Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
J Microsc ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38994744

RESUMEN

Micropatterning is reliable method for quantifying pluripotency of human-induced pluripotent stem cells (hiPSCs) that differentiate to form a spatial pattern of sorted, ordered and nonoverlapped three germ layers on the micropattern. In this study, we propose a deep learning method to quantify spatial patterning of the germ layers in the early differentiation stage of hiPSCs using micropattern images. We propose decoding and encoding U-net structures learning labelled Hoechst (DNA-stained) hiPSC regions with corresponding Hoechst and bright-field micropattern images to segment hiPSCs on Hoechst or bright-field images. We also propose a U-net structure to extract extraembryonic regions on a micropattern, and an algorithm to compares intensities of the fluorescence images staining respective germ-layer cells and extract their regions. The proposed method thus can quantify the pluripotency of a hiPSC line with spatial patterning including cell numbers, areas and distributions of germ-layer and extraembryonic cells on a micropattern, and reveal the formation process of hiPSCs and germ layers in the early differentiation stage by segmenting live-cell bright-field images. In our assay, the cell-number accuracy achieved 86% and 85%, and the cell region accuracy 89% and 81% for segmenting Hoechst and bright-field micropattern images, respectively. Applications to micropattern images of multiple hiPSC lines, micropattern sizes, groups of markers, living and fixed cells show the proposed method can be expected to be a useful protocol and tool to quantify pluripotency of a new hiPSC line before providing it to the scientific community.

2.
Dev Cell ; 59(9): 1132-1145.e6, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38531357

RESUMEN

Neurons must be made in the correct proportions to communicate with the appropriate synaptic partners and form functional circuits. In the Drosophila visual system, multiple subtypes of distal medulla (Dm) inhibitory interneurons are made in distinct, reproducible numbers-from 5 to 800 per optic lobe. These neurons are born from a crescent-shaped neuroepithelium called the outer proliferation center (OPC), which can be subdivided into specific domains based on transcription factor and growth factor expression. We fate mapped Dm neurons and found that more abundant neural types are born from larger neuroepithelial subdomains, while less abundant subtypes are born from smaller ones. Additionally, morphogenetic Dpp/BMP signaling provides a second layer of patterning that subdivides the neuroepithelium into smaller domains to provide more granular control of cell proportions. Apoptosis appears to play a minor role in regulating Dm neuron abundance. This work describes an underappreciated mechanism for the regulation of neuronal stoichiometry.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Neuronas , Animales , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Neuronas/metabolismo , Neuronas/citología , Drosophila melanogaster/metabolismo , Lóbulo Óptico de Animales no Mamíferos/metabolismo , Lóbulo Óptico de Animales no Mamíferos/citología , Transducción de Señal , Vías Visuales/metabolismo , Apoptosis , Proteínas Morfogenéticas Óseas/metabolismo , Tipificación del Cuerpo , Interneuronas/metabolismo , Interneuronas/citología , Regulación del Desarrollo de la Expresión Génica , Recuento de Células , Proliferación Celular , Neurogénesis/fisiología
3.
ACS Synth Biol ; 13(3): 728-735, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38330913

RESUMEN

We recently described a paradigm for engineering bacterial adaptation using plasmids coupled to the same origin of replication. In this study, we use plasmid coupling to generate spatially separated and phenotypically distinct populations in response to heterogeneous environments. Using a custom microfluidic device, we continuously tracked engineered populations along induced gradients, enabling an in-depth analysis of the spatiotemporal dynamics of plasmid coupling. Our observations reveal a pronounced phenotypic separation within 4 h exposure to an opposing gradient of AHL and arabinose. Additionally, by modulating the burden strength balance between coupled plasmids, we demonstrate the inherent limitations and tunability of this system. Intriguingly, phenotypic separation persists for an extended time, hinting at a biophysical spatial retention mechanism reminiscent of natural speciation processes. Complementing our experimental data, mathematical models provide invaluable insights into the underlying mechanisms and guide optimization of plasmid coupling for prospective applications of environmental copy number adaptation engineering across separated domains.


Asunto(s)
Bacterias , Variaciones en el Número de Copia de ADN , Variaciones en el Número de Copia de ADN/genética , Plásmidos/genética , Bacterias/genética , Modelos Teóricos
4.
FEBS J ; 291(4): 663-671, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37943156

RESUMEN

Developing tissues are patterned in space and time; this enables them to differentiate their cell types and form complex structures to support different body plans. Although space and time are two independent entities, there are many examples of spatial patterns that originate from temporal ones. The most prominent example is the expression of the genes hunchback, Krüppel, pdm, and castor, which are expressed temporally in the neural stem cells of the Drosophila ventral nerve cord and spatially along the anteroposterior axis of the blastoderm stage embryo. In this Viewpoint, we investigate the relationship between space and time in specific examples of spatial and temporal patterns with the aim of gaining insight into the evolutionary history of patterning.


Asunto(s)
Proteínas de Drosophila , Células-Madre Neurales , Animales , Regulación del Desarrollo de la Expresión Génica , Drosophila/genética , Proteínas de Drosophila/genética , Blastodermo , Tipificación del Cuerpo/genética
5.
ACS Appl Mater Interfaces ; 15(42): 49204-49212, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37823762

RESUMEN

The demand for a benign alternative to energy-intensive industrial chemical transformations is critical. Lead halide perovskites have emerged as promising candidates due to their unique optoelectronic properties, including high absorption coefficients in the visible region, tunable band gaps, and long charge carrier-diffusion lengths. In this study, we present a model reaction to showcase the photocatalytic utility of perovskite nanocrystals (NCs). Specifically, we demonstrate the synthesis of trichloroethylene (TCEt) from 1,1,2,2-tetrachloroethane (TCE) using CsPbBr3 NCs under white light illumination. The band-edge positions of the NCs and the redox potential of TCE enable efficient electron transfer for C-Cl bond activation. Furthermore, while ensuring operational stability, CsPbBr3 NCs undergo light-controlled modification, leading to the formation of mixed-halide perovskite (CsPbBrxCl3-x) NCs during the reaction. This procedure yields a mixed-halide perovskite that maintains stability while containing the desired halide content. Additionally, the reaction produces HBr as a byproduct, serving as a self-cleaning technique to eliminate excess Br- ions from the solution. Ultimately, we achieve nearly 100% conversion of CsPbBr3 to pure CsPbCl3 NCs, with a full width at half-maximum of approximately 11.2 nm. Our clean and efficient approach to synthesizing TCEt using perovskite NCs provides interesting insights into violet light-emitting diode (LED) fabrication and color patterning. This study highlights the promising potential of perovskite materials for sustainable chemical transformations and optoelectronic applications.

6.
Proc Natl Acad Sci U S A ; 120(32): e2303313120, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37523547

RESUMEN

Studying dynamic spatiotemporal patterns of early brain development in macaque monkeys is critical for understanding the cortical organization and evolution in humans, given the phylogenetic closeness between humans and macaques. However, due to huge challenges in the analysis of early brain Magnetic Resonance Imaging (MRI) data typically with extremely low contrast and dynamic imaging appearances, our knowledge of the early macaque cortical development remains scarce. To fill this critical gap, this paper characterizes the early developmental patterns of cortical thickness and surface area in rhesus macaques by leveraging advanced computing tools tailored for early developing brains based on a densely sampled longitudinal dataset with 140 rhesus macaque MRI scans seamlessly covering from birth to 36 mo of age. The average cortical thickness exhibits an inverted U-shaped trajectory with peak thickness at around 4.3 mo of age, which is remarkably in line with the age of peak thickness at 14 mo in humans, considering the around 3:1 age ratio of human to macaque. The total cortical surface area in macaques increases monotonically but with relatively lower expansions than in humans. The spatial distributions of thicker and thinner regions are quite consistent during development, with gyri having a thicker cortex than sulci. By 4 mo of age, over 81% of cortical vertices have reached their peaks in thickness, except for the insula and medial temporal cortices, while most cortical vertices keep expanding in surface area, except for the occipital cortex. These findings provide important insights into early brain development and evolution in primates.


Asunto(s)
Corteza Cerebral , Imagen por Resonancia Magnética , Humanos , Animales , Macaca mulatta , Filogenia , Corteza Cerebral/patología , Imagen por Resonancia Magnética/métodos , Encéfalo , Mapeo Encefálico/métodos
7.
Public Health Nutr ; 26(5): 1052-1062, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36644895

RESUMEN

OBJECTIVE: To describe national disparities in retail food environments by neighbourhood composition (race/ethnicity and socio-economic status) across time and space. DESIGN: We examined built food environments (retail outlets) between 1990 and 2014 for census tracts in the contiguous USA (n 71 547). We measured retail food environment as counts of all food stores, all unhealthy food sources (including fast food, convenience stores, bakeries and ice cream) and healthy food stores (including supermarkets, fruit and vegetable markets) from National Establishment Time Series business data. Changes in food environment were mapped to display spatial patterns. Multi-level Poisson models, clustered by tract, estimated time trends in counts of food stores with a land area offset and independent variables population density, racial composition (categorised as predominantly one race/ethnicity (>60 %) or mixed), and inflation-adjusted income tertile. SETTING: The contiguous USA between 1990 and 2014. PARTICIPANTS: All census tracts (n 71 547). RESULTS: All food stores and unhealthy food sources increased, while the subcategory healthy food remained relatively stable. In models adjusting for population density, predominantly non-Hispanic Black, Hispanic, Asian and mixed tracts had significantly more destinations of all food categories than predominantly non-Hispanic White tracts. This disparity increased over time, predominantly driven by larger increases in unhealthy food sources for tracts which were not predominantly non-Hispanic White. Income and food store access were inversely related, although disparities narrowed over time. CONCLUSIONS: Our findings illustrate a national food landscape with both persistent and shifting spatial patterns in the availability of establishments across neighbourhoods with different racial/ethnic and socio-economic compositions.


Asunto(s)
Abastecimiento de Alimentos , Clase Social , Humanos , Estados Unidos , Factores Socioeconómicos , Renta , Frutas , Comercio , Características de la Residencia
8.
Semin Cell Dev Biol ; 142: 54-66, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-35738966

RESUMEN

The nervous system consists of a vast diversity of neurons and glia that are accurately assembled into functional circuits. What are the mechanisms that generate these diverse cell types? During development, an epithelial sheet with neurogenic potential is initially regionalised into spatially restricted domains of gene expression. From this, pools of neural stem cells (NSCs) with distinct molecular profiles and the potential to generate different neuron types, are specified. These NSCs then divide asymmetrically to self-renew and generate post-mitotic neurons or glia. As NSCs age, they experience transitions in gene expression, which further allows them to generate different neurons or glia over time. Versions of this general template of spatial and temporal patterning operate during the development of different parts of different nervous systems. Here, I cover our current knowledge of Drosophila brain and optic lobe development as well as the development of the vertebrate cortex and spinal cord within the framework of this above template. I highlight where our knowledge is lacking, where mechanisms beyond these might operate, and how the emergence of new technologies might help address unanswered questions.


Asunto(s)
Células-Madre Neurales , Animales , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Drosophila/genética , Vertebrados , Encéfalo
9.
Genetics ; 222(3)2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36135799

RESUMEN

Spatial patterning of neural stem cell populations is a powerful mechanism by which to generate neuronal diversity. In the developing Drosophila medulla, the symmetrically dividing neuroepithelial cells of the outer proliferation center crescent are spatially patterned by the nonoverlapping expression of 3 transcription factors: Vsx1 in the center, Optix in the adjacent arms, and Rx in the tips. These spatial genes compartmentalize the outer proliferation center and, together with the temporal patterning of neuroblasts, act to diversify medulla neuronal fates. The observation that the dorsal and ventral halves of the outer proliferation center also grow as distinct compartments, together with the fact that a subset of neuronal types is generated from only one half of the crescent, suggests that additional transcription factors spatially pattern the outer proliferation center along the dorsal-ventral axis. Here, we identify the spalt (salm and salr) and disco (disco and disco-r) genes as the dorsal-ventral patterning transcription factors of the outer proliferation center. Spalt and Disco are differentially expressed in the dorsal and ventral outer proliferation center from the embryo through to the third instar larva, where they cross-repress each other to form a sharp dorsal-ventral boundary. We show that hedgehog is necessary for Disco expression in the embryonic optic placode and that disco is subsequently required for the development of the ventral outer proliferation center and its neuronal progeny. We further demonstrate that this dorsal-ventral patterning axis acts independently of Vsx1-Optix-Rx and thus propose that Spalt and Disco represent a third outer proliferation center patterning axis that may act to further diversify medulla fates.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Células Neuroepiteliales/metabolismo , Regulación del Desarrollo de la Expresión Génica , Tipificación del Cuerpo/genética
10.
Front Neurosci ; 16: 854422, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35392413

RESUMEN

The nervous system is one of the most sophisticated animal tissues, consisting of thousands of interconnected cell types. How the nervous system develops its diversity from a few neural stem cells remains a challenging question. Spatial and temporal patterning mechanisms provide an efficient model through which diversity can be generated. The molecular mechanism of spatiotemporal patterning has been studied extensively in Drosophila melanogaster, where distinct sets of transcription factors define the spatial domains and temporal windows that give rise to different cell types. Similarly, in vertebrates, spatial domains defined by transcription factors produce different types of neurons in the brain and neural tube. At the same time, different cortical neuronal types are generated within the same cell lineage with a specific birth order. However, we still do not understand how the orthogonal information of spatial and temporal patterning is integrated into the progenitor and post-mitotic cells to combinatorially give rise to different neurons. In this review, after introducing spatial and temporal patterning in Drosophila and mice, we discuss possible mechanisms that neural progenitors may use to integrate spatial and temporal information. We finally review the functional implications of spatial and temporal patterning and conclude envisaging how small alterations of these mechanisms can lead to the evolution of new neuronal cell types.

11.
Cell Rep ; 36(8): 109582, 2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34433023

RESUMEN

The topological organization of the cerebral cortex provides hierarchical axes, namely gradients, which reveal systematic variations of brain structure and function. However, the hierarchical organization of macroscopic brain morphology and how it constrains cortical function along the organizing axes remains unclear. We map the gradient of cortical morphometric similarity (MS) connectome, combining multiple features conceptualized as a "fingerprint" of an individual's brain. The principal MS gradient is anchored by motor and sensory cortices at two extreme ends, which are reliable and reproducible. Notably, divergences between motor and sensory hierarchies are consistent with the laminar histological thickness gradient but contrary to the canonical functional connectivity (FC) gradient. Moreover, the MS dissociates with FC gradients in the higher-order association cortices. The MS gradient recapitulates fundamental properties of cortical organization, from gene expression and cyto- and myeloarchitecture to evolutionary expansion. Collectively, our findings provide a heuristic hierarchical organization of cortical morphological neuromarkers.


Asunto(s)
Mapeo Encefálico , Corteza Cerebral/anatomía & histología , Procesamiento de Imagen Asistido por Computador , Corteza Sensoriomotora/anatomía & histología , Conectoma/métodos , Humanos , Imagen por Resonancia Magnética/métodos
12.
Ecol Lett ; 24(9): 1880-1891, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34212477

RESUMEN

Explaining large-scale ordered patterns and their effects on ecosystem functioning is a fundamental and controversial challenge in ecology. Here, we coupled empirical and theoretical approaches to explore how competition and spatial heterogeneity govern the regularity of colony dispersion in fungus-farming termites. Individuals from different colonies fought fiercely, and inter-nest distances were greater when nests were large and resources scarce-as expected if competition is strong, large colonies require more resources and foraging area scales with resource availability. Building these principles into a model of inter-colony competition showed that highly ordered patterns emerged under high resource availability and low resource heterogeneity. Analysis of this dynamical model provided novel insights into the mechanisms that modulate pattern regularity and the emergent effects of these patterns on system-wide productivity. Our results show how environmental context shapes pattern formation by social-insect ecosystem engineers, which offers one explanation for the marked variability observed across ecosystems.


Asunto(s)
Ecosistema , Isópteros , Agricultura , Animales , Ecología , Humanos , Insectos
13.
Ecol Lett ; 24(9): 1917-1929, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34218512

RESUMEN

Ecosystem patterning can arise from environmental heterogeneity, biological feedbacks that produce multiple persistent ecological states, or their interaction. One source of feedbacks is density-dependent changes in behaviour that regulate species interactions. By fitting state-space models to large-scale (~500 km) surveys on temperate rocky reefs, we find that behavioural feedbacks best explain why kelp and urchin barrens form either reef-wide patches or local mosaics. Best-supported models in California include feedbacks where starvation intensifies grazing across entire reefs create reef-scale, alternatively stable kelp- and urchin-dominated states (32% of reefs). Best-fitting models in New Zealand include the feedback of urchins avoiding dense kelp stands that can increase abrasion and predation risk, which drives a transition from shallower urchin-dominated to deeper kelp-dominated zones, with patchiness at 3-8 m depths with intermediate wave stress. Connecting locally studied processes with region-wide data, we highlight how behaviour can explain community patterning and why some systems exhibit community-wide alternative stable states.


Asunto(s)
Ecosistema , Kelp , Animales , Cadena Alimentaria , Nueva Zelanda , Erizos de Mar
14.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33837151

RESUMEN

Population-level scaling in ecological systems arises from individual growth and death with competitive constraints. We build on a minimal dynamical model of metabolic growth where the tension between individual growth and mortality determines population size distribution. We then separately include resource competition based on shared capture area. By varying rates of growth, death, and competitive attrition, we connect regular and random spatial patterns across sessile organisms from forests to ants, termites, and fairy circles. Then, we consider transient temporal dynamics in the context of asymmetric competition, such as canopy shading or large colony dominance, whose effects primarily weaken the smaller of two competitors. When such competition couples slow timescales of growth to fast competitive death, it generates population shocks and demographic oscillations similar to those observed in forest data. Our minimal quantitative theory unifies spatiotemporal patterns across sessile organisms through local competition mediated by the laws of metabolic growth, which in turn, are the result of long-term evolutionary dynamics.


Asunto(s)
Biodiversidad , Bosques , Isópteros/fisiología , Animales , Biomasa , Dieta , Cadena Alimentaria , Isópteros/crecimiento & desarrollo , Modelos Teóricos
15.
Annu Rev Neurosci ; 44: 153-172, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-33556251

RESUMEN

During the approximately 5 days of Drosophila neurogenesis (late embryogenesis to the beginning of pupation), a limited number of neural stem cells produce approximately 200,000 neurons comprising hundreds of cell types. To build a functional nervous system, neuronal types need to be produced in the proper places, appropriate numbers, and correct times. We discuss how neural stem cells (neuroblasts) obtain so-called area codes for their positions in the nervous system (spatial patterning) and how they keep time to sequentially produce neurons with unique fates (temporal patterning). We focus on specific examples that demonstrate how a relatively simple patterning system (Notch) can be used reiteratively to generate different neuronal types. We also speculate on how different modes of temporal patterning that operate over short versus long time periods might be linked. We end by discussing how specification programs are integrated and lead to the terminal features of different neuronal types.


Asunto(s)
Proteínas de Drosophila , Células-Madre Neurales , Animales , Drosophila , Proteínas de Drosophila/genética , Neurogénesis , Neuronas
16.
Acta Biomater ; 132: 23-36, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-33486104

RESUMEN

Organoids are miniature models of organs to recapitulate spatiotemporal cellular organization and tissue functionality. The production of organoids has revolutionized the field of developmental biology, providing the possibility to study and guide human development and diseases in a dish. More recently, novel biomaterial-based culture systems demonstrated the feasibility and versatility to engineer and produce the organoids in a consistent and reproducible manner. By engineering proper tissue microenvironment, functional organoids have been able to exhibit spatial-distinct tissue patterning and morphogenesis. This review focuses on enabling technologies in the field of organoid engineering, including the control of biochemical and biophysical cues via hydrogels, as well as size and geometry control via microwell and microfabrication techniques. In addition, this review discusses the enhancement of organoid systems for therapeutic applications using biofabrication and organoid-on-chip platforms, which facilitate the assembly of complex organoid systems for in vitro modeling of development and diseases. STATEMENT OF SIGNIFICANCE: Stem cell organoids have revolutionized the fields of developmental biology and tissue engineering, providing the opportunity to study human organ development and disease progression in vitro. Various works have demonstrated that organoids can be generated using a wide variety of engineering tools, materials, and systems. Specific culture microenvironment is tailored to support the formation, function, and physiology of the organ of interest. This review highlights the importance of cellular microenvironment in organoid culture, the versatility of organoid engineering techniques, and future perspectives to build better organoid systems.


Asunto(s)
Materiales Biocompatibles , Organoides , Humanos , Hidrogeles , Células Madre , Ingeniería de Tejidos
17.
Front Neural Circuits ; 15: 799688, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35153681

RESUMEN

Decades of research have revealed the remarkable complexity of the midbrain dopamine (DA) system, which comprises cells principally located in the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc). Neither homogenous nor serving a singular function, the midbrain DA system is instead composed of distinct cell populations that (1) receive different sets of inputs, (2) project to separate forebrain sites, and (3) are characterized by unique transcriptional and physiological signatures. To appreciate how these differences relate to circuit function, we first need to understand the anatomical connectivity of unique DA pathways and how this connectivity relates to DA-dependent motivated behavior. We and others have provided detailed maps of the input-output relationships of several subpopulations of midbrain DA cells and explored the roles of these different cell populations in directing behavioral output. In this study, we analyze VTA inputs and outputs as a high dimensional dataset (10 outputs, 22 inputs), deploying computational techniques well-suited to finding interpretable patterns in such data. In addition to reinforcing our previous conclusion that the connectivity in the VTA is dependent on spatial organization, our analysis also uncovered a set of inputs elevated onto each projection-defined VTADA cell type. For example, VTADA→NAcLat cells receive preferential innervation from inputs in the basal ganglia, while VTADA→Amygdala cells preferentially receive inputs from populations sending a distributed input across the VTA, which happen to be regions associated with the brain's stress circuitry. In addition, VTADA→NAcMed cells receive ventromedially biased inputs including from the preoptic area, ventral pallidum, and laterodorsal tegmentum, while VTADA→mPFC cells are defined by dominant inputs from the habenula and dorsal raphe. We also go on to show that the biased input logic to the VTADA cells can be recapitulated using projection architecture in the ventral midbrain, reinforcing our finding that most input differences identified using rabies-based (RABV) circuit mapping reflect projection archetypes within the VTA.


Asunto(s)
Sustancia Negra , Área Tegmental Ventral , Dopamina/metabolismo , Lógica , Tegmento Mesencefálico , Área Tegmental Ventral/fisiología
18.
Open Biol ; 10(12): 200300, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33321061

RESUMEN

Advances in single-cell biotechnology have increasingly revealed interactions of cells with their surroundings, suggesting a cellular society at the microscale. Similarities between cells and humans across multiple hierarchical levels have quantitative inference potential for reaching insights about phenotypic interactions that lead to morphological forms across multiple scales of cellular organization, namely cells, tissues and organs. Here, the functional and structural comparisons between how cells and individuals fundamentally socialize to give rise to the spatial organization are investigated. Integrative experimental cell interaction assays and computational predictive methods shape the understanding of societal perspective in the determination of the cellular interactions that create spatially coordinated forms in biological systems. Emerging quantifiable models from a simpler biological microworld such as bacterial interactions and single-cell organisms are explored, providing a route to model spatio-temporal patterning of morphological structures in humans. This analogical reasoning framework sheds light on structural patterning principles as a result of biological interactions across the cellular scale and up.


Asunto(s)
Biología Celular , Comunicación Celular , Fenómenos Fisiológicos Celulares , Microambiente Celular , Histología , Modelos Biológicos , Humanos , Especificidad de Órganos
19.
Proc Natl Acad Sci U S A ; 117(43): 26749-26755, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33051295

RESUMEN

Spatial patterns are ubiquitous in both physical and biological systems. We have recently discovered that mitotic chromosomes sequentially acquire two interesting morphological patterns along their structural axes [L. Chu et al., Mol. Cell, 10.1016/j.molcel.2020.07.002 (2020)]. First, axes of closely conjoined sister chromosomes acquire regular undulations comprising nearly planar arrays of sequential half-helices of similar size and alternating handedness, accompanied by periodic kinks. This pattern, which persists through all later stages, provides a case of the geometric form known as a "perversion." Next, as sister chromosomes become distinct parallel units, their individual axes become linked by bridges, which are themselves miniature axes. These bridges are dramatically evenly spaced. Together, these effects comprise a unique instance of spatial patterning in a subcellular biological system. We present evidence that axis undulations and bridge arrays arise by a single continuous mechanically promoted progression, driven by stress within the chromosome axes. We further suggest that, after sister individualization, this same stress also promotes chromosome compaction by rendering the axes susceptible to the requisite molecular remodeling. Thus, by this scenario, the continuous presence of mechanical stress within the chromosome axes could potentially underlie the entire morphogenetic chromosomal program. Direct analogies with meiotic chromosomes suggest that the same effects could underlie interactions between homologous chromosomes as required for gametogenesis. Possible mechanical bases for generation of axis stress and resultant deformations are discussed. Together, these findings provide a perspective on the macroscopic changes of organized chromosomes.


Asunto(s)
Cromatina/química , Cromosomas/química , Mitosis/genética , Morfogénesis/genética , Línea Celular , Cromátides/química , Cromátides/genética , Cromátides/metabolismo , Cromatina/genética , Cromatina/metabolismo , Cromosomas/genética , Cromosomas/metabolismo , Humanos
20.
Philos Trans R Soc Lond B Biol Sci ; 375(1809): 20190556, 2020 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-32829679

RESUMEN

Retinoic acid (RA), derived from vitamin A, is a major teratogen, clinically recognized in 1983. Identification of its natural presence in the embryo and dissection of its molecular mechanism of action became possible in the animal model with the advent of molecular biology, starting with the cloning of its nuclear receptor. In normal development, the dose of RA is tightly controlled to regulate organ formation. Its production depends on enzymes, which have a dynamic expression profile during embryonic development. As a small molecule, it diffuses rapidly and acts as a morphogen. Here, we review advances in deciphering how endogenously produced RA provides positional information to cells. We compare three mesodermal tissues, the limb, the somites and the heart, and discuss how RA signalling regulates antero-posterior and left-right patterning. A common principle is the establishment of its spatio-temporal dynamics by positive and negative feedback mechanisms and by antagonistic signalling by FGF. However, the response is cell-specific, pointing to the existence of cofactors and effectors, which are as yet incompletely characterized. This article is part of a discussion meeting issue 'Contemporary morphogenesis'.


Asunto(s)
Tipificación del Cuerpo , Embrión de Mamíferos/embriología , Embrión no Mamífero/embriología , Mesodermo/embriología , Transducción de Señal , Tretinoina/metabolismo , Animales , Ratones , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA