Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Cell Mol Med ; 28(7): e18171, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38506084

RESUMEN

SRC-1 functions as a transcriptional coactivator for steroid receptors and various transcriptional factors. Notably, SRC-1 has been implicated in oncogenic roles in multiple cancers, including breast cancer and prostate cancer. Previous investigations from our laboratory have established the high expression of SRC-1 in human HCC specimens, where it accelerates HCC progression by enhancing Wnt/beta-catenin signalling. In this study, we uncover a previously unknown role of SRC-1 in HCC metastasis. Our findings reveal that SRC-1 promotes HCC metastasis through the augmentation of MMP-9 expression. The knockdown of SRC-1 effectively mitigated HCC cell metastasis both in vitro and in vivo by suppressing MMP-9 expression. Furthermore, we observed a positive correlation between SRC-1 mRNA levels and MMP-9 mRNA levels in limited and larger cohorts of HCC specimens from GEO database. Mechanistically, SRC-1 operates as a coactivator for NF-κB and AP-1, enhancing MMP-9 promoter activity in HCC cells. Higher levels of SRC-1 and MMP-9 expression are associated with worse overall survival in HCC patients. Treatment with Bufalin, known to inhibit SRC-1 expression, significantly decreased MMP-9 expression and inhibited HCC metastasis in both in vitro and in vivo settings. Our results demonstrated the pivotal role of SRC-1 as a critical modulator in HCC metastasis, presenting a potential therapeutic target for HCC intervention.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Masculino , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Coactivador 1 de Receptor Nuclear/genética , Coactivador 1 de Receptor Nuclear/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , ARN Mensajero , Invasividad Neoplásica/genética , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica
2.
Genes Dis ; 9(5): 1281-1289, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35873031

RESUMEN

The effects of steroid hormones are believed to be mediated by their nuclear receptors (NRs). The p160 coactivator family, including steroid receptor coactivator-1 (SRC-1), 2 and 3, has been shown to physically interact with NRs to enhance their transactivational activities. Among which SRC-1 has been predominantly localized in the central nervous system including brain and spinal cord. It is not only localized in neurons but also detectable in neuroglial cells (mainly localized in the nuclei but also detectable in the extra-nuclear components). Although the expression of SRC-1 is regulated by many steroids, it is also regulated by some non-steroidal factors such as injury, sound and light. Functionally, SRC-1 has been implied in normal function such as development and ageing, learning and memory, central regulation on reproductive behaviors, motor and food intake. Pathologically, SRC-1 may play a role in the regulation of neuropsychiatric disorders (including stress, depression, anxiety, and autism spectrum disorder), metabolite homeostasis and obesity as well as tumorigenesis. Under most conditions, the related mechanisms are far from elucidation; although it may regulate spatial memory through Rictor/mTORC2-actin polymerization related synaptic plasticity. Several inhibitors and stimulator of SRC-1 have shown anti-cancer potentials, but whether these small molecules could be used to modulate ageing and central disorder related neuropathology remain unclear. Therefore, to elucidate when and how SRC-1 is turned on and off under different stimuli is very interesting and great challenge for neuroscientists.

3.
Open Med (Wars) ; 16(1): 1061-1069, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34307888

RESUMEN

Nasopharyngeal carcinoma (NPC) is characterized by high morbidity and morality, especially in Southern China. Transcription factors intensively participate in the initiation and development of NPC. This study aimed to investigate the roles of Src-1 in NPC. mRNA level was determined by qRT-PCR. Western blot was carried out for the protein level. CCK-8 assay was performed to determine cell viability, colony formation for NPC cell proliferation, and transwell for cell migration and invasion ability. The results showed Steroid receptor coactivator 1 (Src-1) was overexpressed in SNE-2 and 6-10B. The expression of Src-1 and SP2 was in positive correlation. Overexpression of Src-1 promoted the cell viability, colony formation, and epithelial-mesenchymal transition (EMT), manifested by the increase of migration and invasion ability, while knockdown of Src-1 exerted opposite effects. Additionally, knockdown or overexpression of SP2 reversed the effects of overexpressed or downregulated Src-1, which was reversed by the depletion of SP2. Moreover, Src-1 interacted with SP2 to regulate EMT-related genes such as E-cad, N-cad, Vimentin, and ZEB1, and proliferation- and apoptosis-related genes, such as bax, cytochrome c, and cleaved caspase3 and bcl-2. Thus, blocking the interaction between Src-1 and SP2 may be a therapeutic target for inhibiting the metastasis of NPC.

4.
Neurochem Res ; 46(7): 1830-1843, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33881662

RESUMEN

Steroid receptor coactivator 1 (SRC-1) is one of the coactivators recruited by the nuclear receptors (NRs) when NRs are activated by steroid hormones, such as glucocorticoid. SRC-1 is abundant in hippocampus and hypothalamus and is also related to some major risk factors for depression, implicated by its reduced expression after stress and its effect on hypothalamus-pituitary-adrenal gland axis function. However, whether SRC-1 is involved in the formation of depression remains unclear. In this study, we firstly established chronic unpredictable stress (CUS) to induce depressive-like behaviors in mice and found that SRC-1 expression was reduced by CUS. A large number of studies have shown that neuroinflammation is associated with stress-induced depression and lipopolysaccharide (LPS) injection can lead to neuroinflammation and depressive-like behaviors in mice. Our result indicated that LPS treatment also decreased SRC-1 expression in mouse brain, implying the involvement of SRC-1 in the process of inflammation and depression. Next, we showed that the chronic unpredictable mild stress (CUMS) failed to elicit the depressive-like behaviors and dramatically promoted the expression of SRC-1 in brain of wild type mice. What's more, the SRC-1 knockout mice were more susceptible to CUMS to develop depressive-like behaviors and presented the changed expression of glucocorticoid receptor. However, SRC-1 deficiency did not affect the microglia activation induced by CUMS. Altogether, these results indicate a correlation between SRC-1 level and depressive-like behaviors, suggesting that SRC-1 might be involved in the development of depression induced by stress.


Asunto(s)
Depresión/metabolismo , Coactivador 1 de Receptor Nuclear/deficiencia , Estrés Psicológico/metabolismo , Animales , Células Cultivadas , Depresión/etiología , Femenino , Suspensión Trasera , Hipocampo/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/metabolismo , Coactivador 1 de Receptor Nuclear/metabolismo , Embarazo , Estrés Psicológico/complicaciones
5.
Cancer Sci ; 112(2): 604-618, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33090636

RESUMEN

Glioblastoma (GBM) recurrence is attributed to the presence of therapy-resistant glioblastoma stem cells. Steroid receptor coactivator-1 (SRC-1) acts as an oncogenic regulator in many human tumors. The relationship between SRC-1 and GBM has not yet been studied. Herein, we investigate the role of SRC-1 in GBM. In this study, we found that SRC-1 expression is positively correlated with grades of glioma and inversely correlated with glioma patient's prognosis. Steroid receptor coactivator-1 promotes the proliferation, migration, and tumor growth of GBM cells. Notably, SRC-1 knockdown suppresses the stemness of GBM cells. Mechanistically, long noncoding RNA X-inactive specific transcript (XIST) is regulated by SRC-1 at the posttranscriptional level and mediates the function of SRC-1 in promoting stemness-like properties of GBM. Steroid receptor coactivator-1 can promote the expression of Kruppel-like factor 4 (KLF4) through the XIST/microRNA (miR)-152 axis. Additionally, arenobufagin and bufalin, SRC small molecule inhibitors, can reduce the proliferation and stemness of GBM cells. This study reveals SRC-1 promotes the stemness of GBM by activating the long noncoding RNA XIST/miR-152/KLF4 pathway and provides novel markers for diagnosis and therapy of GBM.


Asunto(s)
Neoplasias Encefálicas/patología , Regulación Neoplásica de la Expresión Génica/fisiología , Glioblastoma/patología , Coactivador 1 de Receptor Nuclear/metabolismo , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Proliferación Celular/genética , Glioblastoma/genética , Glioblastoma/metabolismo , Xenoinjertos , Humanos , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Ratas , Ratas Wistar , Transducción de Señal/fisiología
6.
Front Aging Neurosci ; 12: 145, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32625077

RESUMEN

Steroid receptor coactivator 1 (SRC-1) is the key coactivator because of its transcriptional activity. Previous studies have shown that SRC-1 is abundant in the hippocampus and has been implicated in cognition. SRC-1 is also related to some major risk factors for Alzheimer's disease (AD), such as a decline in estrogen and aging, however, whether SRC-1 is involved in the pathogenesis of AD remains unclear. In this study, we established SRC-1 knockout in AD mice by cross breeding SRC-1-/- mutant mice with APP/PS1 transgenic mice, and investigated the expression of some synaptic proteins, the amyloid ß (Aß) deposition, and activation of astrocytes and microglia in the hippocampus of APP/PS1×SRC-1-/- mice. The results showed that SRC-1 knockout neither affects the Aß plaque and activation of glia, nor changes the expression of synaptic proteins in AD model mice. The above results suggest that the complete deletion of SRC-1 in the embryo exerts no effect on the pathogenesis of APP/PS1 mice. Nevertheless, this study could not eliminate the possible role of SRC-1 in the development of AD due to the lack of observation of other events in AD such as tau hyperphosphorylation and the limitation of the animal model employed.

7.
Life Sci ; 245: 117386, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-32006528

RESUMEN

AIMS: Steroid receptor coactivator-1 (SRC-1) is a key coactivator for the efficient transcriptional activity of steroids in the regulation of hippocampal functions. However, the effect of SRC-1 on hippocampal memory processes remains unknown. Our aim was to investigate the roles of hippocampal SRC-1 in the consolidation and reconsolidation of contextual fear memory in mice. MAIN METHODS: Contextual fear conditioning paradigm was constructed in adult male C57BL/6 mice to examine the fear learning and memory processes. Adeno-associated virus (AAV) vector-mediated RNA interference (RNAi) was infused into hippocampus to block hippocampal SRC-1 level. Immunofluorescent staining was used to detect the efficiency of transfection. High plus maze and open field test were used to determine anxiety and locomotor activity. Western blot analyses were used to detect the expression of SRC-1 and synaptic proteins in the hippocampus. KEY FINDINGS: We first showed that the expression of SRC-1 was regulated by fear conditioning training in a time-dependent manner, and knockdown of SRC-1 impaired contextual fear memory consolidation without affecting innate anxiety or locomotor activity. In addition, hippocampal SRC-1 was also regulated by the retrieval of contextual fear memory, and downregulation of SRC-1 disrupted fear memory reconsolidation. Moreover, knockdown of SRC-1 reversed the increased GluR1 and PSD-95 levels induced by contextual fear memory retrieval. SIGNIFICANCE: Our data indicate that hippocampal SRC-1 is required for the consolidation and reconsolidation of contextual fear memory, and SRC-1 may be a potential therapeutic target for mental disorders that are involved in hippocampal memory dysfunction.


Asunto(s)
Miedo/efectos de los fármacos , Hipocampo/efectos de los fármacos , Memoria/efectos de los fármacos , Coactivador 1 de Receptor Nuclear/antagonistas & inhibidores , Animales , Western Blotting , Condicionamiento Clásico/efectos de los fármacos , Condicionamiento Clásico/fisiología , Miedo/fisiología , Miedo/psicología , Técnica del Anticuerpo Fluorescente , Hipocampo/fisiología , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Coactivador 1 de Receptor Nuclear/fisiología
8.
Acta Pharm Sin B ; 10(1): 33-41, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31993305

RESUMEN

Sepsis is an infection-induced systemic inflammatory syndrome. The immune response in sepsis is characterized by the activation of both proinflammatory and anti-inflammatory pathways. When sepsis occurs, the expression and activity of many inflammatory cytokines are markedly affected. Xenobiotic receptors are chemical-sensing transcription factors that play essential roles in the transcriptional regulation of drug-metabolizing enzymes (DMEs). Xenobiotic receptors mediate the functional crosstalk between sepsis and drug metabolism because the inflammatory cytokines released during sepsis can affect the expression and activity of xenobiotic receptors and thus impact the expression and activity of DMEs. Xenobiotic receptors in turn may affect the clinical outcomes of sepsis. This review focuses on the sepsis-induced inflammatory response and xenobiotic receptors such as pregnane X receptor (PXR), aryl hydrocarbon receptor (AHR), glucocorticoid receptor (GR), and constitutive androstane receptor (CAR), DMEs such as CYP1A, CYP2B6, CYP2C9, and CYP3A4, and drug transporters such as p-glycoprotein (P-gp), and multidrug resistance-associated protein (MRPs) that are affected by sepsis. Understanding the xenobiotic receptor-mediated effect of sepsis on drug metabolism will help to improve the safe use of drugs in sepsis patients and the development of new xenobiotic receptor-based therapeutic strategies for sepsis.

9.
CNS Neurosci Ther ; 25(6): 714-733, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30714337

RESUMEN

AIMS: The G-protein-coupled estrogen receptor GPR30 (also referred to as GPER) has been implicated in the estrogenic regulation of hippocampal plasticity and spatial memory; however, the molecular mechanisms are largely unclear. METHODS: In this study, we initially examined the levels of GPR30 in the hippocampus of postnatal, ovariectomy (OVX)- and letrozole (LET)-treated female mice. Under G1, G15, and/or OVX treatment, the spatial memory, spine density, levels of ERα, ERß, and SRC-1, selected synaptic proteins, mTORC2 signals (Rictor and p-AKT Ser473), and actin polymerization dynamics were subsequently evaluated. Furthermore, G1, G15, and/or E2 combined with SRC-1 and/or PI3K inhibitors, actin cytoskeleton polymerization modulator JPK, and CytoD treatments were used to address the mechanisms that underlie GPR30 regulation in vitro. Finally, mTORC2 activator A-443654 (A4) was used to explore the role of mTORC2 in GPR30 regulation of spatial memory. RESULTS: The results showed that high levels of GPR30 were detected in the adult hippocampus and the levels were downregulated by OVX and LET. OVX induced an impairment of spatial memory, and changes in other parameters previously described were reversed by G1 and mimicked by G15. Furthermore, the E2 effects on SRC-1 and mTORC2 signals, synaptic proteins, and actin polymerization were inhibited by G15, whereas G1 effects on these parameters were inhibited by the blockade of SRC-1 or PI3K; the levels of synaptic proteins were regulated by JPK and CytoD. Importantly, G15-induced actin depolymerization and spatial memory impairment were rescued by mTORC2 activation with A4. CONCLUSIONS: Taking together, these results demonstrated that decreased GPR30 induces actin depolymerization through SRC-1 and PI3K/mTORC2 pathways and ultimately impairs learning and memory, indicating its potential role as a therapeutic target against hippocampus-based, E2-related memory impairments.


Asunto(s)
Actinas/metabolismo , Estrógenos/metabolismo , Hipocampo/metabolismo , Receptores de Estrógenos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Memoria Espacial/fisiología , Animales , Línea Celular , Espinas Dendríticas/metabolismo , Femenino , Hipocampo/crecimiento & desarrollo , Aprendizaje por Laberinto/fisiología , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Ratones Endogámicos C57BL , Coactivador 1 de Receptor Nuclear/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Receptores de Estrógenos/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/antagonistas & inhibidores
10.
J Endocrinol ; 237(3): 255-269, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29636364

RESUMEN

The steroid receptor coactivator (SRC)-1 isoform/estrogen receptor (ER)-ß axis has an essential role in endometriosis progression. In this context, therefore, bufalin was employed as a 'tool compound' to evaluate inhibitors of SRC in alternative endometriosis treatment. Bufalin effectively suppressed the growth of primary human endometrial stroma cells isolated from endometriosis patients compared to women without endometriosis and immortalized human endometrial epithelial and stromal cells expressing the SRC-1 isoform compared to their parental cells in vitroIn vivo, compared to the vehicle, bufalin treatment significantly suppressed the growth of endometriotic lesions in mice with surgically induced endometriosis because bufalin disrupted the functional axis of SRC-1 isoform/ERß by increasing SRC-1 isoform protein stability, hyperactivating the transcriptional activity of the SRC-1 isoform and degrading the ERß protein by proteasome 26S subunit, non-ATPase 2 in endometriotic lesions. Bufalin treatment elevated the apoptosis signaling in epithelial cells of endometriotic lesions. In stromal cells of endometriotic lesions, bufalin treatment increased the levels of pyroptosis markers (caspase 1 and the active form of interleukin 1ß) and reduced proliferation. In addition, bufalin treatment increased the expression levels of endoplasmic reticulum-stress (ERS) markers (PKR-like ER kinase, protein disulfide isomerase and binding immunoglobulin) in endometriotic lesions. Collectively, the bufalin-induced disruption of the SRC-1 isoform/ERß axis might induce apoptosis, pyroptosis and ERS signaling in endometriotic lesions, causing the suppression of endometriosis. Therefore, future generations of SRC-modulators could be employed as an alternative medical approach for endometriosis treatment.


Asunto(s)
Apoptosis/efectos de los fármacos , Bufanólidos/farmacología , Endometriosis/patología , Piroptosis/efectos de los fármacos , Enfermedades Uterinas/patología , Animales , Células Cultivadas , Progresión de la Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Endometrio/efectos de los fármacos , Endometrio/patología , Endometrio/fisiología , Femenino , Fertilidad/efectos de los fármacos , Células HeLa , Humanos , Tamaño de la Camada/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Embarazo , Transducción de Señal/efectos de los fármacos , Células del Estroma/efectos de los fármacos , Células del Estroma/patología , Células del Estroma/fisiología
11.
Neuroscience ; 377: 114-125, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29524638

RESUMEN

Steroids have been demonstrated to play profound roles in the regulation of hippocampal function by acting on their receptors, which need coactivators for their transcriptional activities. Previous studies have shown that steroid receptor coactivator-1 (SRC-1) is the predominant coactivator in the hippocampus, but its exact role and the underlying mechanisms remain unclear. In this study, we constructed SRC-1 RNA interference (RNAi) lentiviruses, injected them into the hippocampus of male mice, and then examined the changes in the expression of selected synaptic proteins, CA1 synapse density, postsynaptic density (PSD) thickness, and in vivo long-term potentiation (LTP). Spatial learning and memory behavior changes were investigated using the Morris water maze. We then transfected the lentiviruses into cultured hippocampal cells and examined the changes in synaptic protein and phospho-cyclic AMP response element-binding protein (pCREB) expression. The in vivo results showed that SRC-1 knockdown significantly decreased the expression of synaptic proteins and CA1 synapse density as well as PSD thickness; SRC-1 knockdown also significantly impaired in vivo LTP and disrupted spatial learning and memory. The in vitro results showed that while the expression of synaptic proteins was significantly decreased by SRC-1 knockdown, pCREB expression was also significantly decreased. The above results suggest a pivotal role of SRC-1 in the regulation of hippocampal synaptic plasticity and spatial learning and memory, strongly indicating SRC-1 may serve as a novel therapeutic target for hippocampus-dependent memory disorders.


Asunto(s)
Hipocampo/metabolismo , Potenciación a Largo Plazo/fisiología , Trastornos de la Memoria/metabolismo , Coactivador 1 de Receptor Nuclear/deficiencia , Memoria Espacial/fisiología , Animales , Línea Celular , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Técnicas de Silenciamiento del Gen , Hipocampo/patología , Masculino , Trastornos de la Memoria/patología , Ratones Endogámicos C57BL , Coactivador 1 de Receptor Nuclear/genética , Fosforilación , Células Piramidales/metabolismo , Células Piramidales/patología , Interferencia de ARN , Aprendizaje Espacial/fisiología , Sinapsis/metabolismo , Sinapsis/patología
12.
J Steroid Biochem Mol Biol ; 178: 354-368, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29452160

RESUMEN

Hippocampal synaptic plasticity is the basis of spatial memory and cognition and is strongly regulated by both testicular androgens (testosterone, T) and hippocampal estrogens (17ß-estradiol, E2) converted from T by aromatase, which is inhibited by letrozole (LET), but the contribution of each pathway to spatial memory and the associated mechanisms are unclear. In this study, we first used orchiectomy (ORX) and LET injection to investigate the effects of T and hippocampal E2 on spatial memory and hippocampal synaptic plasticity. Next, we examined the changes in steroid receptors and steroid receptor coactivator-1 (SRC-1) under these treatments. Finally, we constructed an SRC-1 RNA interference lentivirus and an AROM overexpression lentivirus to explore the roles of SRC-1 under T replacement and AROM overexpression. The results revealed spatial memory impairment only after LET. LET induced more actin depolymerization and greater losses of spines, synapses, and postsynaptic proteins compared with ORX. Moreover, although ERα and ERß were affected by LET and ORX at similar levels, AR, GPR30, and SRC-1 were dramatically decreased by LET compared with ORX. Finally, the T and AROM overexpression-induced changes in synaptic proteins and actin polymerization were blocked by SRC-1 inhibition. These results demonstrate that testicular androgens play a limited role, whereas local E2 is more important for cognition, which may explain why castrated men such as eunuchs usually do not have cognitive disorders. These results also suggest a pivotal role of SRC-1 in the action of steroids; thus, SRC-1 may serve as a novel therapeutic target for cognitive disorders.


Asunto(s)
Hipocampo/fisiología , Letrozol/farmacología , Plasticidad Neuronal/fisiología , Coactivador 1 de Receptor Nuclear/metabolismo , Orquiectomía , Memoria Espacial/fisiología , Actinas/metabolismo , Animales , Hipocampo/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal/efectos de los fármacos , Memoria Espacial/efectos de los fármacos
13.
J Steroid Biochem Mol Biol ; 174: 96-113, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28789972

RESUMEN

Aging-related decline of estrogens, especially 17ß-estradiol (E2), has been shown to play an important role in the impairment of learning and memory in dementias, such as Alzheimer's disease (AD), but the underlying molecular mechanisms are poorly understood. In this study, we first demonstrated decreases in E2 signaling (aromatase, classic estrogen receptor ERα and ERß and their coactivator SRC-1), mTORC2 signaling (Rictor and phospho-AKTser473) and actin polymerization (phospho-Cofilin, Profilin-1 and the F-actin/G-actin ratio) in the hippocampus of old female mice compared with those levels detected in the adult hippocampus. We then showed that ERα and ERß antagonists induced a significant decrease in SRC-1, mTORC2 signaling, actin polymerization, and CA1 spine density, as well as impairments of learning and memory; however, ovariectomy-induced changes of these parameters could be significantly reversed by treatment with ER agonists. We further showed that expression of SRC-1, mTORC2 signaling and actin polymerization could be upregulated by E2 treatment, and the effects of E2 were blocked by the ER antagonists but mimicked by the agonists. We also showed that the lentivirus-mediated SRC-1 knockdown significantly inhibited the agonist-activated mTORC2 signaling and actin polymerization, and the lentivirus-mediated Rictor knockdown also significantly inhibited the agonist-activated actin polymerization. Finally, we demonstrated that the ERα and ERß antagonists induced a disruption in actin polymerization and an impairment of spatial memory, which were rescued by activation of mTORC2. Taken together, the above results clearly demonstrated an mTORC2-dependent regulation of actin polymerization that contributed to the effects of ERα and ERß on spatial learning, which may provide a novel target for the prevention and treatment of E2-related dementia in the aged population.


Asunto(s)
Actinas/metabolismo , Receptor alfa de Estrógeno/metabolismo , Receptor beta de Estrógeno/metabolismo , Hipocampo/metabolismo , Complejos Multiproteicos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Factores Despolimerizantes de la Actina/metabolismo , Animales , Aromatasa/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Línea Celular , Estradiol/farmacología , Estrógenos/farmacología , Femenino , Diana Mecanicista del Complejo 2 de la Rapamicina , Ratones Endogámicos C57BL , Coactivador 1 de Receptor Nuclear/genética , Coactivador 1 de Receptor Nuclear/metabolismo , Ovariectomía , Polimerizacion , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina , Memoria Espacial/fisiología
14.
Arkh Patol ; 79(3): 19-26, 2017.
Artículo en Ruso | MEDLINE | ID: mdl-28631712

RESUMEN

AIM: to investigate the molecular mechanisms and morphological substrate of reduced uterine leiomyoma in patients receiving the selective progesterone receptor modulator (SPRM) ulipristal acetate for 3 months, by estimating the immunohistochemical expression of the markers steroid receptor coactivator 1 (SRC-1), nuclear receptor corepressor 1 (NCoR-1), ER, PgR, Ki-67, p16, TGF-ß, and VEGF in tumor tissue. SUBJECTS AND METHODS: The investigation enrolled 75 women with uterine leiomyoma, menorrhagias, and anemia. Group 1 included 40 patients who were treated with ulipristal for 3 months, followed by laparoscopic myomectomy. Group 2 consisted of 35 patients who underwent surgery without previous preparation. The intra- and postoperative parameters and molecular and morphological changes in the myomatous nodules were comparatively analyzed in both groups. RESULTS: After 3 months of therapy initiation, menorrhagia completely ceased, myomatous nodules decreased in size (p<0.05), hemoglobin levels were elevated (p<0.01), and total intraoperative blood loss and operative time decreased in all the patients in Group 1. The morphological substrate of partial leiomyoma reduction was leiomyocyte apoptosis and dystrophy, tumor stroma sclerosis and hyalinosis with diminished Ki-67 expression and elevated p16 in the smooth muscle cells, trophic nodular tissue disorders exhibited by vascular wall sclerosis and lower VEGF and TGF-ß expression, and leiomyocyte hormonal reception dysregulation that made itself evident through the reduced expression of SRC-1 with the unchanged expression of PR and ER and the maintained level of NCoR-1. CONCLUSION: The molecular mechanisms of tumor reduction involved the reduced Ki-67 expression and elevated p16, lower VEGF and TGF-ß, diminished SRC-1 expression with the maintained level of PR, ER, and NCoR-1. Overall, this is suggestive of enhanced apoptosis and reduced leiomyoma proliferation and angiogenesis induced by SPRM and indicative of the expediency of using ulipristal acetate as a preoperative agent for organ-sparing surgery in reproductive-aged patients with uterine myoma, menorrhagias, and anemia.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Leiomioma/tratamiento farmacológico , Norpregnadienos/uso terapéutico , Receptores de Progesterona/metabolismo , Neoplasias Uterinas/tratamiento farmacológico , Adulto , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Leiomioma/metabolismo , Leiomioma/patología , Norpregnadienos/administración & dosificación , Resultado del Tratamiento , Miomectomía Uterina , Neoplasias Uterinas/metabolismo , Neoplasias Uterinas/patología
15.
J Steroid Biochem Mol Biol ; 167: 86-97, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27866972

RESUMEN

In the hippocampus, local estrogens (E2) derived from testosterone that is catalyzed by aromatase play important roles in the regulation of hippocampal neural plasticity, but the underlying mechanisms remain unclear. The actin cytoskeleton contributes greatly to hippocampal synaptic plasticity; however, whether it is regulated by local E2 and the related mechanisms remain to be elucidated. In this study, we first examined the postnatal developmental profiles of hippocampal aromatase and specific proteins responsible for actin cytoskeleton dynamics. Then we used aromatase inhibitor letrozole (LET) to block local E2 synthesis and examined the changes of these proteins and steroid receptor coactivator-1 (SRC-1), the predominant coactivator for steroid nuclear receptors. Finally, SRC-1 specific RNA interference was used to examine the effects of SRC-1 on the expression of these actin remodeling proteins. The results showed a V-type profile for aromatase and increased profiles for actin cytoskeleton proteins in both male and female hippocampus without obvious sex differences. LET treatment dramatically decreased the F-actin/G-actin ratio, the expression of Rictor, phospho-AKT (ser473), Profilin-1, phospho-Cofilin (Ser3), and SRC-1 in a dose-dependent manner. In vitro studies demonstrated that LET induced downregulation of these proteins could be reversed by E2, and E2 induced increase of these proteins were significantly suppressed by SRC-1 shRNA interference. These results for the first time clearly demonstrated that local E2 inhibition could induce aberrant actin polymerization; they also showed an important role of SRC-1 in the mediation of local E2 action on hippocampal synaptic plasticity by regulation of actin cytoskeleton dynamics.


Asunto(s)
Actinas/metabolismo , Citoesqueleto/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/embriología , Nitrilos/química , Coactivador 1 de Receptor Nuclear/metabolismo , Triazoles/química , Animales , Aromatasa/metabolismo , Inhibidores de la Aromatasa/química , Línea Celular , Regulación hacia Abajo , Estrógenos/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Letrozol , Masculino , Ratones , Ratones Endogámicos C57BL , Coactivador 1 de Receptor Nuclear/genética , Unión Proteica , Interferencia de ARN
16.
Eur Cytokine Netw ; 27(4): 108-113, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28396297

RESUMEN

BACKGROUND: The androgen receptor (AR) can be stimulated by interleukin-6 (IL-6) in the absence of androgens to induce prostate cancer progression. The purpose of this study was to investigate whether the co-activator steroid receptor coactivator-1 (SRC-1) and co-repressor silencing mediator for retinoid and thyroid hormone receptors (SMRT) are involved in IL-6-induced AR activation. METHODS: The effects of IL-6 on LNCaP cell proliferation were monitored using real-time cell analysis (RTCA) iCELLigence system. The impacts of IL-6 on the association of the AR with SRC-1 and SMRT were investigated using the mammalian two-hybrid assay. RESULTS: IL-6 increased the proliferation of LNCaP cells with maximal induction at 50 ng/mL. The AR-SRC-1interaction was enhanced by IL-6, with maximal induction at the concentration of 50 ng/mL (P<0.05). IL-6 decreased the AR-SMRT interaction and a marked reduction was detected at 50 ng/mL (P<0.05). CONCLUSIONS: IL-6 enhances LNCaP cells proliferation, which suggests that IL-6 might cause AR-positive prostate cancer growth through activation of the AR. The mechanism of IL-6-induced AR activation is mediated through enhancing AR-SRC-1 interaction and inhibiting AR-SMRT interaction. We have shown a significant role for SRC-1 and SMRT in modulating IL-6-induced AR transactivation.


Asunto(s)
Interleucina-6/metabolismo , Proteínas de Neoplasias/metabolismo , Co-Represor 2 de Receptor Nuclear/metabolismo , Coactivador 1 de Receptor Nuclear/metabolismo , Neoplasias de la Próstata/metabolismo , Receptores Androgénicos/metabolismo , Línea Celular Tumoral , Humanos , Interleucina-6/genética , Masculino , Proteínas de Neoplasias/genética , Co-Represor 2 de Receptor Nuclear/genética , Coactivador 1 de Receptor Nuclear/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Receptores Androgénicos/genética
17.
J Steroid Biochem Mol Biol ; 156: 23-31, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26607693

RESUMEN

Androgens have been proposed to play important roles in the regulation of hippocampus function either directly, through the androgen receptor (AR), or indirectly, through estrogen receptors (ERs), after aromatization into estradiol. Steroid receptor coactivator-1 (SRC-1) is present in the hippocampus of several species, and its expression is regulated by development and aging, as well as by orchidectomy and aromatase inhibitor letrozole administration, while ovariectomy only transiently downregulated hippocampal SRC-1. However, whether the expression of hippocampal SRC-1 can be directly regulated by testosterone, the principal male sex hormone, remains unclear. In the present study, we investigated the expression of hippocampal SRC-1 after orchidectomy and testosterone treatment using immunohistochemistry and Western blot analysis. We found that while hippocampal SRC-1 was significantly downregulated by orchidectomy (ORX), its expression was rescued by treatment with testosterone in a dose-dependent manner. Furthermore, we noticed that the decreased expression of hippocampal AR, ERs and the synaptic proteins GluR-1 and PSD-95 induced by ORX was also rescued by testosterone treatment in a dose-dependent manner. However, we found that hippocampal membrane estrogen receptor GPR30 and dendritic spine marker spinophilin were not altered by ORX or testosterone treatment. Together, the above results provided the first direct evidence for the androgenic regulation on hippocampal SRC-1, indicating that SRC-1 may be a direct target of androgenic regulation on the hippocampus. Furthermore, because AR and ERs can be differentially regulated by testosterone, and the transcriptional activity requires the involvement of local SRC-1, and considering the complicated regulatory pathway of each individual receptor, the converged hub regulator SRC-1 of these nuclear receptor networks is worthy of further investigation.


Asunto(s)
Hipocampo/metabolismo , Coactivador 1 de Receptor Nuclear/metabolismo , Receptores de Esteroides/metabolismo , Propionato de Testosterona/metabolismo , Andrógenos/metabolismo , Animales , Hipocampo/ultraestructura , Masculino , Ratones Endogámicos C57BL , Orquiectomía , Receptores Androgénicos/metabolismo , Receptores de Estrógenos/metabolismo , Sinapsis/metabolismo , Sinapsis/ultraestructura
18.
J Steroid Biochem Mol Biol ; 154: 168-75, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26223010

RESUMEN

Hippocampus local estrogen which is converted from androgen that catalyzed by aromatase has been shown to play important roles in the regulation of learning and memory as well as cognition through action on synaptic plasticity, but the underlying mechanisms are poorly understood. Steroid receptor coactivator-1 (SRC-1) is one of the coactivators of steroid nuclear receptors; it is widely distributed in brain areas that related to learning and memory, reproductive regulation, sensory and motor information integration. Previous studies have revealed high levels of SRC-1 immunoreactivities in the hippocampus; it is closely related to the levels of synaptic proteins such as PSD-95 under normal development or gonadectomy, but its exact roles in the regulation of these proteins remains unclear. In this study, we used aromatase inhibitor letrozole in vivo and SRC-1 RNA interference in vitro to investigate whether SRC-1 mediated endogenous estrogen regulation of hippocampal PSD-95. The results revealed that letrozole injection synchronously decreased hippocampal SRC-1 and PSD-95 in a dose-dependant manner. Furthermore, when SRC-1 specific shRNA pool was applied to block the expression of SRC-1 in the primary hippocampal neuron culture, both immunocytochemistry and Western blot revealed that levels of PSD-95 were also decreased significantly. Taking together, these results provided the first evidence that SRC-1 mediated endogenous estrogen regulation of hippocampal synaptic plasticity by targeting the expression of synaptic protein PSD-95. Additionally, since letrozole is frequently used to treat estrogen-sensitive breast cancer, the above results also indicate its potential side effects in clinical administration.


Asunto(s)
Inhibidores de la Aromatasa/farmacología , Regulación hacia Abajo/efectos de los fármacos , Hipocampo/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Nitrilos/farmacología , Coactivador 1 de Receptor Nuclear/fisiología , Triazoles/farmacología , Animales , Células Cultivadas , Homólogo 4 de la Proteína Discs Large , Femenino , Técnicas de Silenciamiento del Gen , Hipocampo/metabolismo , Letrozol , Coactivador 1 de Receptor Nuclear/genética , Interferencia de ARN , Ratas , Ratas Wistar
19.
Acta Histochem Cytochem ; 47(4): 165-74, 2014 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-25392570

RESUMEN

Glucocorticoid receptor (GR) is a ligand-activated nuclear receptor which is widely distributed in the brain. Many types of neurons and glial cells are known to express GR, but the expression of GR in ependymal cells has yet to be identified. The present study therefore was undertaken to determine whether ependymal cells express GR and coactivators of GR, such as steroid receptor coactivator 1 (SRC-1) and p300. GR immunoreactivity was found in cells immunopositive to vimentin, a marker of ependymal cells, around the third ventricle (3V), the lateral ventricle (LV), the cerebral aqueduct and the fourth ventricle (4V), whereas the expression of GR in vimentin-immunoreactive (ir) cells was significantly reduced by adrenalectomy (ADX) in male rats. Vimentin-ir cells also expressed both SRC-1 and p300 at around 3V, LV, the cerebral aqueduct and 4V. ADX had no effect on the expression of SRC-1 or p300 in vimentin-ir cells. These results suggest that glucocorticoid may exert effects on ependymal cells through binding to GR followed by association with SRC-1 and p300 to maintain brain environment under stressful conditions.

20.
Cancer Epidemiol ; 38(3): 291-7, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24680642

RESUMEN

Astrocytic tumors are the most common primary brain tumors. It has been reported that androgen receptor (AR), estrogen receptors alpha (ERα) and beta (ERß) and their coactivator SRC-1 and SRC-3 are involved in the regulation of the growth and development of many tumors, but their expression profiles and significances in the astrocytic tumors remain largely unknown. In this study, the expression of AR, ERs, and SRCs, and the possible roles of them in astrocytic neoplasm were evaluated and compared to normal brain tissues by nickel-intensified immunohistochemistry with tissue microarrays. The results showed that there were no age- or gender-differences regarding to the levels of these receptors or coactivators in astrocytic or normal brain tissues. In the high-grade astrocytic tissue, the levels of AR, ERs and SRC-3 were significantly decreased when compared to the low-grade astrocytic tissues, but the levels of SRC-1 remain unchanged. Correlation analysis revealed that the levels of AR, ERs and SRC-3 were negatively correlated to tumor differentiation, and the levels of SRC-3 were positively correlated to that of ERα. Furthermore, the decreased levels of SRC-3 were associated with an increase of ERß in astrocytic tumors when compared to that of normal brain tissues. These above results indicate a combination of decreased expression of ERs, AR and SRC-3 but not SRC-1 may be involved in the tumorigenesis of gliomas, ERα/SRC-3 axis may play central role in the regulation these tumors.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Receptor alfa de Estrógeno/biosíntesis , Glioblastoma/metabolismo , Coactivador 3 de Receptor Nuclear/biosíntesis , Receptores Androgénicos/biosíntesis , Adulto , Factores de Edad , Neoplasias Encefálicas/patología , Estudios de Casos y Controles , Diferenciación Celular/fisiología , Femenino , Glioblastoma/patología , Humanos , Masculino , Clasificación del Tumor , Coactivador 1 de Receptor Nuclear/biosíntesis , Adhesión en Parafina , Pronóstico , Factores Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA