Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 382
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2404682, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39297308

RESUMEN

Solid-state batteries based on Li7La3Zr2O12 (LLZO) garnet electrolyte are a robust and safe alternative to conventional lithium-ion batteries. However, the large-scale implementation of ceramic composite cathodes is still challenging due to a complex multistep manufacturing process. A new one-step route for the direct synthesis of LLZO during the manufacturing of LLZO/LiCoO2 (LCO) composite cathodes based on cheap precursors and utilizing the industrially established tape casting process is presented. It is shown that Al, Ta:LLZO can be formed directly in the presence of LCO from metal oxide precursors (LiOH, La2O3, ZrO2, Al2O3, and Ta2O5) by heating to 1050 °C, eliminating the time- and energy-consuming synthesis of preformed LLZO powders. In addition, performance-optimized gradient microstructures can be produced by sequential casting of slurries with different compositions, resulting in dense and flat phase-pure cathodes without unwanted ion interdiffusion or secondary phase formation. Freestanding cathodes with a thickness of 85 µm, a relative density of 95%, and an industrial relevant LCO loading of 15 mg show an initial capacity of 82 mAh g-1 (63% of the theoretical capacity of LCO) in a solid-state cell with Li metal anodes, which is comparable to conventional LCO/LLZO cathodes and can be further improved in the future.

2.
Angew Chem Int Ed Engl ; : e202412401, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39243107

RESUMEN

All-solid-state potassium metal batteries have caught increasing interest owing to their abundance, cost-effectiveness, and high energy/power density. However, their development is generally constrained by the lack of suitable solid-state electrolytes. Herein, we report a new complex KCB9H10·2C3H4N2, synthesized by grinding and heating the mixture of potassium decahydrido-monocarba-closo-decaborate (KCB9H10) and imidazole (C3H4N2) under mild conditions, to achieve the K-ion superionic solid-state electrolyte. The crystal structure was revealed as an orthorhombic lattice with the space group of Pna21 by FOX software. The diffusion properties for K+ in the crystal structure were calculated using the climbing image nudged elastic band (CI-NEB) method. KCB9H10·2C3H4N2 exhibited a high ionic conductivity of 1.3 × 10-4 S cm-1 at 30 °C, four orders of magnitude higher than that of KCB9H10. This ionic conductivity is also the highest value of hydridoborate-based K+ conductors reported. Moreover, KCB9H10·2C3H4N2 demonstrated a K+ transference number of 0.96, an electrochemical stability window of 1.2 to 3.2 V vs. K/K+, and good stability against the K metal coated by a layer of potassium imidazolate (KIm). These great performances make KCB9H10·2C3H4N2 a promising K-ion solid-state electrolyte.

3.
ACS Appl Mater Interfaces ; 16(37): 49328-49336, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39230579

RESUMEN

Herein, we report halide nanocomposite solid electrolytes (HNSEs) that integrate diverse oxides with alterations that allow tuning of their ionic conductivity, (electro)chemical stability, and specific density. A two-step mechanochemical process enabled the synthesis of multimetal (or nonmetal) HNSEs, MO2-2Li2ZrCl6, as verified by pair distribution function and X-ray diffraction analyses. The multimetal (or nonmetal) HNSE strategy increases the ionic conductivity of Li2ZrCl6 from 0.40 to 0.82 mS cm-1. Additionally, cyclic voltammetry test findings corroborated the enhanced passivating properties of the HNSEs. Notably, incorporating SiO2 into HNSEs leads to a substantial reduction in the specific density of HNSEs, demonstrating their strong potential for achieving a high energy density and lowering costs. Fluorinated SiO2-2Li2ZrCl5F HNSEs exhibited enhanced interfacial compatibility with Li6PS5Cl and LiCoO2 electrodes. Cells employing SiO2-2Li2ZrCl5F with LiCoO2 exhibit superior electrochemical performance delivering the initial discharge capacity of 162 mA h g-1 with 93.7% capacity retention at the 100th cycle at 60 °C.

4.
Artículo en Inglés | MEDLINE | ID: mdl-39277815

RESUMEN

In this work, we build a computationally inexpensive, data-driven model that utilizes atomistic structure information to predict the reactivity of interfaces between any candidate solid-state electrolyte material and a Li metal anode. This model is trained on data from ab initio molecular dynamics (AIMD) simulations of the time evolution of the solid electrolyte-Li metal interfaces for 67 different materials. Predicting the reactivity of solid-state interfaces with ab initio techniques remains an elusive challenge in materials discovery and informatics, and previous work on predicting interfacial compatibility of solid-state Li-ion electrolytes and Li metal anodes has focused mainly on thermodynamic convex hull calculations. Our framework involves training machine learning models on AIMD data, thereby capturing information on both kinetics and thermodynamics, and then leveraging these models to predict the reactivity of thousands of new candidates in the span of seconds, avoiding the need for additional weeks-long AIMD simulations. We identify over 300 new chemically stable and over 780 passivating solid electrolytes that are predicted to be thermodynamically unfavored. Our results indicate many potential solid-state electrolyte candidates have been incorrectly labeled unstable via purely thermodynamic approaches using density functional theory (DFT) energetics, and that the pool of promising, Li-stable solid-state electrolyte materials may be much larger than previously thought from screening efforts. To showcase the value of our approach, we highlight two borate materials that were identified by our model and confirmed by further AIMD calculations to likely be highly conductive and chemically stable with Li: LiB13C2 and LiB12PC.

5.
Heliyon ; 10(16): e36206, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39253163

RESUMEN

Garnet-type Li7La3Zr2O12 (LLZO) Li-ion solid electrolytes are promising candidates for safe, next-generation solid-state batteries. In this study, we synthesize Ga-doped LLZO (Ga-LLZO) electrolytes using a microwave-assisted solvothermal method followed by low-temperature heat treatment. The nanostructured precursor (<50 nm) produced by the microwave-assisted solvothermal process has a high surface energy, facilitating the reaction for preparing garnet-type Ga-LLZO powders (<800 nm) within a short time (<5 h) at a low calcination temperature (<700 °C). Additionally, the calcined nanostructured Ga-LLZO powder can be sintered to produce a high-density pellet with minimized grain boundaries under moderate sintering conditions (temperature: 1150 °C, duration: 10 h). The optimal doping concentration was determined to be 0.4 mol% Ga, which resulted significantly increased the ionic conductivity (1.04 × 10-3 S cm-1 at 25 °C) and stabilized the cycling performance over 1700 h at 0.4 mA cm-2. This approach demonstrates the potential to synthesize oxide-type solid electrolyte materials with improved properties for solid-state batteries.

6.
Small Methods ; : e2401046, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39235553

RESUMEN

In all-solid-state batteries, a solid electrolyte with high ionic conductivity is required for fast charging, uniform lithium deposition, and increased cathode capacity. Lithium argyrodite with BH4 - substitution has promising potential due to its higher ionic conductivity compared to argyrodites substituted with halides. In this study, Li5.25PS4.25(BH4)1.75, characterized by a high ionic conductivity of 13.8 mS cm-1 at 25 °C, is synthesized via wet ball-milling employing o-xylene. The investigation focused on optimizing wet ball-milling parameters such as ball size, xylene content, drying temperature, as well as the amount of BH4 - substitution in argyrodite. An all-solid-state battery prepared using Li5.25PS4.25(BH4)1.75 as the electrolyte and LiNbO3 coated NCM811 as the cathode exhibits an initial coulombic efficiency of 90.2% and maintains 93.9% of its initial capacity after 100 cycles at fast charging rate (5C). It is anticipated that the application of this wet mechanochemical synthesis will contribute further to the commercialization of all-solid-state batteries using BH4-substituted argyrodites.

7.
ACS Nano ; 18(34): 23320-23330, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39151093

RESUMEN

The high interface resistance at the cathode-sulfide electrolyte interface is still a crucial drawback in an all-solid-state battery, unlike the initial expectation that the all-solid-state interface would enhance electrochemical stability by reducing side reactions at the interface. In this study, we examined the fundamental mechanism of unexpected reactions at the interface of LiNi0.8Co0.1Mn0.1O2 (NCM811) and argyrodite (Li6PS5Br0.5Cl0.5, LPSBC) sulfide solid electrolytes based on the combined method of multiscale simulations and electrochemical experiments. The high interface resistance originates from the formation of a passivating layer at the interface combined with irregular atomic and electronic structures, Li depletion, mutual element exchange, and mechanical contact loss between the oxide cathode and sulfide solid electrolyte. We also confirmed that these side reactions were suppressed by O substitutions to sulfide solid electrolyte (LPSOBC), and then the chemo-mechanical stability of the all-solid battery was enhanced by alleviating the side reactions at the interface. This study provides rational insights into the design of an interface for all-solid-state batteries.

8.
J Colloid Interface Sci ; 678(Pt A): 53-62, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39180848

RESUMEN

Plastic-crystal-embedded elastomer electrolytes (PCEEs), produced through polymerization-induced phase separation (PIPS), are gaining popularity as solid polymer electrolytes (SPEs). However, it remains to be investigated whether all monomer molecules can achieve polymerization-induced phase separation and the corresponding differences in lithium metal battery performance. Herein, we prepared PCEEs with different functional groups (OH, CN, F) through in situ polymerization. Research findings show that PCEE containing - CN or - F achieves the separation of the plastic crystalline phase and succinonitrile (SN) phase, whereas PCEE containing OH cannot due to hydrogen bonding with the SN phase. Notably, the PCEE synthesized with the F monomer (FBA-PCEE) exhibited exceptional interfacial stability with lithium metal anodes and lithium iron phosphate (LFP) cathodes, due to its unique coordination mechanism with lithium ions. The FBA-PCEE demonstrated a high ionic conductivity (2.02 × 10-3 S cm-1) and lithium-ion migration number ( [Formula: see text]  = 0.75). Moreover, lithium symmetric cells incorporating FBA-PCEE demonstrated stable cycling performance for more than 1000 h at a current density of 0.1 mA cm-2, resulting in the development of a solid electrolyte interphase (SEI) rich in LiF, Li3N, and Li2CO3 over time. Additionally, incorporating FBA-PCEE facilitated the stable cycling of LPF over 1000 cycles at 0.5C, maintaining a capacity retention of 77.38 % after 500 cycles. When coupled with high-voltage Nickel Cobalt Manganese Oxide (NCM-622) cathodes and lithium metal anodes, a discharge capacity of 119.70 mAh g-1 at 0.1C was sustained after 100 cycles, exhibiting a capacity retention of 78.95 %. This study elucidates the critical role of monomer design in achieving PIPS, offering valuable insights into developing high-performance polymer composite electrolytes for advanced lithium metal batteries.

9.
Small ; : e2404537, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39185805

RESUMEN

Lithium metal batteries operated with high voltage cathodes are predestined for the realization of high energy storage systems, where solid polymer electrolytes offer a possibility to improve battery safety. Al2O3_PCL is introduced as promising hybrid electrolyte made from polycaprolactone (PCL) and Al2O3 nanoparticles that can be prepared in a one-pot synthesis as a random mixture of linear PCL and PCL-grafted Al2O3. Upon grafting, synergistic effects of mechanical stability and ionic conductivity are achieved. Due to the mechanical stability, manufacture of PCL-based membranes with a thickness of 50 µm is feasible, yielding an ionic conductivity of 5·10-5 S cm-1 at 60 °C. The membrane exhibits an impressive performance of Li deposition in symmetric Li||Li cells, operating for 1200 h at a constant and low overvoltage of 54 mV and a current density of 0.2 mA cm-2. NMC622 | Al2O3_PCL | Li cells are cycled at rates of up to 1 C, achieving 140 cycles at >80% state of health. The straightforward synthesis and opportunity of upscaling as well as solvent-free polymerization render the Al2O3_PCL hybrid material as rather safe, potentially sustainable and affordable alternative to conventional polymer-based electrolytes.

10.
Small ; : e2404171, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39185810

RESUMEN

All-solid-state lithium sulfide-based batteries (ASSLSBs) have drawn much attention due to their intrinsic safety and excellent performance in overcoming the polysulfide shuttle effect. However, the sluggish kinetics of Li2S cathode severely impede commercial utilization. Here, a Cu+, I- co-doping strategy is employed to activate the kinetics of Li2S to construct high-performance ASSLSBs. The electronic conductivity and Li-ion diffusion coefficient of the co-doped Li2S are increased by five and two orders of magnitude, respectively. Cu+ as a redox medium greatly improves the reaction kinetics, which is supported by ex situ X-ray photoelectron spectroscopy. Density functional theory calculation (DFT) shows that Cu+, I- co-doping reduces the Li-ions diffusion energy barrier. The co-doped Li2S exhibits a remarkable improvement in capacity (1165.23 mAh g-1 (6.65 times that of pristine Li2S) at 0.02 C and 592.75 mAh g-1 at 2 C), and excellent cycling stability (84.58% capacity retention after 6200 cycles at 2 C) at room temperature. Moreover, an ASSLSB, fabricated with a lithium-free (Si─C) anode, obtains a high specific capacity of 1082.7 mAh g-1 at 0.05 C and 97% capacity retention after 400 cycles at 0.5 C. This work provides a broad prospect for the development of ASSLSBs with practical energy density exceeding that of traditional lithium-ion batteries.

11.
ACS Appl Mater Interfaces ; 16(32): 42995-43005, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39092637

RESUMEN

The use of solid electrolytes (SE) in solid-state batteries holds the promise of achieving higher energy densities and enhancing safety. However, current solid-state batteries face significant interface impedance issues, mainly dealing with the effect of the evolution of the solid-solid interface on ion transport. Semi-solid-state batteries (SSB), containing a small amount of liquid electrolyte, serve as appropriate transitional products in the development process of solid-state batteries. More importantly, the clarity of the relevant interface dynamics can provide theoretical guidance for the subsequent all-solid-state batteries. Therefore, this paper investigates SSB through Electrochemical Impedance Spectroscopy (EIS), primarily employing a combination of theoretical modeling, simulation predictions, and experimental analyses to elucidate the complex electrochemical processes within these batteries. Based on detailed exploration of the complex electrochemical processes within SSB, we have discovered additional electrochemical processes beyond Li+ penetration through the solid-electrolyte interphase (SEI) film and charge transfer. We attribute the additional electrochemical reaction processes to the resistance present at the SE/SEI interface of SSB on account of numerical analysis and interface characterization. Furthermore, this interface resistance exhibits a trend of initial decrease followed by continuous increase, elucidating the attribution and numerical variations of various impedance components within the EIS. The application of EIS techniques to analyze ion transport processes in SSB serves as a suitable transition toward achieving all-solid-state batteries as well as provides guidance for subsequent interface optimization of solid-state batteries and propels their transition from laboratory experimentation to commercialization.

12.
ACS Appl Mater Interfaces ; 16(32): 42189-42197, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39093830

RESUMEN

Pure sulfur (S8 and Li2S) all solid-state batteries inherently suffer from low electronic conductivities, requiring the use of carbon additives, resulting in decreased active material loading at the expense of increased loading of the passive components. In this work, a transition metal sulfide in combination with lithium disulfide is employed as a dual cation-anion redox conversion composite cathode system. The transition metal sulfide undergoes cation redox, enhancing the electronic conductivity, whereas the lithium disulfide undergoes anion redox, enabling high-voltage redox conducive to achieving high energy densities. Carbon-free cathode composites with active material loadings above 6.0 mg cm-2 attaining areal capacities of ∼4 mAh cm-2 are demonstrated with the possibility to further increase the active mass loading above 10 mg cm-2 achieving cathode areal capacities above 6 mAh cm-2, albeit with less cycle stability. In addition, the effective partial transport and thermal properties of the composites are investigated to better understand FeS:Li2S cathode properties at the composite level. The work introduced here provides an alternative route and blueprint toward designing new dual conversion cathode systems, which can operate without carbon additives enabling higher active material loadings and areal capacities.

13.
Angew Chem Int Ed Engl ; : e202410347, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39091135

RESUMEN

Polyethylene oxide (PEO)-based all solid-state lithium metal batteries (ASSLMBs) are strongly hindered by the fast dendrite growth at the Li metal/electrolyte interface, especially under large rates. The above issue stems from the suboptimal interfacial chemistry and poor Li+ transport kinetics during cycling. Herein, a SnF2-catalyzed lithiophilic-lithiophobic gradient solid electrolyte interphase (SCG-SEI) of LixSny/LiF-Li2O is in-situ formed. The superior ionic LiF-Li2O rich upper layer (17.1 nm) possesses high interfacial energy and fast Li+ diffusion channels, wherein lithiophilic LixSny alloy layer (8.4 nm) could highly reduce the nucleation overpotential with lower diffusion barrier and promote rapid electron transportation for reversible Li+ plating/stripping. Simultaneously, the insoluble SnF2-coordinated PEO promotes the rapid Li+ ion transport in the bulk phase. As a result, an over 46.7 and 3.5 times improvements for lifespan and critical current density of symmetrical cells are achieved, respectively. Furthermore, LiFePO4-based ASSLMBs deliver a recorded cycling performance at 5 C (over 1000 cycles with a capacity retention of 80.0%). More importantly, impressive electrochemical performances and safety tests with LiNi0.8Mn0.1Co0.1O2 and pouch cell with LiFePO4, even under extreme conditions (i.e., 100 ℃), are also demonstrated, reconfirmed the importance of lithiophilic-lithiophobic gradient interfacial chemistry in the design of high-rate ASSLMBs for safety applications.

14.
Adv Mater ; : e2312305, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39188191

RESUMEN

The silicon-based anodes are one of the promising anodes to achieve the high energy density of all-solid-state batteries (ASSBs). Nano silicon (nSi) is considered as a suitable anode material for assembling sheet-type sulfide ASSBs using thin free-standing Li6PS5Cl (LPSC) membrane without causing short circuit. However, nSi anodes face a significant challenge in terms of rapid capacity degradation during cycling. To address this issue, dual-function Li4.4Si modified nSi anode sheets are developed, in which Li4.4Si serves a dual role by not only providing additional Li+ but also stabilizing the anode structure with its low Young's modulus upon cycling. Sheet-type ASSBs equipped with the Li4.4Si modified nSi anode, thin LPSC membrane, and LiNi0.83Co0.11Mn0.06O2 (NCM811) cathode demonstrate exceptional cycle stability, with a capacity retention of 96.16% at 0.5 C (1.18 mA cm-2) after 100 cycles and maintain stability for 400 cycles. Furthermore, a remarkable cell-level energy density of 303.9 Wh kg-1 is achieved at a high loading of 5.22 mAh cm-2, representing a leading level of sulfide ASSBs using electrolyte membranes at room temperature. Consequently, the chemically stable slurry process implemented in the fabrication of Li4.4Si-modified nSi anode sheet paves the way for scalable applications of high-performance sulfide ASSBs.

15.
ACS Nano ; 18(33): 22518-22532, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39109485

RESUMEN

The matching of poly(ethylene oxide) (PEO)-based electrolytes with ultrahigh-nickel cathode materials is crucial for designing new-generation high-energy-density solid-state lithium metal batteries (SLMBs), but it is limited by serious interfacial side reactions between PEO and ultrahigh-nickel materials. Here, a high-concentration electrolyte (HCE) interface with a customized Li+ solvation sheath is constructed between the cathode and the electrolyte. It induces the formation of an anion-regulated robust cathode/electrolyte interface (CEI), reduces the unstable free-state solvent, and finally achieves the compatibility of PEO-based electrolytes with ultrahigh-nickel cathode materials. Meanwhile, the corrosion of the Al current collector caused by lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) ions is prevented by lithium difluoro(oxalato)borate (LiDFOB) ions. The synergistic effect of the double lithium salt is achieved by a well-tailored ratio of TFSI- and DFOB- in the first solvation sheath of Li+. Compared with reported PEO-based SLMBs matched with ultrahigh-nickel (Ni ≥ 90%) cathodes, the SLMB in this work delivers a high discharge specific capacity of 216.4 mAh g-1 (0.1C) even at room temperature. This work points out a direction to optimize the cathode/electrolyte interface.

16.
J Colloid Interface Sci ; 677(Pt A): 953-962, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39128289

RESUMEN

Employing layered materials as the cathodes for solid-state batteries (SSBs) is vital in enhancing the batteries' energy density, whereas numerous issues are present regarding the compatibilities between cathode electrode and modified solid electrolyte (ME) in this battery configuration. By investigating the electrochemical performance and interfacial properties of SSBs using various cathodes, the fundamental reason for the poor compatibility between layered cathodes, especially LiCoO2 with ME is revealed. Because of the Li(solvent)+ intercalation environments formed in the ME, the resultant weak-interacted TFSI- could be adsorbed and destabilized by Co ions on the surface. Besides, the high energy level offsets between LiCoO2 and ME lead to Li-ion transferring from the bulk electrode to the electrolyte, resulting in a pre-formed interface on the cathode particles before the electric current is applied, affects the formation of effective cathode-electrolyte interface (CEI) film during electrochemical process and deteriorated overall battery performance. From this view, an interlayer is pre-added on the LiCoO2 surface through an electrostatic adsorption method, to adjust the energy level offsets between the cathode and ME, as well as isolate the direct contact of surface Co ions to TFSI-. The cycling properties of the SSB using modified LiCoO2 are greatly enhanced, and a capacity retention of 68.72 % after 100 cycles could be achieved, against 8.28 % previously, certifying the rationality of the understanding and the effectiveness of the proposed modification method. We believe this research could provide basic knowledge of the compatibility between layered cathodes and MEs, shedding light on designing more effective strategies for achieving SSBs with high energy density.

17.
ACS Appl Mater Interfaces ; 16(36): 47551-47562, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39163587

RESUMEN

All-solid-state lithium batteries, including sulfide electrolytes and nickel-rich layered oxide cathode materials, promise safer electrochemical energy storage with high gravimetric and volumetric densities. However, the poor electrical conductivity of the active material results in the requirement for additional conducive additives, which tend to react negatively with the sulfide electrolyte. The fundamental scientific principle uncovered through this work is simple and suggests that the electrical network benefits associated with the introduction of short-length carbons will eventually be overpowered by the increase in bulk resistance associated with their instability in the sulfide electrolyte. However, applying just the right amount of short carbon fibres minimizes degradation of the sulfide solid electrolyte and maximizes the electron movement. Therefore, we propose the application of a low-weight-percent carbon nanotubes (CNTs) coating on the nickel-rich cathode LiNi0.8Co0.1Mn0.1O2 (NCM811) along with large-aspect-ratio carbon nanofibers (CNFs) as the primary conductive additive. When only 0.3 wt % CNTs was utilized with 4.7 wt % CNFs, an initial Coulombic efficiency of 83.55% at 0.05C and a notably excellent capacity retention of 90.1% over 50 cycles at 0.5C were achieved along with a low ionic resistance. This work helps to confirm the validity of applying short carbon pathways in sulfide-electrolyte-based cathode composites and proposes their combination with a larger primary carbon additive as a solution to the ongoing all-solid-state battery rate and instability issues.

18.
Adv Sci (Weinh) ; : e2404213, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38981036

RESUMEN

Recently emerging lithium ternary chlorides have attracted increasing attention for solid-state electrolytes (SSEs) due to their favorable combination between ionic conductivity and electrochemical stability. However, a noticeable discrepancy in Li-ion conductivity persists between chloride SSEs and organic liquid electrolytes, underscoring the need for designing novel chloride SSEs with enhanced Li-ion conductivity. Herein, an intriguing trigonal structure (i.e., Li3SmCl6 with space group P3112) is identified using the global structure searching method in conjunction with first-principles calculations, and its potential for SSEs is systematically evaluated. Importantly, the structure of Li3SmCl6 exhibits a high ionic conductivity of 15.46 mS cm-1 at room temperature due to the 3D lithium percolation framework distinct from previous proposals, associated with the unique in-plane cation ordering and stacking sequences. Furthermore, it is unveiled that Li3SmCl6 possesses a wide electrochemical window of 0.73-4.30 V vs Li+/Li and excellent chemical interface stability with high-voltage cathodes. Several other Li3MCl6 (M = Er, and In) materials with isomorphic structures to Li3SmCl6 are also found to be potential chloride SSEs, suggesting the broader applicability of this structure. This work reveals a new class of ternary chloride SSEs and sheds light on strategy for structure searching in the design of high-performance SSEs.

19.
Adv Mater ; : e2407738, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075816

RESUMEN

The development of all-solid-state lithium-sulfur batteries (ASSLSBs) toward large-scale electrochemical energy storage is driven by the higher specific energies and lower cost in comparison with the state-of-the-art Li-ion batteries. Yet, insufficient mechanistic understanding and quantitative parameters of the key components in sulfur-based cathode hinders the advancement of the ASSLSB technologies. This review offers a comprehensive analysis of electrode parameters, including specific capacity, voltage, S mass loading and S content toward establishing the specific energy (Wh kg-1) and energy density (Wh L-1) of the ASSLSBs. Additionally, this work critically evaluates the progress in enhancing lithium ion and electron percolation and mitigating electrochemical-mechanical degradation in sulfur-based cathodes. Last, a critical outlook on potential future research directions is provided to guide the rational design of high-performance sulfur-based cathodes toward practical ASSLSBs.

20.
Chimia (Aarau) ; 78(6): 403-414, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38946413

RESUMEN

This review article delves into the growing field of solid-state batteries as a compelling alternative to conventional lithium-ion batteries. The article surveys ongoing research efforts at renowned Swiss institutions such as ETH Zurich, Empa, Paul Scherrer Institute, and Berner Fachhochschule covering various aspects, from a fundamental understanding of battery interfaces to practical issues of solid-state battery fabrication, their design, and production. The article then outlines the prospects of solid-state batteries, emphasizing the imperative practical challenges that remain to be overcome and highlighting Swiss research groups' efforts and research directions in this field.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA