Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.063
Filtrar
1.
J Biomed Opt ; 30(Suppl 1): S13703, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39034959

RESUMEN

Significance: Standardization of fluorescence molecular imaging (FMI) is critical for ensuring quality control in guiding surgical procedures. To accurately evaluate system performance, two metrics, the signal-to-noise ratio (SNR) and contrast, are widely employed. However, there is currently no consensus on how these metrics can be computed. Aim: We aim to examine the impact of SNR and contrast definitions on the performance assessment of FMI systems. Approach: We quantified the SNR and contrast of six near-infrared FMI systems by imaging a multi-parametric phantom. Based on approaches commonly used in the literature, we quantified seven SNRs and four contrast values considering different background regions and/or formulas. Then, we calculated benchmarking (BM) scores and respective rank values for each system. Results: We show that the performance assessment of an FMI system changes depending on the background locations and the applied quantification method. For a single system, the different metrics can vary up to ∼ 35 dB (SNR), ∼ 8.65 a . u . (contrast), and ∼ 0.67 a . u . (BM score). Conclusions: The definition of precise guidelines for FMI performance assessment is imperative to ensure successful clinical translation of the technology. Such guidelines can also enable quality control for the already clinically approved indocyanine green-based fluorescence image-guided surgery.


Asunto(s)
Benchmarking , Imagen Molecular , Imagen Óptica , Fantasmas de Imagen , Relación Señal-Ruido , Imagen Molecular/métodos , Imagen Molecular/normas , Imagen Óptica/métodos , Imagen Óptica/normas , Procesamiento de Imagen Asistido por Computador/métodos
2.
Radiol Phys Technol ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39245734

RESUMEN

The aim of this study was to optimise the vessel angle as well as the stack number from the profiles of carbon dioxide digital subtraction angiography (CO2-DSA) images of a water phantom containing an artificial vessel tilted at different angles which imitate arteries in the body. The artificial vessel was tilted at 0°, 15°, and 30° relative to the horizontal axis with its centre as the pivot point, and CO2-DSA images were acquired at each vessel tilt angle. The maximum opacity method was used to stack up to four images of the next frame one by one. The signal-to-noise ratio (SNR) was determined from the profile curves. The Wilcoxon rank sum test was used to evaluate whether the profile curve and SNR differed depending on the vessel tilt angle or stack number, and a p-value of less than 0.05 was considered statistically significant. Images acquired at 0° had a significantly lower SNR than images acquired at 15° (p = 0.10). When the vessel angle was 30°, the profile curves were significantly improved (p < 0.05) when two or more images were stacked over the original image. Images with a good SNR were acquired at the vessel tilt angle of 15°, and the shape of the profile curve was improved when two or more images were stacked on the original image. This study demonstrates that the quality of images acquired using CO2-DSA can be significantly improved through parameter optimisation for image acquisition and post-processing.

3.
Cureus ; 16(8): e67157, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39295683

RESUMEN

BACKGROUND: Magnetic resonance imaging (MRI) of the head and neck region is notably challenging due to the complex anatomy and the critical need for high-resolution imaging to accurately diagnose various pathologies. The two prominent MRI techniques used in this context are turbo spin echo (TSE) and echo-planar diffusion-weighted imaging (EP-DWI). TSE is recognized for providing high-resolution anatomical images, whereas EP-DWI offers functional imaging that highlights the diffusion of water molecules, essential for detecting early pathological changes. This study aims to compare the image quality of TSE and EP-DWI in the head and neck region to assess their diagnostic efficacy and clinical utility. METHODS: This retrospective study was conducted at Saveetha Medical College and Hospital over six months. A total of 100 patients (50 males and 50 females, aged 18-65 years) with various head and neck pathologies were included. Patients underwent both TSE and EP-DWI sequences using a Philips MULTIVA 1.5 T scanner. Image quality was assessed based on signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), artifact presence, and lesion detection. Two experienced radiologists independently reviewed the images, with inter-observer agreement calculated using Cohen's kappa coefficient. RESULTS: The mean SNR for TSE was significantly higher than EP-DWI (45.2 vs. 28.7, p<0.01), indicating superior image clarity and detail in TSE images. TSE demonstrated a higher mean CNR compared to EP-DWI (25.4 vs. 15.8, p<0.01), suggesting better differentiation between different tissue types and pathologies. Artifacts were more frequent in EP-DWI images (45% vs. 15%), with motion artifacts being the most common. TSE detected more lesions (120 vs. 95), with more precise delineation of lesions. The inter-observer agreement was excellent for both TSE and EP-DWI, with kappa values of 0.85 and 0.80, respectively. CONCLUSION: TSE MRI provides superior image quality compared to EP-DWI for evaluating the head and neck region. The enhanced SNR and CNR in TSE images result in clearer and more detailed visualizations of anatomical structures and pathological changes, with fewer artifacts. While EP-DWI is valuable for functional imaging, its role should be complementary to TSE. The study suggests that TSE should be the preferred modality for detailed anatomical assessment in the head and neck region. Further studies with larger sample sizes and advanced imaging techniques may provide additional insights into optimizing MRI protocols for head and neck imaging.

4.
Biosensors (Basel) ; 14(8)2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39194634

RESUMEN

Here, we report an ultrasoft extra long-lasting, reusable hydrogel-based sensor that enables high-quality electrophysiological recording with low-motion artifacts. The developed sensor can be used and stored in an ambient environment for months before being reused. The developed sensor is made of a self-adhesive electrical-conductivity-enhanced ultrasoft hydrogel mounted in an Ecoflex-based frame. The hydrogel's conductivity was enhanced by incorporating polypyrrole (PPy), resulting in a conductivity of 0.25 S m-1. Young's modulus of the sensor is only 12.9 kPa, and it is stretchable up to 190%. The sensor was successfully used for electrocardiography (ECG) and electromyography (EMG). Our results indicate that using the developed hydrogel-based sensor, the signal-to-noise ratio of recorded electrophysiological signals was improved in comparison to that when medical-grade silver/silver chloride (Ag/AgCl) wet gel electrodes were used (33.55 dB in comparison to 22.16 dB). Due to the ultra-softness, high stretchability, and self-adhesion of the developed sensor, it can conform to the skin and, therefore, shows low susceptibility to motion. In addition, the sensor shows no sign of irritation or allergic reaction, which usually occurs after long-term wearing of medical-grade Ag/AgCl wet gel electrodes on the skin. Further, the sensor is fabricated using a low-cost and scalable fabrication process.


Asunto(s)
Electrocardiografía , Electromiografía , Hidrogeles , Hidrogeles/química , Humanos , Técnicas Biosensibles , Conductividad Eléctrica , Polímeros , Pirroles/química , Dispositivos Electrónicos Vestibles , Electrodos , Relación Señal-Ruido
5.
Acta Radiol ; 65(9): 1087-1093, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39169708

RESUMEN

BACKGROUND: Photon-counting detector computed tomography (PCD-CT) is a groundbreaking technology with promising results for visualization of small bone structures. PURPOSE: To analyze the delineation of the thoracic spine in multiplanar reconstructions (MPR) on PCD-CT compared to energy-integrating detector (EID)-CT. MATERIAL AND METHODS: Two euthanized mice were examined using different scanners: (i) 20-slice EID-CT and (ii) dual-source PCD-CT at various CTDIVol values. Readers evaluated the thoracic spine and selected series with best visualization among signal-to-noise ratio (SNR)-matched pairs. RESULTS: SNR was significantly higher in PCD-CT reconstructions (Br68) and lower in Hr98 reconstructions compared to EID-CT. Bone detail visualization was superior in PCD-CT (especially in Hr98 reconstructions) compared to EID-CT. CONCLUSION: MPR on a PCD-CT had a higher SNR and better bone detail visualization even at lower radiation doses compared to EID-CT. PCD-CT with bone reconstructions showed the best delineation of small bone structures and might be considered in clinical routine.


Asunto(s)
Fotones , Relación Señal-Ruido , Vértebras Torácicas , Tomografía Computarizada por Rayos X , Vértebras Torácicas/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Animales , Ratones , Dosis de Radiación , Procesamiento de Imagen Asistido por Computador/métodos
6.
Eur Radiol ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39110181

RESUMEN

OBJECTIVES: Fat-signal suppression is essential for breast diffusion magnetic resonance imaging (or diffusion-weighted MRI, DWI) as the very low diffusion coefficient of fat tends to decrease absolute diffusion coefficient (ADC) values. Among several methods, the STIR (short-tau inversion recovery) method is a popular approach, but signal suppression/attenuation is not specific to fat contrary to other methods such as SPAIR (spectral adiabatic (or attenuated) inversion recovery). This article focuses on those two techniques to illustrate the importance of appropriate fat suppression in breast DWI, briefly presenting the pros and cons of both approaches. METHODS AND RESULTS: We show here through simulation and data acquired in a dedicated breast DWI phantom made of vials with water and various concentrations of polyvinylpyrrolidone (PVP) how ADC values obtained with STIR DWI may be biased toward tissue components with the longest T1 values: ADC values obtained with STIR fat suppression may be over/underestimated depending on the T1 and ADC profile within tissues. This bias is also illustrated in two clinical examples. CONCLUSION: Fat-specific methods should be preferred over STIR for fat-signal suppression in breast DWI, such as SPAIR which also provides a higher sensitivity than STIR for lesion detection. One should remain aware, however, that efficient fat-signal suppression with SPAIR requires good B0 shimming to avoid ADC underestimation from residual fat contamination. CLINICAL RELEVANCE STATEMENT: The spectral adiabatic (or attenuated) inversion recovery (SPAIR) method should be preferred over short-tau inversion recovery (STIR) for fat suppression in breast DWI. KEY POINTS: Fat-signal suppression is essential for breast DWI; the SPAIR method is recommended. Short-tau inversion recovery (STIR) is not specific to fat; as a result, SNR is decreased and ADC values may be over- or underestimated. The STIR fat-suppression method must not be used after the injection of gadolinium-based contrast agents.

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 325: 125061, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39216139

RESUMEN

In this study, we introduced a k-iterative double sliding-window (DSW^k) method for the estimation of spectral noise, signal-to-noise ratio (SNR), and baseline correction. The performance was evaluated using simulated spectra and compared against other commonly employed methods. Convergent evaluation determined that a k value of 20 strikes an optimal balance between convergence and computational intensity. The DSW^k method demonstrated outstanding performance across different spectral types (flat baseline, baseline with elevation, baseline with fluctuation, baseline with elevation and fluctuation) coupled with SNR values from 10 to 1000, achieving results that ranged from 1.01 to 1.08 times of the reference value in estimating spectral noise. It also showed that the estimated SNR values are 0.89 to 0.93 times of the reference value, demonstrating a 74.5 % - 131.7 % improvement over the conventional method in spectra with elevated and/or fluctuating baselines. Additionally, the DSW^k method proved effective in correcting baselines and identifying polymers in environmental samples of polyethylene (PE), polypropylene (PP), and polystyrene (PS), despite the limitation of reducing the peak height in spectra with low SNR. This method offers the potential to enhance the automatic and accurate evaluation of spectral quality and could assist in the development of guidelines for more rapid parameter adjustments in Raman measurements.

8.
Sensors (Basel) ; 24(16)2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39204842

RESUMEN

The detection of gas leaks using acoustic signals is often compromised by environmental noise, which significantly impacts the accuracy of subsequent leak identification. Current noise reduction algorithms based on non-negative matrix factorization (NMF) typically utilize the Euclidean distance as their objective function, which can exacerbate noise anomalies. Moreover, these algorithms predominantly rely on simple techniques like Wiener filtering to estimate the amplitude spectrum of pure signals. This approach, however, falls short in accurately estimating the amplitude spectrum of non-stationary signals. Consequently, this paper proposes an improved non-negative matrix factorization (INMF) noise reduction algorithm that enhances the traditional NMF by refining both the objective function and the amplitude spectrum estimation process for reconstructed signals. The improved algorithm replaces the conventional Euclidean distance with the Kullback-Leibler (KL) divergence and incorporates noise and sparse constraint terms into the objective function to mitigate the adverse effects of signal amplification. Unlike traditional methods such as Wiener filtering, the proposed algorithm employs an adaptive Minimum Mean-Square Error-Log Spectral Amplitude (MMSE-LSA) method to estimate the amplitude spectrum of non-stationary signals adaptively across varying signal-to-noise ratios. Comparative experiments demonstrate that the INMF algorithm significantly outperforms existing methods in denoising leakage acoustic signals.

9.
Indian J Otolaryngol Head Neck Surg ; 76(4): 3081-3087, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39130274

RESUMEN

BACKGROUND: The digit in the noise test is a simple hearing screening tool that can identify hearing loss at the early stage. This screening tool takes less time than traditional pure-tone audiometry. There is a scarcity of hearing health professionals with few resources for carrying out hearing screening on a large scale in India. Hence, a hearing screening tool for the Hindi-speaking population is needed. AIM AND OBJECTIVE: The study aimed to develop and validate the Digit in Noise test in Hindi (DIN-H). METHODS: A native Hindi female speaker recorded single digits from 1 to 9 made into triplet combinations, which were binaurally presented to 20 normal hearing subjects having hearing thresholds less than 25 dBHL from 250 to 8000 Hz in the presence of broadband speech-shaped noise. The digit triplets were homogenized using speech intelligibility function for similar difficulty levels across stimuli. The homogenized stimuli were evaluated by obtaining the Speech Recognition Threshold (SRT) of 20 normal hearing subjects. RESULTS: The Mean SRT was - 10.4 and - 11.3 dB before and after homogenization. A strong positive correlation existed between test and retest SRTs (0.78). Mean SRT and slope obtained before and after optimization were comparable to other languages like Korean and English. This test can act as a reliable screening tool for assessing individuals. The test was administered to 106 normal hearing participants. The 95th percentile of the SRT value obtained was - 5.6 dB, which was kept as a cut-off score for the screening test. CONCLUSION: DIN-H can be used as a screening tool for assessing the integrity of the auditory system on a large scale in less time for the Hindi-speaking population.

10.
Sensors (Basel) ; 24(13)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39001164

RESUMEN

Hyperspectral detection of the change rate of organic matter content in agricultural remote sensing requires a high signal-to-noise ratio (SNR). However, due to the large number and efficiency limitation of the components, it is difficult to improve the SNR. This study uses high-efficiency convex grating with a diffraction efficiency exceeding 50% across the 360-850 nm range, a back-illuminated Complementary Metal Oxide Semiconductor (CMOS) detector with a 95% efficiency in peak wavelength, and silver-coated mirrors to develop an imaging spectrometer for detecting soil organic matter (SOM). The designed system meets the spectral resolution of 10 nm in the 360-850 nm range and achieves a swath of 100 km and a spatial resolution of 100 m at an orbital height of 648.2 km. This study also uses the basic structure of Offner with fewer components in the design and sets the mirrors of the Offner structure to have the same sphere, which can achieve the rapid adjustment of the co-standard. This study performs a theoretical analysis of the developed Offner imaging spectrometer based on the classical Rowland circular structure, with a 21.8 mm slit length; simulates its capacity for suppressing the +2nd-order diffraction stray light with the filter; and analyzes the imaging quality after meeting the tolerance requirements, which is combined with the surface shape characteristics of the high-efficiency grating. After this test, the grating has a diffraction efficiency above 50%, and the silver-coated mirrors have a reflection value above 95% on average. Finally, the laboratory tests show that the SNR over the waveband exceeds 300 and reaches 800 at 550 nm, which is higher than some current instruments in orbit for soil observation. The proposed imaging spectrometer has a spectral resolution of 10 nm, and its modulation transfer function (MTF) is greater than 0.23 at the Nyquist frequency, making it suitable for remote sensing observation of SOM change rate. The manufacture of such a high-efficiency broadband grating and the development of the proposed instrument with high energy transmission efficiency can provide a feasible technical solution for observing faint targets with a high SNR.

11.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124751, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38959689

RESUMEN

Spatially offset Raman scattering (SORS) line-mapping was explored as a versatile tool to examine accuracy variations in compositional analyses of tablets with different particle sizes. SORS spectra collected near the laser irradiation were less representative of tablet composition due to the limited spectroscopic sampling volume, while the signal-to-noise (S/N) ratios of corresponding spectra were higher. On the other hand, SORS spectra at longer offset distances were better representative of tablet composition, while their S/N ratios were decreased considerably. Therefore, the use of only a certain portion of sliced (line-mapped) spectra balanced with the sample representation and S/N ratio could be advantageous to enhance accuracy. Moreover, a group of optimal slice spectra is expected to vary when the particle size of the tablet changes since the characteristics of internal photon propagation also would change. For the overall examination, SORS spectra of 30 Anaprox tablets (composed of 4 constituents including naproxen sodium) with 2 particle sizes (88.4 ± 11.8 µm and 118.9 ± 38.8 µm) were analyzed, and the concentrations of three components in these tablets were determined. A total of 6 cases (3 components and 2 particle sizes) were examined. When the average optimal slice spectra were employed in each case, the errors were lower compared to those using the average of all slice spectra. The demonstrated scheme was versatile to study the offset distance-dependent accuracy variations according to particle size and target component.


Asunto(s)
Tamaño de la Partícula , Espectrometría Raman , Comprimidos , Espectrometría Raman/métodos , Naproxeno/análisis , Naproxeno/química , Relación Señal-Ruido
12.
ISA Trans ; 152: 96-112, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38910090

RESUMEN

Similarity-based prediction methods utilize degradation trend analysis based on degradation indicators (DIs). These methods are gaining prominence in industrial predictive maintenance because they effectively address prognostics for machines with unknown failure mechanisms. However, current studies often neglect the discrepancies in degradation trends when constructing DIs from multi-sensor data and lack automatic normalization of operating regimes during feature fusion. In this study, a feature fusion methodology based on a signal-to-noise ratio metric that leverages slow feature analysis (SFA) is proposed. This customized metric utilizes SFA to quantify degradation trend discrepancies of constructed DIs, while automatically filtering out the effects of multiple operating regimes during feature fusion. The effectiveness and superiority of the proposed method are demonstrated using publicly available aero-engine and rolling bearing datasets.

14.
Front Physiol ; 15: 1394431, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38854630

RESUMEN

Objective: To evaluate the effectiveness of 3D NerveVIEW sequence with gadolinium contrast on the visualization of pelvic nerves and their branches compared to that without contrast. Methods: Participants were scanned twice using 3D NerveVIEW sequence with and without gadolinium contrast to acquire pelvic nerve images. The signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and contrast ratio of the nerves were calculated and compared to determine the quality of images. To subjectively assess, using a 3-point scale, branch nerves critical to therapeutic decision-making, including the pelvic splanchnic nerve and pelvic plexus, the superior gluteal nerve, and the pudendal nerve. Results: In the 32 eligible participants after using contrast, the CNRs of the images of nerve-to-bone and nerve-to-vessel significantly increased (p < 0.05). The CR of the images with contrast of all nerve-to-surrounding tissues (i.e., bone, muscle, blood vessels, and fat) were also found significantly higher (p < 0.05). The assessment of observers also shows higher scores for images with contrast compared to images without contrast. Conclusion: The 3D NerveVIEW sequence combined with gadolinium contrast improved vascular suppression, increased the contrast between pelvic nerves and surrounding tissue, and enhanced the visualization of nerves and their branches. This study may be helpful for the technically challenging preoperative planning of pelvic diseases surgery.

15.
ACS Appl Mater Interfaces ; 16(27): 35400-35409, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38917455

RESUMEN

A series of dual-band photomultiplication (PM)-type organic photodetectors (OPDs) were fabricated by employing a donor(s)/acceptor (100:1, wt/wt) mixed layer and an ultrathin Y6 layer as the active layers, as well as by using PNDIT-F3N as an interfacial layer near the indium tin oxide (ITO) electrode. The dual-band PM-type OPDs exhibit the response range of 330-650 nm under forward bias and the response range of 650-850 nm under reverse bias. The tunable spectral response range of dual-band PM-type OPDs under forward or reverse bias can be explained well from the trapped electron distribution near the electrodes. The dark current density (JD) of the dual-band PM-type OPDs can be efficiently suppressed by employing PNDIT-F3N as the anode interfacial layer and the special active layers with hole-only transport characteristics. The light current density (JL) of the dual-band PM-type OPDs can be slightly increased by incorporating wide-bandgap polymer P-TPDs with relatively large hole mobility (µh) in the active layers. The signal-to-noise ratios of the optimized dual-band PM-type OPDs reach 100,980 under -50 V bias and white light illumination with an intensity of 1.0 mW·cm-2, benefiting from the ultralow JD by employing wide-bandgap PNDIT-F3N as the anode interfacial buffer layer and the increased JL by incorporating appropriate P-TPD in the active layers.

16.
Sensors (Basel) ; 24(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38894072

RESUMEN

The large amount of sampled data in coherent phase-sensitive optical time-domain reflectometry (Φ-OTDR) brings heavy data transmission, processing, and storage burdens. By using the comparator combined with undersampling, we achieve simultaneous reduction of sampling rate and sampling resolution in hardware, thus greatly decreasing the sampled data volume. But this way will inevitably cause the deterioration of detection signal-to-noise ratio (SNR) due to the quantization noise's dramatic increase. To address this problem, denoising the demodulated phase signals using compressed sensing, which exploits the sparsity of spectrally sparse vibration, is proposed, thereby effectively enhancing the detection SNR. In experiments, the comparator with a sampling parameter of 62.5 MS/s and 1 bit successfully captures the 80 MHz beat signal, where the sampled data volume per second is only 7.45 MB. Then, when the piezoelectric transducer's driving voltage is 1 Vpp, 300 mVpp, and 100 mVpp respectively, the SNRs of the reconstructed 200 Hz sinusoidal signals are respectively enhanced by 23.7 dB, 26.1 dB, and 28.7 dB by using compressed sensing. Moreover, multi-frequency vibrations can also be accurately reconstructed with a high SNR. Therefore, the proposed technique can effectively enhance the system's performance while greatly reducing its hardware burden.

17.
Quant Imaging Med Surg ; 14(6): 4031-4040, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38846286

RESUMEN

Background: The rapid increase in the use of radiodiagnostic examinations in China, especially computed tomography (CT) scans, has led to these examinations being the largest artificial source of per capita effective dose (ED). This study conducted a retrospective analysis of the correlation between image quality, ED, and body composition in 540 cases that underwent thyroid, chest, or abdominal CT scans. The aim of this analysis was to evaluate the correlation between the parameters of CT scans and body composition in common positions of CT examination (thyroid, chest, and abdomen) and ultimately inform potential measures for reducing radiation exposure. Methods: This study included 540 patients admitted to Fudan University Shanghai Cancer Center from January 2015 to December 2019 who underwent both thyroid or chest or abdominal CT scan and body composition examination. Average CT values and standard deviation (SD) values were collected for the homogeneous areas of the thyroid, chest, or abdomen, and the average CT values and SD values of adjacent subcutaneous fat tissue were measured in the same region of interest (ROI). All data were measured three times, and the average was taken to calculate the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) for each area. The dose-length product (DLP) was recorded, and the ED was calculated with the following: formula ED = k × DLP. Dual-energy X-ray was used to determine body composition and obtain indicators such as percentage of spinal and thigh muscle. Pearson correlation coefficient was used to analyze the correlations between body composition indicators, height, weight, body mass index (BMI), and ED. Results: The correlation coefficients between the SNR of abdominal CT scan and weight, BMI, and body surface area (BSA) were -0.470 (P=0.001), -0.485 (P=0.001), and -0.437 (P=0.002), representing a moderate correlation strength with statistically significant differences. The correlation coefficients between the ED of chest CT scans and weight, BMI, spinal fat percentage, and BSA were 0.488 (P=0.001), 0.473 (P=0.002), 0.422 (P=0.001), and 0.461 (P=0.003), respectively, indicating a moderate correlation strength with statistical differences. There was a weak statistically significant correlation between the SNR, CNR, and ED of the other scans with each physical and body composition index (P=0.023). Conclusions: There were varying degrees of correlation between CT image quality and ED and physical and body composition indices, which may inform novel solutions for reducing radiation exposure.

18.
J Imaging ; 10(5)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38786569

RESUMEN

Image quality assessment of magnetic resonance imaging (MRI) data is an important factor not only for conventional diagnosis and protocol optimization but also for fairness, trustworthiness, and robustness of artificial intelligence (AI) applications, especially on large heterogeneous datasets. Information on image quality in multi-centric studies is important to complement the contribution profile from each data node along with quantity information, especially when large variability is expected, and certain acceptance criteria apply. The main goal of this work was to present a tool enabling users to assess image quality based on both subjective criteria as well as objective image quality metrics used to support the decision on image quality based on evidence. The evaluation can be performed on both conventional and dynamic MRI acquisition protocols, while the latter is also checked longitudinally across dynamic series. The assessment provides an overall image quality score and information on the types of artifacts and degrading factors as well as a number of objective metrics for automated evaluation across series (BRISQUE score, Total Variation, PSNR, SSIM, FSIM, MS-SSIM). Moreover, the user can define specific regions of interest (ROIs) to calculate the regional signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR), thus individualizing the quality output to specific use cases, such as tissue-specific contrast or regional noise quantification.

19.
J Imaging ; 10(5)2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38786578

RESUMEN

Vector quantization (VQ) is a block coding method that is famous for its high compression ratio and simple encoder and decoder implementation. Linde-Buzo-Gray (LBG) is a renowned technique for VQ that uses a clustering-based approach for finding the optimum codebook. Numerous algorithms, such as Particle Swarm Optimization (PSO), the Cuckoo search algorithm (CS), bat algorithm, and firefly algorithm (FA), are used for codebook design. These algorithms are primarily focused on improving the image quality in terms of the PSNR and SSIM but use exhaustive searching to find the optimum codebook, which causes the computational time to be very high. In our study, our algorithm enhances LBG by minimizing the computational complexity by reducing the total number of comparisons among the codebook and training vectors using a match function. The input image is taken as a training vector at the encoder side, which is initialized with the random selection of the vectors from the input image. Rescaling using bilinear interpolation through the nearest neighborhood method is performed to reduce the comparison of the codebook with the training vector. The compressed image is first downsized by the encoder, which is then upscaled at the decoder side during decompression. Based on the results, it is demonstrated that the proposed method reduces the computational complexity by 50.2% compared to LBG and above 97% compared to the other LBG-based algorithms. Moreover, a 20% reduction in the memory size is also obtained, with no significant loss in the image quality compared to the LBG algorithm.

20.
Sensors (Basel) ; 24(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38732829

RESUMEN

In 3D microsphere tracking, unlike in-plane motion that can be measured directly by a microscope, axial displacements are resolved by optical interference or a diffraction model. As a result, the axial results are affected by the environmental noise. The immunity to environmental noise increases with measurement accuracy and the signal-to-noise ratio (SNR). In compound digital holography microscopy (CDHM)-based measurements, precise identification of the tracking marker is critical to ensuring measurement precision. The reconstruction centering method (RCM) was proposed to suppress the drawbacks caused by installation errors and, at the same time, improve the correct identification of the tracking marker. The reconstructed center is considered to be the center of the microsphere, rather than the center of imaging in conventional digital holographic microscopy. This method was verified by simulation of rays tracing through microspheres and axial moving experiments. The axial displacements of silica microspheres with diameters of 5 µm and 10 µm were tested by CDHM in combination with the RCM. As a result, the SNR of the proposed method was improved by around 30%. In addition, the method was successfully applied to axial displacement measurements of overlapped microspheres with a resolution of 2 nm.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA