid reversibility. Further, the mechanochromic behavior can be predicted using a simple mechanical model. Photonic systems with a wide range of mechanical properties (elastic modulus) have been achieved. The addition of dyes to photonic systems has broadened the dynamic range, i.e., the strain over which there is an optical change. For applications in which irreversible color change is desired, dye-based systems or liquid crystal elastomer systems can be formulated. While many promising applications have been demonstrated, manufacturing uniform color on a large scale remains a challenge. Standardized characterization methods are needed to translate materials to practical applications. The sustainability of mechanochromic materials is also an important consideration.

12.
ACS Appl Mater Interfaces ; 16(36): 48448-48456, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39186756

RESUMEN

Structural colors particularly of the angle-independent category stemming from wavelength-dependent light scattering have aroused increasing interest due to their considerable applications spanning displays and sensors to detection. Nevertheless, these colors would be heavily altered and even disappear during practical applications, which is related with the variation of refractive index mismatch by liquid wetting/infiltrating. Inspired by bird feathers, we propose a simple deposition toward the coating with angle-independent structural color and superamphiphobicity. The coating is composed of ∼200 nm-sized channel-type structures between hollow silica and air nanostructures, exhibiting a robust sapphire blue color independent of intense liquid intrusion, which duplicates the characteristics of the back feather of Eastern Bluebird. A high color saturation and superamphiphobicity of the biomimetic coating are optimized by manipulating the coating parameters or adding black substances. Excellent durability under harsh conditions endows the coating with long-term service life in various extreme environments.

13.
Int J Biol Macromol ; 275(Pt 1): 133501, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38960229

RESUMEN

Stimuli-responsive optical hydrogels are widely used in various fields including environmental sensing, optical encryption, and intelligent display manufacturing. However, these hydrogels are susceptible to water losses when exposed to air, leading to structural damage, significantly shortened service lives, and compromised durability. This study presents mechanically robust, environmentally stable, and multi-stimuli responsive optical organohydrogel fibers with customizable iridescent colors. These fibers are fabricated by incorporating tunicate cellulose nanocrystals, alginate, and acrylamide in a glycerol-water binary system. The synthesized fibers exhibit high strength (1.38 MPa), moisture retention capabilities, and elastic properties. Furthermore, a sensor based on these fibers demonstrates high- and low-temperature resistance along with stimuli-responsive characteristics, effectively detecting changes in environmental humidity and strains. Moreover, the fiber sensor demonstrates continuous, repeatable, and quantitatively predictable moisture discoloration responses across a humidity range of 11 % and 98 %. During strain sensing, the optical-organohydrogel-based sensor demonstrates a large working strain (50 %) and excellent cycling stability, underscoring its potential for effectively monitoring a wide range of intricate human motions. Overall, the synthesized fibers and their simple fabrication method can elicit new avenues for numerous related applications including the large-scale implementation of advanced wearable technology.


Asunto(s)
Celulosa , Humedad , Hidrogeles , Nanopartículas , Celulosa/química , Nanopartículas/química , Hidrogeles/química , Color , Fibras Ópticas , Humanos , Temperatura , Alginatos/química
14.
Adv Sci (Weinh) ; : e2403173, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39083316

RESUMEN

Photonic crystals are a new class of optical microstructure materials characterized by a dielectric constant that varies periodically with space and features a photonic bandgap. Inspired by natural photonic crystals such as butterfly scales, a series of artificial photonic crystals are developed for use in integrated photonic platforms, biosensing, communication, and other fields. Among them, colloidal photonic crystals (CPCs) have gained widespread attention due to their excellent optical properties and advantages, such as ease of preparation and functionalization. This work reviews the classification and self-assembly principles of CPCs, details some of the latest biomedical applications of large-area, high-quality CPCs prepared using advanced self-assembly methods, summarizes the existing challenges in CPC construction and application, and anticipates future development directions and optimization strategy. With further advancements, CPCs are expected to play a more critical role in biosensors, drug delivery, cell research, and other fields, bringing significant benefits to biomedical research and clinical practice.

15.
ACS Appl Mater Interfaces ; 16(28): 37318-37327, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38953533

RESUMEN

Structural color, renowned for its enduring vibrancy, has been extensively developed and applied in the fields of display and anticounterfeiting. However, its limitations in brightness and saturation hinder further application in these areas. Herein, we propose a pendant evaporation self-assembly method to address these challenges simultaneously. By leveraging natural convection and Marangoni flow synchronization, the self-assembly process enhances the dynamics and duration of colloidal nanoparticles, thereby enhancing the orderliness of colloidal photonic crystals. On average, this technique boosts the brightness of structural color by 20% and its saturation by 35%. Moreover, pendant evaporation self-assembly is simple and convenient to operate, making it suitable for industrial production. We anticipate that its adoption will remarkably advance the industrialization of structural color, facilitating its engineering applications across various fields, such as display technology and anticounterfeiting identification.

16.
Nanomicro Lett ; 16(1): 232, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954118

RESUMEN

Chronic diabetic wounds confront a significant medical challenge because of increasing prevalence and difficult-healing circumstances. It is vital to develop multifunctional hydrogel dressings, with well-designed morphology and structure to enhance flexibility and effectiveness in wound management. To achieve these, we propose a self-healing hydrogel dressing based on structural color microspheres for wound management. The microsphere comprised a photothermal-responsive inverse opal framework, which was constructed by hyaluronic acid methacryloyl, silk fibroin methacryloyl and black phosphorus quantum dots (BPQDs), and was further re-filled with a dynamic hydrogel. The dynamic hydrogel filler was formed by Knoevenagel condensation reaction between cyanoacetate and benzaldehyde-functionalized dextran (DEX-CA and DEX-BA). Notably, the composite microspheres can be applied arbitrarily, and they can adhere together upon near-infrared irradiation by leveraging the BPQDs-mediated photothermal effect and the thermoreversible stiffness change of dynamic hydrogel. Additionally, eumenitin and vascular endothelial growth factor were co-loaded in the microspheres and their release behavior can be regulated by the same mechanism. Moreover, effective monitoring of the drug release process can be achieved through visual color variations. The microsphere system has demonstrated desired capabilities of controllable drug release and efficient wound management. These characteristics suggest broad prospects for the proposed composite microspheres in clinical applications.

17.
Materials (Basel) ; 17(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38998321

RESUMEN

Structural-colored fabrics have been attracting much attention due to their eco-friendliness, dyelessness, and anti-fading properties. Monodisperse microspheres of metal, metal oxide, and semiconductors are promising materials for creating photonic crystals and structural colors owing to their high refractive indices. Herein, Cu2O microspheres were prepared by a two-step reduction method at room temperature; the size of Cu2O microspheres was controlled by changing the molar ratio of citrate to Cu2+; and the size of Cu2O microspheres was tuned from 275 nm to 190 nm. The Cu2O microsphere dispersions were prepared with the monodispersity of Cu2O microspheres. Furthermore, the effect of the concentration of Cu2O microsphere and poly(butyl acrylate) on the structural color was also evaluated. Finally, the stability of the structural color against friction and bending was also tested. The results demonstrated that the different structural colors of fabrics were achieved by adjusting the size of the Cu2O microsphere, and the color fastness of the structural color was improved by using poly(butyl acrylate) as the adhesive.

18.
J Esthet Restor Dent ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39076148

RESUMEN

OBJECTIVES: To evaluate the color-match with extracted natural teeth of three single-shade universal composites, a group-shade universal composite, and a highly translucent-shade conventional composite. METHODS: Twenty extracted human teeth were divided into light- and dark-shade groups (n = 10, LSG and DSG). A preparation was restored with the 3 single-shade universal composites, OMNICHROMA (OMC), Admira Fusion x-tra U (AFU), and Essentia U (ESU); a highly translucent-shade conventional composite, Tetric EvoCeram T (TEC-T); and two shades of a group-shade universal composite-Filtek Universal Restorative (FUR A1 and A4). Composites were photopolymerized, polished, and stored in water for 24 h. The ΔE00 value between the unprepared and restored surfaces was obtained using a spectrophotometer. Composite placement and measurements were repeated three times per tooth. Color differences were statistically analyzed with the within-between-subjects t-test and repeated-measures analysis of variance (ANOVA), followed by post hoc pairwise comparisons with a Bonferroni adjustment (α = 0.05). RESULTS: There were no statistically significant differences between OMC and FUR (A1 and A4). AFU and ESU showed significantly higher ΔE00 values than OMC and TEC-T (p < 0.05). Single-shade composites exhibited significantly higher ΔE00 values in the DSG than in the LSG except ESU (p < 0.05). None of the composites satisfied the criteria for an acceptable match (ΔE00 >1.8). CONCLUSION: OMC showed the same color matching ability as a group-shade universal composite. A highly translucent-shade conventional composite and OMC exhibited better color matching ability than other single-shade composites. Overall, single-shade universal composites performed better in lighter-shaded teeth. CLINICAL SIGNIFICANCE: Single-shade universal composites have the potential to reduce chair time by eliminating shade selection in cavities with lighter-shade teeth. Highly translucent incisal conventional composites also may be used if the appropriate shade of composite is not available.

19.
Micromachines (Basel) ; 15(6)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38930778

RESUMEN

Creatures in nature make extensive use of structural color adaptive camouflage to survive. Cholesteric liquid crystals, with nanostructures similar to those of natural organisms, can be combined with actuators to produce bright structural colors in response to a wide range of stimuli. Structural colors modulated by nano-helical structures can continuously and selectively reflect specific wavelengths of light, breaking the limit of colors recognizable by the human eye. In this review, the current state of research on cholesteric liquid crystal photonic actuators and their technological applications is presented. First, the basic concepts of cholesteric liquid crystals and their nanostructural modulation are outlined. Then, the cholesteric liquid crystal photonic actuators responding to different stimuli (mechanical, thermal, electrical, light, humidity, magnetic, pneumatic) are presented. This review describes the practical applications of cholesteric liquid crystal photonic actuators and summarizes the prospects for the development of these advanced structures as well as the challenges and their promising applications.

20.
J Colloid Interface Sci ; 672: 152-160, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38833735

RESUMEN

Optical information encryption with high encoding capacities can significantly boost the security level of anti-counterfeiting in the scenario of guaranteeing the authenticity of a wide scope of common and luxury goods. In this work, a novel counterfeiting material with high-degree complexity is fabricated by microencapsulating cholesteric liquid crystals and triplet-triplet annihilation upconversion fluorophores to integrate structural coloration with fluorescence and upconversion photoluminescence. Moreover, the multimode security ink presents tailorable optical behaviors and programmable abilities on flexible substrates by various printing techniques, which offers distinct information encryption under different optical modes. The advanced strategy provides a practical versatile platform for high-secure-level multimode optical inks with largely enhanced encoding capacities, programmability, printability, and cost-effectiveness, which manifests enormous potentials for information encryption and anti-counterfeiting technology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA