Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 21(16)2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34450719

RESUMEN

Narrow band-gap semiconductors, namely ternary InAsSb alloys, find substantial technological importance for mid-infrared application as photodetectors in medical diagnostics or environmental monitoring. Thus, it is crucial to develop electrical contacts for these materials because they are the fundamental blocks of all semiconductor devices. This study demonstrates that electroplated gold contacts can be considered as a simple and reliable metallization technology for the electrical-response examination of a test structure. Unalloyed electroplated Au contacts to InAsSb exhibit specific contact resistivity even lower than vacuum-deposited standard Ti-Au. Moreover, temperature-dependent transport properties, such as Hall carrier concentration and mobility, show similar trends, with a minor shift in the transition temperature. It can be associated with a difference in metallization technology, mainly the presence of a Ti interlayer in vacuum-deposited contacts. Such a transition may give insight into not only the gentle balance changes between conductivity channels but also an impression of changing the dominance of carrier type from p- to n-type. The magnetotransport experiments assisted with mobility spectrum analysis clearly show that such an interpretation is incorrect. InAsSb layers are strongly p-type dominant, with a clear contribution from valence band carriers observed at the whole analyzed temperature range. Furthermore, the presence of thermally activated band electrons is detected at temperatures higher than 220 K.

2.
Nano Lett ; 18(8): 4878-4884, 2018 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-30036065

RESUMEN

Metal-semiconductor junctions are indispensable in semiconductor devices, but they have recently become a major limiting factor precluding device performance improvement. Here, we report the modification of a metal/n-type Si Schottky contact barrier by the introduction of two-dimensional (2D) materials of either graphene or hexagonal boron nitride (h-BN) at the interface. We realized the lowest specific contact resistivities (ρc) of 3.30 nΩ cm2 (lightly doped n-type Si, ∼ 1015/cm3) and 1.47 nΩ cm2 (heavily doped n-type Si, ∼ 1021/cm3) via 2D material insertion are approaching the theoretical limit of 1.3 nΩ cm2. We demonstrated the role of the 2D materials at the interface in achieving a low ρc value by the following mechanisms: (a) 2D materials effectively form dipoles at the metal-2D material (M/2D) interface, thereby reducing the metal work function and changing the pinning point, and (b) the fully metalized M/2D system shifts the pinning point toward the Si conduction band, thus decreasing the Schottky barrier. As a result, the fully metalized M/2D system using atomically thin and well-defined 2D materials shows a significantly reduced ρc. The proposed 2D material insertion technique can be used to obtain extremely low contact resistivities in metal/n-type Si systems and will help to achieve major performance improvements in semiconductor technologies.

3.
ACS Appl Mater Interfaces ; 8(51): 35614-35620, 2016 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-27966860

RESUMEN

We demonstrate the contact resistance reduction for III-V semiconductor-based electrical and optical devices using the interfacial dipole effect of ultrathin double interlayers in a metal-interlayers-semiconductor (M-I-S) structure. An M-I-S structure blocks metal-induced gap states (MIGS) to a sufficient degree to alleviate Fermi level pinning caused by MIGS, resulting in contact resistance reduction. In addition, the ZnO/TiO2 interlayers of an M-I-S structure induce an interfacial dipole effect that produces Schottky barrier height (ΦB) reduction, which reduces the specific contact resistivity (ρc) of the metal/n-type III-V semiconductor contact. As a result, the Ti/ZnO(0.5 nm)/TiO2(0.5 nm)/n-GaAs metal-double interlayers-semiconductor (M-DI-S) structure achieved a ρc of 2.51 × 10-5 Ω·cm2, which exhibited an ∼42 000× reduction and an ∼40× reduction compared to the Ti/n-GaAs metal-semiconductor (M-S) contact and the Ti/TiO2(0.5 nm)/n-GaAs M-I-S structure, respectively. The interfacial dipole at the ZnO/TiO2 interface was determined to be approximately -0.104 eV, which induced a decrease in the effective work function of Ti and, therefore, reduced ΦB. X-ray photoelectron spectroscopy analysis of the M-DI-S structure also confirmed the existence of the interfacial dipole. On the basis of these results, the M-DI-S structure offers a promising nonalloyed Ohmic contact scheme for the development of III-V semiconductor-based applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA