Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 21(13)2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34201774

RESUMEN

Solar cells may possess defects during the manufacturing process in photovoltaic (PV) industries. To precisely evaluate the effectiveness of solar PV modules, manufacturing defects are required to be identified. Conventional defect inspection in industries mainly depends on manual defect inspection by highly skilled inspectors, which may still give inconsistent, subjective identification results. In order to automatize the visual defect inspection process, an automatic cell segmentation technique and a convolutional neural network (CNN)-based defect detection system with pseudo-colorization of defects is designed in this paper. High-resolution Electroluminescence (EL) images of single-crystalline silicon (sc-Si) solar PV modules are used in our study for the detection of defects and their quality inspection. Firstly, an automatic cell segmentation methodology is developed to extract cells from an EL image. Secondly, defect detection can be actualized by CNN-based defect detector and can be visualized with pseudo-colors. We used contour tracing to accurately localize the panel region and a probabilistic Hough transform to identify gridlines and busbars on the extracted panel region for cell segmentation. A cell-based defect identification system was developed using state-of-the-art deep learning in CNNs. The detected defects are imposed with pseudo-colors for enhancing defect visualization using K-means clustering. Our automatic cell segmentation methodology can segment cells from an EL image in about 2.71 s. The average segmentation errors along the x-direction and y-direction are only 1.6 pixels and 1.4 pixels, respectively. The defect detection approach on segmented cells achieves 99.8% accuracy. Along with defect detection, the defect regions on a cell are furnished with pseudo-colors to enhance the visualization.


Asunto(s)
Aprendizaje Profundo , Procesamiento de Imagen Asistido por Computador , Redes Neurales de la Computación , Silicio
2.
Anal Sci ; 37(1): 201-210, 2021 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-33229825

RESUMEN

Thermal analysis and calorimetry share a close relationship in the field of thermal research. With regards to the specific heat capacity, researchers have been able to realize absolute measurement techniques by utilizing drop, conduction, and adiabatic methods that are used in calorimetry. Furthermore, it is possible to optimize differential scanning calorimetry, which is a comparative measurement technique for the specific heat capacity used in thermal analysis, by improving the absolute measurement techniques. At the National Metrology Institute of Japan (NMIJ), we developed a new certified reference material (CRM) for comparatively measuring the specific heat capacity, the single-crystalline silicon-NMIJ CRM 5806a, using a new type of cryogenic adiabatic calorimeter equipped with a pulse-tube refrigerator working in the temperature range from 50 to 350 K. This CRM was produced in accordance with the quality specifications of NMIJ, and complies with the ISO/IEC 17025, ISO 17034, and ISO GUIDE 35 standards. This paper reports on the procedure for fabricating this CRM and using it to perform specific heat capacity measurements at low temperatures. The specific heat capacity was measured using a differential scanning calorimeter in the temperature range from 280 to 340 K. NMIJ CRM 5806a was used to calibrate the heat flow. It was found that the uncertainty evaluation became easier because one factor of the uncertainty evaluation could be removed using the CRM. We show that the development of the CRM using the adiabatic calorimeter has led to an improvement in the specific heat capacity measurement results obtained by the differential scanning calorimeter.

3.
Nanomaterials (Basel) ; 9(11)2019 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-31752128

RESUMEN

Silicon undergoes a brittle-to-ductile transition as its characteristic dimension reduces from macroscale to nanoscale. The thorough understanding of the plastic deformation mechanism of silicon at the nanoscale is still challenging, although it is essential for developing Si-based micro/nanoelectromechanical systems (MEMS/NEMS). Given the wide application of silicon in extreme conditions, it is, therefore, highly desirable to reveal the nanomechanical behavior of silicon from cryogenic temperature to elevated temperature. In this paper, large-scale molecular dynamics (MD) simulations were performed to reveal the spherical nanoindentation response and plastic deformation mechanism of (110)Si at the temperature range of 0.5 K to 573 K. Special attention was paid to the effect of temperature. Multiple pop-ins detected in load/pressure-indentation strain curves are impacted by temperature. Four featured structures induced by nanoindentation, including high-pressure phases, extrusion of α-Si, dislocations, and crack, are observed at all temperatures, consistent with experiment results. The detailed structure evolution of silicon was revealed at the atomic scale and its dependence on temperature was analyzed. Furthermore, structure changes were correlated with pop-ins in load/pressure-indentation strain curves. These results may advance our understanding of the mechanical properties of silicon.

4.
Materials (Basel) ; 12(7)2019 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-30987082

RESUMEN

In this work, thin SiO2 insulating layers were generated on the top and bottom surfaces of single-crystalline silicon plates (n type) by thermal oxidation to obtain an insulator/semiconductor/insulator (ISI) multilayer structure. X-ray diffraction (XRD) pattern and scanning electron microscope (SEM) pictures implied that all of the synthesized SiO2 layers were amorphous. By controlling the thermal oxidation times, we obtained SiO2 layers with various thicknesses. The dielectric properties of silicon plates with different thicknesses of SiO2 layers (different thermal oxidation times) were measured. The dielectric properties of all of the single-crystalline silicon plates improved greatly after thermal oxidation. The dielectric constant of the silicon plates with SiO2 layers was approximately 104, which was approximately three orders more than that of the intrinsic single-crystalline silicon plate (11.9). Furthermore, both high permittivity and low dielectric loss (0.02) were simultaneously achieved in the single-crystalline silicon plates after thermal oxidation (ISI structure).

5.
Materials (Basel) ; 12(1)2018 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-30583577

RESUMEN

The fabrication of micro-holes in silicon substrates that have a proper taper, higher depth-to-diameter ratio, and better surface quality has been attracting intense interest for a long time due to its importance in the semiconductor and MEMS (Micro-Electro-Mechanical System) industry. In this paper, an experimental investigation of the machining performance of the direct and chemical-assisted picosecond laser trepanning of single crystalline silicon is conducted, with a view to assess the two machining methods. The relevant parameters affecting the trepanning process are considered, employing the orthogonal experimental design scheme. It is found that the direct laser trepanning results are associated with evident thermal defects, while the chemical-assisted method is capable of machining micro-holes with negligible thermal damage. Range analysis is then carried out, and the effects of the processing parameters on the hole characteristics are amply discussed to obtain the recommended parameters. Finally, the material removal mechanisms that are involved in the two machining methods are adequately analyzed. For the chemical-assisted trepanning case, the enhanced material removal rate may be attributed to the serious mechanical effects caused by the liquid-confined plasma and cavitation bubbles, and the chemical etching effect provided by NaOH solution.

6.
J Opt ; 18(2)2016.
Artículo en Inglés | MEDLINE | ID: mdl-31998470

RESUMEN

This paper reports the development of a new 16-channel parallel acoustic delay line (PADL) array for real-time photoacoustic tomography (PAT). The PADLs were directly fabricated from single-crystalline silicon substrates using deep reactive ion etching. Compared with other acoustic delay lines (e.g., optical fibers), the micromachined silicon PADLs offer higher acoustic transmission efficiency, smaller form factor, easier assembly, and mass production capability. To demonstrate its real-time photoacoustic imaging capability, the silicon PADL array was interfaced with one single-element ultrasonic transducer followed by one channel of DAQ electronics to receive 16 channels of photoacoustic signals simultaneously. A PAT image of an optically-absorbing target embedded in an optically-scattering phantom was reconstructed, which matched well with the actual size of the imaged target. Because the silicon PADL array allows a signal-to-channel reduction ratio of 16:1, it could significantly simplify the design and construction of ultrasonic receivers for real-time PAT.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA