Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Glycoconj J ; 40(1): 123-133, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36287346

RESUMEN

The structure Siaα2,3(GalNAcß1,4)Gal- is the epitope of the Sda antigen, which is expressed on the erythrocytes and secretions of the vast majority of Caucasians, carried by N- and O-linked chains of glycoproteins, as well as by glycolipids. Sda is very similar, but not identical, to ganglioside GM2 [Siaα2,3(GalNAcß1,4)Galß1,4Glc-Cer]. The Sda synthase ß1,4 N-acetylgalactosaminyl transferase 2 (B4GALNT2) exists in a short and a long form, diverging in the aminoterminal domain. The latter has a very long cytoplasmic tail and displays a Golgi- as well as a post-Golgi localization. The biosynthesis of Sda is mutually exclusive with that of the cancer-associated sialyl Lewis antigens, whose structure is Siaα2,3Galß1,3/4(Fucα1,4/3)GlcNAc-. B4GALNT2 is down-regulated in colon cancer but patients with higher expression survive longer. In experimental systems, B4GALNT2 inhibits colon cancer progression,not only through inhibition of sialyl Lewis antigen biosynthesis. By contrast, in breast cancer B4GALNT2 is associated with malignancy. In colon cancer, the B4GALNT2 gene is regulated by multiple mechanisms, which include miRNA and transcription factor expression, as well as CpG methylation. In addition, Sda/B4GALNT2 regulates the susceptibility to infectious agents, the protection from muscle dystrophy, the activity of immune system in pregnancy and the immune rejection in xenotransplantation.


Asunto(s)
Antígenos de Grupos Sanguíneos , Neoplasias del Colon , Humanos , Antígenos del Grupo Sanguíneo de Lewis , Fucosiltransferasas/metabolismo , Neoplasias del Colon/patología
2.
Cancers (Basel) ; 13(21)2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34771437

RESUMEN

Terminal carbohydrate structures are particularly relevant in oncology because they can serve as cancer markers and alter the phenotype of cancer cells. The Sda antigen and the sialyl Lewisx and sialyl Lewisa (sLex and sLea) antigens are terminal structures whose biosynthesis is mutually exclusive. In this review, we describe the main features of the Sda antigen in cancer and its relationship with sLex/a antigens. Information was obtained from an extensive literature search and from The Cancer Genome Atlas (TCGA) public database. The Sda biosynthetic enzyme B4GALNT2 undergoes downregulation in colorectal (CRC) and stomach cancer, while it is ectopically expressed by a minority of breast cancer (BRCA) patients. High expression of B4GALNT2 is associated with better prognosis and a less malignant gene expression profile in CRC, while the opposite occurs in BRCA. The regulation of B4GALNT2 expression in CRC is multifactorial, involving gene methylation and miRNA expression. Forced expression of B4GALNT2 inhibited sLea/sLex and reduced malignancy and stemness in cells constitutively expressing sLex/a antigens. However, consistent effects were observed upon B4GALNT2 forced expression and in cells not expressing sLex/a antigens. Thus, B4GALNT2 and the Sda antigen exert a tumor-restraining activity in CRC and probably other gastrointestinal cancers, independently of sLex/a antigens.

3.
Int J Mol Sci ; 21(18)2020 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-32911675

RESUMEN

BACKGROUND: The Sda antigen and its biosynthetic enzyme B4GALNT2 are highly expressed in healthy colon but undergo a variable down-regulation in colon cancer. The biosynthesis of the malignancy-associated sialyl Lewis x (sLex) antigen in normal and cancerous colon is mediated by fucosyltransferase 6 (FUT6) and is mutually exclusive from that of Sda. It is thought that the reduced malignancy associated with high B4GALNT2 was due to sLex inhibition. METHODS: We transfected the cell lines SW480 and SW620, derived respectively from a primary tumor and a metastasis of the same patient, with the cDNAs of FUT6 or B4GALNT2, generating cell variants expressing either the sLex or the Sda antigens. Transfectants were analyzed for growth in poor adherence, wound healing, stemness and gene expression profile. RESULTS: B4GALNT2/Sda expression down-regulated all malignancy-associated phenotypes in SW620 but only those associated with stemness in SW480. FUT6/sLex enhanced some malignancy-associated phenotypes in SW620, but had little effect in SW480. The impact on the transcriptome was stronger for FUT6 than for B4GALNT2 and only partially overlapping between SW480 and SW620. CONCLUSIONS: B4GALNT2/Sda inhibits the stemness-associated malignant phenotype, independently of sLex inhibition. The impact of glycosyltransferases on the phenotype and the transcriptome is highly cell-line specific.


Asunto(s)
Neoplasias del Colon/metabolismo , N-Acetilgalactosaminiltransferasas/metabolismo , Antígeno Sialil Lewis X/metabolismo , Línea Celular , Línea Celular Tumoral , Neoplasias del Colon/genética , Fucosiltransferasas/genética , Fucosiltransferasas/metabolismo , Glicosiltransferasas/metabolismo , Humanos , Antígeno Lewis X/metabolismo , N-Acetilgalactosaminiltransferasas/genética , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/fisiología , Oligosacáridos/genética , Oligosacáridos/inmunología , Oligosacáridos/metabolismo , Antígeno Sialil Lewis X/fisiología , Transfección , Células Tumorales Cultivadas
4.
Int J Mol Sci ; 21(17)2020 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-32872308

RESUMEN

Aberrant sialylation is frequently found in pancreatic ductal adenocarcinoma (PDA). α2,3-Sialyltransferases (α2,3-STs) ST3GAL3 and ST3GAL4 are overexpressed in PDA tissues and are responsible for increased biosynthesis of sialyl-Lewis (sLe) antigens, which play an important role in metastasis. This study addresses the effect of α2,3-STs knockdown on the migratory and invasive phenotype of PDA cells, and on E-selectin-dependent adhesion. Characterization of the cell sialome, the α2,3-STs and fucosyltransferases involved in the biosynthesis of sLe antigens, using a panel of human PDA cells showed differences in the levels of sialylated determinants and α2,3-STs expression, reflecting their phenotypic heterogeneity. Knockdown of ST3GAL3 and ST3GAL4 in BxPC-3 and Capan-1 cells, which expressed moderate to high levels of sLe antigens and α2,3-STs, led to a significant reduction in sLex and in most cases in sLea, with slight increases in the α2,6-sialic acid content. Moreover, ST3GAL3 and ST3GAL4 downregulation resulted in a significant decrease in cell migration and invasion. Binding and rolling to E-selectin, which represent key steps in metastasis, were also markedly impaired in the α2,3-STs knockdown cells. Our results indicate that inhibition of ST3GAL3 and ST3GAL4 may be a novel strategy to block PDA metastasis, which is one of the reasons for its dismal prognosis.


Asunto(s)
Selectina E/metabolismo , Neoplasias Pancreáticas/metabolismo , ARN Interferente Pequeño/farmacología , Sialiltransferasas/genética , Línea Celular Tumoral , Movimiento Celular , Fucosiltransferasas/genética , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Antígenos del Grupo Sanguíneo de Lewis/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Sialiltransferasas/antagonistas & inhibidores
5.
Acta Biochim Pol ; 64(3): 465-470, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28742884

RESUMEN

Cancer cells are characterized by an aberrant increase in protein N-glycosylation and by disruption of E-cadherin-mediated adherens junctions. However, the relationship between alterations in N-glycosylation process and loss of E-cadherin adhesion in cancer remains unclear. The mechanisms of altered expression of adhesive glycoproteins in cancer cells have not been fully elucidated. Thus, the aim of this study was to examine the expression of E-cadherin and sialyl Lewisa/x, NeuAcα2-3Gal, NeuAcα2-6Gal/GalNAc structures in the normal renal tissue and intermediate and cancerous tissues from patients with clear cell RCC. Moreover, we attempted to correlate the E-cadherin expression with some specific sugar residues of renal cancer tissue glycoproteins. The expression of E-cadherin was analysed using ELISA test and immunoblotting. Oligosaccharide structures and sialylation level were detected with ELISA test using specific biotinylated lectins or antibodies. A significant decrease of E-cadherin expression as well as a significant increase in sialylated oligosaccharides level in intermediate zone and renal cancer tissue in comparison to normal renal tissue are reported. Significant decrease in expression of cadherins and increase in sialylation of oligosaccharide structures in renal cancer tissue in comparison to normal renal tissue, and in renal cancer tissue in comparison to intermediate zone of renal tissue, are important for the future research concerning detection and quantification of cadherins and sialylated oligosaccharide structures in urine and cells of urinary sediment as possible non-invasive marker of early RCC.


Asunto(s)
Cadherinas/metabolismo , Carcinoma de Células Renales/metabolismo , Neoplasias Renales/metabolismo , Acetilglucosamina/metabolismo , Anciano , Antígenos CD , Carcinoma de Células Renales/patología , Femenino , Glicoconjugados/metabolismo , Glicoproteínas/metabolismo , Humanos , Riñón/metabolismo , Neoplasias Renales/patología , Antígeno Lewis X/metabolismo , Masculino , Persona de Mediana Edad , Valores de Referencia , Ácidos Siálicos/metabolismo
6.
Glycobiology ; 25(9): 963-75, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25972125

RESUMEN

The sialyl Lewis a and x (sLe(a/x)) antigens frequently displayed on the surface of tumor cells are involved in metastasis. Their synthesis has been attributed to altered expression of selective glycosyltransferases. Identification of these glycosyltransferases and the glycoproteins that carry these carbohydrate antigens should help advance our understanding of selectin-mediated cancer metastasis. In this study, quantitative real-time polymerase chain reaction analysis coupled with in situ proximity ligation assay and small interference RNA treatment shows involvement of ß3galactosyltransferase-V in the synthesis of MUC16-associated sLe(a) in H292 cells. Also, α3fucosyltransferase-V, which is absent in BEAS-2B human immortalized bronchial epithelial cells and A549 lung carcinoma cells, participates in the synthesis of MUC1-associated sLe(x) in CFT1 human immortalized bronchial epithelial cells and H292 lung carcinoma cells. Neither selectin ligand is found on MUC1 in BEAS-2B and A549 cells. Knockdown of either enzyme suppresses migration, and selectin tethering and rolling properties of H292 cells under dynamic flow as determined by wound healing and parallel plate flow chamber assays, respectively. These results provide insights into how the synthesis of mucin-associated selectin ligands and the metastatic properties of cancer cells can be regulated by selective glycosyltransferases that work on mucins. They may help develop novel anticancer drugs.


Asunto(s)
Movimiento Celular , Células Epiteliales/metabolismo , Galactosiltransferasas/metabolismo , Glicoproteínas de Membrana/metabolismo , Mucinas/metabolismo , Antígeno CA-19-9 , Adhesión Celular , Línea Celular Tumoral , Células Epiteliales/fisiología , Humanos , Glicoproteínas de Membrana/genética , Oligosacáridos/metabolismo , Antígeno Sialil Lewis X
7.
Adv Cancer Res ; 126: 203-56, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25727149

RESUMEN

Glycans on proteins and lipids are known to alter with malignant transformation. The study of these may contribute to the discovery of biomarkers and treatment targets as well as understanding of cancer biology. We here describe the change of glycosylation specifically defining colorectal cancer with view on N-glycans, O-glycans, and glycosphingolipid glycans in colorectal cancer cells and tissues as well as patient sera. Glycan alterations observed in colon cancer include increased ß1,6-branching and correlating higher abundance of (poly-)N-acetyllactosamine extensions of N-glycans as well as an increase in (truncated) high-mannose type glycans, while bisected structures decrease. Colorectal cancer-associated O-glycan changes are predominated by reduced expression of core 3 and 4 glycans, whereas higher levels of core 1 glycans, (sialyl) T-antigen, (sialyl) Tn-antigen, and a generally higher density of O-glycans are observed. Specific changes for glycosphingolipid glycans are lower abundances of disialylated structures as well as globo-type glycosphingolipid glycans with exception of Gb3. In general, alterations affecting all discussed glycan types are increased sialylation, fucosylation as well as (sialyl) Lewis-type antigens and type-2 chain glycans. As a consequence, interactions with glycan-binding proteins can be affected and the biological function and cellular consequences of the altered glycosylation with regard to tumorigenesis, metastasis, modulation of immunity, and resistance to antitumor therapy will be discussed. Finally, analytical approaches aiding in the field of glycomics will be reviewed with focus on binding assays and mass spectrometry.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Glicoproteínas/metabolismo , Proteínas de Neoplasias/metabolismo , Animales , Glicosilación , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA