Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Front Endocrinol (Lausanne) ; 14: 1087845, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37206444

RESUMEN

Preeclampsia is a pregnancy-related multisystem disorder characterized by altered trophoblast invasion, oxidative stress, exacerbation of systemic inflammatory response, and endothelial damage. The pathogenesis includes hypertension and mild-to-severe microangiopathy in the kidney, liver, placenta, and brain. The main mechanisms involved in its pathogenesis have been proposed to limit trophoblast invasion and increase the release of extracellular vesicles from the syncytiotrophoblast into the maternal circulation, exacerbating the systemic inflammatory response. The placenta expresses glycans as part of its development and maternal immune tolerance during gestation. The expression profile of glycans at the maternal-fetal interface may play a fundamental role in physiological pregnancy changes and disorders such as preeclampsia. It is unclear whether glycans and their lectin-like receptors are involved in the mechanisms of maternal-fetal recognition by immune cells during pregnancy homeostasis. The expression profile of glycans appears to be altered in hypertensive disorders of pregnancy, which could lead to alterations in the placental microenvironment and vascular endothelium in pregnancy conditions such as preeclampsia. Glycans with immunomodulatory properties at the maternal-fetal interface are altered in early-onset severe preeclampsia, implying that innate immune system components, such as NK cells, exacerbate the systemic inflammatory response observed in preeclampsia. In this article, we discuss the evidence for the role of glycans in gestational physiology and the perspective of glycobiology on the pathophysiology of hypertensive disorders in gestation.


Asunto(s)
Placenta , Preeclampsia , Embarazo , Femenino , Humanos , Placenta/metabolismo , Preeclampsia/metabolismo , Polisacáridos , Células Asesinas Naturales/patología , Síndrome de Respuesta Inflamatoria Sistémica/complicaciones , Síndrome de Respuesta Inflamatoria Sistémica/metabolismo
2.
Foods ; 12(7)2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37048349

RESUMEN

Macrophages play crucial roles in inflammation and oxidative stress associated with noncommunicable diseases, such as cardiovascular diseases, diabetes, and cancer. Glycomacropeptide (GMP) is a bioactive peptide derived from milk κ-casein that contains abundant sialic acid and has shown anti-inflammatory, antioxidative, anti-obesity, and anti-diabetic properties when is orally administered. The aim of this study was to evaluate the effect of GMP on the regulation of the inflammatory response in human macrophages and the participation of sialic acid in this activity. GMP pretreatment decreased by 35%, 35%, and 49% the production of nitrites, interleukin (IL)-1ß, and tumor necrosis factor (TNF)-α, respectively, in activated human macrophages U937. The same effect was obtained when cells were pretreated with asialo GMP, and no change on the gene expression of the lectins associated with the recognition of sialic acids, SIGLEC5, 7, and 9, was induced by GMP on macrophages, which suggests that sialic acid might not be involved in this immunoregulatory effect. Interestingly, GMP increased 8.9- and 3.5-fold the gene expression of the canonical anti-inflammatory protein SOCS3 and the antioxidant enzyme HMOX1, respectively, in U937 cells. Thus, GMP exerts anti-inflammatory and antioxidative activities on activated macrophages in a sialic acid-independent manner, which might be related to its in vivo reported bioactivity.

3.
Br J Pharmacol ; 180(11): 1460-1481, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36526272

RESUMEN

BACKGROUND AND PURPOSE: Neutrophil overstimulation plays a crucial role in tissue damage during severe infections. Because pathogen-derived neuraminidase (NEU) stimulates neutrophils, we investigated whether host NEU can be targeted to regulate the neutrophil dysregulation observed in severe infections. EXPERIMENTAL APPROACH: The effects of NEU inhibitors on lipopolysaccharide (LPS)-stimulated neutrophils from healthy donors or COVID-19 patients were determined by evaluating the shedding of surface sialic acids, cell activation, and reactive oxygen species (ROS) production. Re-analysis of single-cell RNA sequencing of respiratory tract samples from COVID-19 patients also was carried out. The effects of oseltamivir on sepsis and betacoronavirus-induced acute lung injury were evaluated in murine models. KEY RESULTS: Oseltamivir and zanamivir constrained host NEU activity, surface sialic acid release, cell activation, and ROS production by LPS-activated human neutrophils. Mechanistically, LPS increased the interaction of NEU1 with matrix metalloproteinase 9 (MMP-9). Inhibition of MMP-9 prevented LPS-induced NEU activity and neutrophil response. In vivo, treatment with oseltamivir fine-tuned neutrophil migration and improved infection control as well as host survival in peritonitis and pneumonia sepsis. NEU1 also is highly expressed in neutrophils from COVID-19 patients, and treatment of whole-blood samples from these patients with either oseltamivir or zanamivir reduced neutrophil overactivation. Oseltamivir treatment of intranasally infected mice with the mouse hepatitis coronavirus 3 (MHV-3) decreased lung neutrophil infiltration, viral load, and tissue damage. CONCLUSION AND IMPLICATIONS: These findings suggest that interplay of NEU1-MMP-9 induces neutrophil overactivation. In vivo, NEU may serve as a host-directed target to dampen neutrophil dysfunction during severe infections.


Asunto(s)
COVID-19 , Sepsis , Humanos , Ratones , Animales , Oseltamivir/efectos adversos , Zanamivir/efectos adversos , Neuraminidasa/metabolismo , Neuraminidasa/farmacología , Neutrófilos , Metaloproteinasa 9 de la Matriz/metabolismo , Especies Reactivas de Oxígeno , Lipopolisacáridos/farmacología , Sepsis/inducido químicamente
4.
Biochimie ; 204: 140-153, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36210615

RESUMEN

Structural variability is a feature of snake venom proteins, and glycosylation is a post-translational modification that contributes to the diversification of venom proteomes. Studies by our group have shown that Bothrops venoms are distinctly defined by their glycoprotein content, and that most hybrid/complex N-glycans identified in these venoms contain sialic acid. Considering that metalloproteases and serine proteases are abundant components of Bothrops venoms and essential in the envenomation process, and that these enzymes contain several glycosylation sites, the role of sialic acid in venom proteolytic activity was evaluated. Here we show that removal of sialic acid by treatment of nine Bothrops venoms with neuraminidase (i) altered the pattern of gelatinolysis in zymography of most venoms and reduced the gelatinolytic activity of all venoms, (ii) decreased the proteolytic activity of some venoms on fibrinogen and the clotting activity of human plasma of all venoms, and (iii) altered the proteolysis profile of plasma proteins by B. jararaca venom, suggesting that sialic acid may play a role in the interaction of proteases with their protein substrates. In contrast, the profile of venom amidolytic activity on Bz-Arg-pNA did not change after removal of sialic acid, indicating that this monosaccharide is not essential in N-glycans of serine proteases acting on small substrates. In summary, these results expand the knowledge about the variability of the subproteomes of Bothrops venom proteases, and for the first time point to the importance of carbohydrate chains containing sialic acid in the enzymatic activities of venom proteases relevant in human envenomation.


Asunto(s)
Bothrops , Venenos de Crotálidos , Animales , Humanos , Ácido N-Acetilneuramínico/metabolismo , Venenos de Serpiente , Serina Proteasas/metabolismo , Venenos de Crotálidos/química , Glicoproteínas/metabolismo , Serina Endopeptidasas/metabolismo , Polisacáridos/metabolismo , Bothrops/metabolismo
5.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;56: e12972, 2023.
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1528098

RESUMEN

In the modern world, cardiovascular diseases have a special place among the most common causes of death. Naturally, this widespread problem cannot escape the attention of scientists and researchers. One of the main conditions preceding the development of fatal cardiovascular diseases is atherosclerosis. Despite extensive research into its pathogenesis and possible prevention and treatment strategies, many gaps remain in our understanding of this disease. For example, the concept of multiple low-density lipoprotein modifications was recently stated, in which desialylation is of special importance. Apart from this, sialic acids are known to be important contributors to processes such as endothelial dysfunction and inflammation, which in turn are major components of atherogenesis. In this review, we have collected information on sialic acid metabolism, analyzed various aspects of its implication in atherosclerosis at different stages, and provided an overview of the role of particular groups of enzymes responsible for sialic acid metabolism in the context of atherosclerosis.

6.
Pathogens ; 11(12)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36558852

RESUMEN

N-acetylneuraminic acid linked to galactose by α2,6 and α2,3 linkages (Siaα2,6 and Siaα2,3) is expressed on glycoconjugates of animal tissues, where it performs multiple biological functions. In addition, these types of sialic acid residues are the main targets for the binding and entry of influenza viruses. Here we used fluorochrome-conjugated Sambuccus nigra, Maackia amurensis, and peanut lectins for the simultaneous detection of Siaα2,3 and Siaα2,6 and galactosyl residues by two-color flow cytometry on A549 cells, a human pneumocyte cell line used for in vitro studies of the infection by influenza viruses, as well as on Vero and MDCK cell lines. The dexamethasone (DEX) glucocorticoid (GC), a widely used anti-inflammatory compound, completely abrogated the expression of Siaα2,3 in A549 cells and decreased its expression in Vero and MDCK cells; in contrast, the expression of Siaα2,6 was increased in the three cell lines. These observations indicate that DEX can be used for the study of the mechanism of sialylation of cell membrane molecules. Importantly, DEX may change the tropism of avian and human/pig influenza viruses and other infectious agents to animal and human epithelial cells.

7.
Int J Mol Sci ; 23(17)2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36077240

RESUMEN

Sialic acids and heparan sulfates make up the outermost part of the cell membrane and the extracellular matrix. Both structures are characterized by being negatively charged, serving as receptors for various pathogens, and are highly expressed in the respiratory and digestive tracts. Numerous viruses use heparan sulfates as receptors to infect cells; in this group are HSV, HPV, and SARS-CoV-2. Other viruses require the cell to express sialic acids, as is the case in influenza A viruses and adenoviruses. This review aims to present, in a general way, the participation of glycoconjugates in viral entry, and therapeutic strategies focused on inhibiting the interaction between the virus and the glycoconjugates. Interestingly, there are few studies that suggest the participation of both glycoconjugates in the viruses addressed here. Considering the biological redundancy that exists between heparan sulfates and sialic acids, we propose that it is important to jointly evaluate and design strategies that contemplate inhibiting the interactions of both glycoconjugates. This approach will allow identifying new receptors and lead to a deeper understanding of interspecies transmission.


Asunto(s)
COVID-19 , Virus , Glicoconjugados/metabolismo , Heparitina Sulfato/metabolismo , Humanos , Ácido N-Acetilneuramínico/metabolismo , Receptores Virales/metabolismo , SARS-CoV-2 , Ácidos Siálicos/metabolismo , Sulfatos , Acoplamiento Viral , Virus/metabolismo
8.
Biochim Biophys Acta Proteins Proteom ; 1870(7): 140795, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35662639

RESUMEN

Snake venom proteomes have long been investigated to explore a multitude of biologically active components that are used for prey capture and defense, and are involved in the pathological effects observed upon mammalian envenomation. Glycosylation is a major protein post-translational modification in venoms and contributes to the diversification of proteomes. We have shown that Bothrops venoms are markedly defined by their content of glycoproteins, and that most N-glycan structures of eight Bothrops venoms contain sialic acid, while bisected N-acetylglucosamine was identified in Bothrops cotiara venom. To further investigate the mechanisms involved in the generation of different venoms by related snakes, here the glycoproteomes of nine Bothrops venoms (Bothrops atrox, B. cotiara, Bothrops erythromelas, Bothrops fonsecai, B. insularis, Bothrops jararaca, Bothrops jararacussu, Bothrops moojeni and Bothrops neuwiedi) were comparatively analyzed by enrichment with three lectins of different specificities, recognizing bisecting N-acetylglucosamine- and sialic acid-containing glycoproteins, and mass spectrometry. The lectin capture strategy generated venom fractions enriched with several glycoproteins, including metalloprotease, serine protease, and L- amino acid oxidase, in addition to various types of low abundant enzymes. The different contents of lectin-enriched proteins underscore novel aspects of the variability of the glycoprotein subproteomes of Bothrops venoms and point to the role of distinct types of glycan chains in generating different venoms by closely related snake species.


Asunto(s)
Bothrops , Venenos de Crotálidos , Acetilglucosamina/metabolismo , Animales , Bothrops/metabolismo , Proteínas Portadoras/metabolismo , Venenos de Crotálidos/química , Glicoproteínas/química , Lectinas , Mamíferos/metabolismo , Ácido N-Acetilneuramínico , Polisacáridos , Proteoma/metabolismo
9.
bioRxiv ; 2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-33200130

RESUMEN

Neutrophil overstimulation plays a crucial role in tissue damage during severe infections. Neuraminidase (NEU)-mediated cleavage of surface sialic acid has been demonstrated to regulate leukocyte responses. Here, we report that antiviral NEU inhibitors constrain host NEU activity, surface sialic acid release, ROS production, and NETs released by microbial-activated human neutrophils. In vivo, treatment with Oseltamivir results in infection control and host survival in peritonitis and pneumonia models of sepsis. Single-cell RNA sequencing re-analysis of publicly data sets of respiratory tract samples from critical COVID-19 patients revealed an overexpression of NEU1 in infiltrated neutrophils. Moreover, Oseltamivir or Zanamivir treatment of whole blood cells from severe COVID-19 patients reduces host NEU-mediated shedding of cell surface sialic acid and neutrophil overactivation. These findings suggest that neuraminidase inhibitors can serve as host-directed interventions to dampen neutrophil dysfunction in severe infections.

10.
São Paulo; s.n; s.n; 2022. 188 p. tab, graf.
Tesis en Portugués | LILACS | ID: biblio-1396966

RESUMEN

A variabilidade estrutural é uma característica das proteínas de venenos de serpentes, e a glicosilação é uma das principais modificações pós-traducionais que contribui para a diversificação de seus proteomas. Recentes estudos de nosso grupo demonstraram que venenos do gênero Bothrops são marcadamente definidos pelo seu conteúdo de glicoproteínas, e que a maioria das estruturas de N-glicanos dos tipos híbrido e complexo identificados em oito venenos deste gênero contêm unidades de ácido siálico. Em paralelo, em glicoproteínas do veneno de B. cotiara foi identificada a presença de uma estrutura de N-acetilglicosamina bissecada. Assim, com o objetivo de investigar a variação do conteúdo de glicoproteínas, assim como os mecanismos envolvidos na geração dos diferentes venenos de Bothrops, neste estudo foram analisados comparativamente os glicoproteomas de nove venenos do gênero Bothrops (B. atrox, B. cotiara, B. erythromelas, B. fonsecai, B. insularis, B. jararaca, B. jararacussu, B. moojeni e B. neuwiedi). As abordagens glicoproteômicas envolveram cromatografia de afinidade e ensaio de pull-down utilizando, respectivamente, as lectinas SNA (aglutinina de Sambucus nigra) e MAL I (lectina de Maackia amurensis), que mostram afinidade por unidades de ácido siálico nas posições, respectivamente, α2,6 e α2,3; e cromatografia de afinidade com a lectina PHA-E (eritroaglutinina de Phaseolus vulgaris), que reconhece N-acetilglicosamina bissecada. Ainda, eletroforese de proteínas, blot de lectina, e identificação de proteínas por espectrometria de massas foram empregadas para caracterizar os glicoproteomas. As lectinas geraram frações dos venenos enriquecidas de diferentes componentes, onde as principais classes de glicoproteínas identificadas foram metaloprotease, serinoprotease, e L-amino ácido oxidase, além de outras enzimas pouco abundantes nos venenos. Os diferentes conteúdos de proteínas reconhecidas por essas lectinas, com especificidades distintas, ressaltaram novos aspectos da variabilidade dos subproteomas de glicoproteínas desses venenos, dependendo da espécie. Ainda, considerando que metaloproteases e serinoproteases são componentes abundantes nesses venenos e fundamentais no quadro de envenenamento botrópico, e que estas enzimas contêm diversos sítios de glicosilação, o papel das unidades de ácido siálico na atividade proteolítica das mesmas foi avaliado. Assim, a remoção enzimática de ácido siálico (i) alterou o padrão de gelatinólise em zimografia da maioria dos venenos, (ii) diminuiu a atividade proteolítica de alguns venenos sobre o fibrinogênio e a atividade coagulante do plasma humano de todos os venenos, e (iii) alterou o perfil de hidrólise de proteínas plasmáticas pelo veneno de B. jararaca, indicando que este carboidrato pode desempenhar um papel na interação das proteases com seus substratos proteicos. Em contraste, o perfil da atividade amidolítica dos venenos não se alterou após a remoção de ácido siálico e incubação com o substrato Bz-Arg-pNA, indicando que ácido siálico não é essencial em N-glicanos de serinoproteases atuando sobre substratos não proteicos. Em conjunto, esses resultados expandem o conhecimento sobre a variabilidade de proteomas de venenos do gênero Bothrops e apontam a importância das cadeias de carboidratos contendo ácido siálico nas atividades enzimáticas das proteases desses venenos


Structural variability is a feature of snake venom proteins, and glycosylation is one of the main post-translational modifications that contributes to the diversification of venom proteomes. Recent studies by our group have shown that Bothrops venoms are markedly defined by their glycoprotein content, and that most hybrid and complex N-glycan structures identified in eight venoms of this genus contain sialic acid units. In parallel, the presence of a bisected N-acetylglucosamine structure was identified in B. cotiara venom glycoproteins. Thus, with the aim of investigating the variation in the content of glycoproteins, as well as the mechanisms involved in the generation of different Bothrops venoms, in this study the glycoproteomes of nine Bothrops venoms (B. atrox, B. cotiara, B. erythromelas, B. fonsecai, B. insularis, B. jararaca, B. jararacussu, B. moojeni e B. neuwiedi) were comparatively analyzed. The glycoproteomic approaches involved affinity chromatography and pulldown using, respectively, the lectins SNA (Sambucus nigra agglutinin) and MAL I (Maackia amurensis lectin), which show affinity for sialic acid units at positions, respectively, α2,6 and α2,3, and affinity chromatography with PHA-E (Phaseolus vulgaris erythroagglutinin), which recognizes bisected N-acetylglucosamine. In addition, protein electrophoresis, lectin blot, and protein identification by mass spectrometry were employed for glycoproteome characterization. The lectins generated venom fractions enriched with different components, where the main classes of glycoproteins identified were metalloprotease, serine protease, and L-amino acid oxidase, in addition to other low abundant enzymes. The different contents of proteins recognized by these lectins of distinct specificities highlighted new aspects of the variability of the glycoprotein subproteomes of these venoms, depending on the species. Furthermore, considering that metalloproteases and serine proteases are abundant components of these venoms and essential in Bothrops envenomation, and that these enzymes contain several glycosylation sites, the role of sialic acid units in their proteolytic activities was evaluated. Thus, enzymatic removal of sialic acid (i) altered the pattern of gelatinolysis in zymography of most venoms, (ii) decreased the proteolytic activity of some venoms on fibrinogen and the clotting activity of human plasma of all venoms, and (iii) altered the hydrolysis profile of plasma proteins by B. jararaca venom, indicating that this carbohydrate may play a role in the interaction of proteases with their protein substrates. In contrast, the profile of amidolytic activity of the venoms did not change after removal of sialic acid and incubation with the substrate Bz-Arg-pNA, indicating that sialic acid is not essential in N-glycans of serine proteases acting on small substrates. Together, these results expand the knowledge about the variability of proteomes of Bothrops venoms and point to the importance of carbohydrate chains containing sialic acid in the enzymatic activities of venom proteases


Asunto(s)
Venenos , Venenos de Serpiente/efectos adversos , Glicosilación , Bothrops/clasificación , Proteoma/administración & dosificación , Espectrometría de Masas/métodos , Ponzoñas/efectos adversos , Coagulantes/efectos adversos , Cromatografía de Afinidad , Sambucus nigra/clasificación , Proteolisis
11.
Biochimie, v. 204, 140-153, jan. 2023
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4557

RESUMEN

Structural variability is a feature of snake venom proteins, and glycosylation is a post-translational modification that contributes to the diversification of venom proteomes. Studies by our group have shown that Bothrops venoms are distinctly defined by their glycoprotein content, and that most hybrid/complex N-glycans identified in these venoms contain sialic acid. Considering that metalloproteases and serine proteases are abundant components of Bothrops venoms and essential in the envenomation process, and that these enzymes contain several glycosylation sites, the role of sialic acid in venom proteolytic activity was evaluated. Here we show that removal of sialic acid by treatment of nine Bothrops venoms with neuraminidase (i) altered the pattern of gelatinolysis in zymography of most venoms and reduced the gelatinolytic activity of all venoms, (ii) decreased the proteolytic activity of some venoms on fibrinogen and the clotting activity of human plasma of all venoms, and (iii) altered the proteolysis profile of plasma proteins by B. jararaca venom, suggesting that sialic acid may play a role in the interaction of proteases with their protein substrates. In contrast, the profile of venom amidolytic activity on Bz-Arg-pNA did not change after removal of sialic acid, indicating that this monosaccharide is not essential in N-glycans of serine proteases acting on small substrates. In summary, these results expand the knowledge about the variability of the subproteomes of Bothrops venom proteases, and for the first time point to the importance of carbohydrate chains containing sialic acid in the enzymatic activities of venom proteases relevant in human envenomation.

12.
Biochim Biophys Acta Proteins Proteom, v. 1870, n. 7, 140795, jul. 2022
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4387

RESUMEN

Snake venom proteomes have long been investigated to explore a multitude of biologically active components that are used for prey capture and defense, and are involved in the pathological effects observed upon mammalian envenomation. Glycosylation is a major protein post-translational modification in venoms and contributes to the diversification of proteomes. We have shown that Bothrops venoms are markedly defined by their content of glycoproteins, and that most N-glycan structures of eight Bothrops venoms contain sialic acid, while bisected N-acetylglucosamine was identified in Bothrops cotiara venom. To further investigate the mechanisms involved in the generation of different venoms by related snakes, here the glycoproteomes of nine Bothrops venoms (Bothrops atrox, B. cotiara, Bothrops erythromelas, Bothrops fonsecai, B. insularis, Bothrops jararaca, Bothrops jararacussu, Bothrops moojeni and Bothrops neuwiedi) were comparatively analyzed by enrichment with three lectins of different specificities, recognizing bisecting N-acetylglucosamine- and sialic acid-containing glycoproteins, and mass spectrometry. The lectin capture strategy generated venom fractions enriched with several glycoproteins, including metalloprotease, serine protease, and L- amino acid oxidase, in addition to various types of low abundant enzymes. The different contents of lectin-enriched proteins underscore novel aspects of the variability of the glycoprotein subproteomes of Bothrops venoms and point to the role of distinct types of glycan chains in generating different venoms by closely related snake species.

13.
Rev. bras. cir. cardiovasc ; Rev. bras. cir. cardiovasc;36(6): 769-779, Nov.-Dec. 2021. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1351662

RESUMEN

Abstract Introduction: In this study, patients before and after cardiac surgery with cardiopulmonary bypass (CPB) and control subjects were evaluated for erythrocyte glutathione peroxidase, catalase and superoxide dismutase enzyme activities, in addition to glutathione, malondialdehyde, serum total sialic acid, lipid-bound sialic acid, total antioxidant status, trace elements and mineral levels. The correlation of these variables with coronary artery disease (CAD) was also assessed. Methods: A total of 30 CAD patients and 30 control subjects were included in the study. CAD patients were divided into three groups: before surgery (BS), first day after surgery (1st day AS) and seventh day after surgery (7th day AS). Results: Malondialdehyde (MDA) and total sialic acid (TSA) levels were significantly higher in CAD (BS) than in the control group (P<0.05, P<0.05). In addition, GSH and TAS levels were significantly lower in the 1st day AS group than in the control group (P<0.001, P<0.01). Moreover, Co, Cu, Mg, Se, V and Zn levels were significantly lower in CAD (BS) group than in the control group (P<0.01, P<0.01, P<0.01, P<0.01, P<0.05, P<0.001). Conclusions: It was concluded that the levels of LDL-C, total cholesterol, triglycerides and CRP significantly associated with parameters, as well as Cu, Ca and SOD activity, should be measured together to monitor CAD. It is also considered that measuring TSA and MDA might be an appropriate choice for biomarkers of CAD.


Asunto(s)
Humanos , Enfermedad de la Arteria Coronaria/cirugía , Superóxido Dismutasa , Oligoelementos , Puente de Arteria Coronaria , Estrés Oxidativo , Ácido N-Acetilneuramínico , Malondialdehído , Antioxidantes
14.
Front Cell Infect Microbiol ; 11: 768450, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34765570

RESUMEN

Chagas' disease is caused by the protozoan Trypanosoma cruzi, described in the early 20th century by the Brazilian physician Dr. Carlos Chagas. There was a great amount of research devoted to diagnosis, treatment and prevention of the disease. One of the most important discoveries made since then, impacting the understanding of how the parasite interacts with the host's immune system, was the description of trans-sialidase. It is an unique enzyme, capable of masking the parasite's presence from the host, while at the same time dampening the activation of CD8+ T cells, the most important components of the immune response. Since the description of Chagas' disease in 1909, extensive research has identified important events in the disease in order to understand the biochemical mechanism that modulates T. cruzi-host cell interactions and the ability of the parasite to ensure its survival. The importance of the trans-sialidase enzyme brought life to many studies for the design of diagnostic tests, drugs and vaccines. While many groups have been prolific, such efforts have encountered problems, among them: the fact that while T. cruzi have many genes that are unique to the parasite, it relies on multiple copies of them and the difficulty in providing epitopes that result in effective and robust immune responses. In this review, we aim to convey the importance of trans-sialidase as well as to provide a history, including the initial failures and the most promising successes in the chasing of a working vaccine for a disease that is endemic in many tropical countries, including Brazil.


Asunto(s)
Enfermedad de Chagas , Trypanosoma cruzi , Vacunas , Enfermedad de Chagas/prevención & control , Glicoproteínas , Humanos , Neuraminidasa
15.
Electron. j. biotechnol ; Electron. j. biotechnol;53: 87-94, Sep.2021. graf, ilus, tab
Artículo en Inglés | LILACS | ID: biblio-1451559

RESUMEN

BACKGROUND Diabetes is a metabolic disorder caused by defects in insulin production and activity. During disease progression, changes in lipid peroxidation cause structural modifications via production of free radicals. Fangchinoline is a well-known alkaloid present in Stephaniae tetrandrine S. Moore, which has demonstrated antioxidant, anticancer, and anti-inflammatory activities. RESULTS The present study analyzed the anti-diabetic and antioxidant effects of fangchinoline in male rats with streptozotocin-induced diabetes. Rats were divided into the following groups: normal control, diabetic, diabetic + fangchinoline 100 mg/kg, diabetic + fangchinoline 200 mg/kg and diabetic + glibencla mide 600 mg/kg. The treatment was administered orally for 45 consecutive days. Lipid peroxidation was substantially increased by >50% in the serum, as well as the liver, kidney, and heart tissues of diabetic rats. However, fangchinoline supplementation significantly reduced lipid peroxidation to near normal levels. Reactive oxygen species levels were substantially increased by >500% in the serum, as well as the liver, kidney, and heart tissues of diabetic rats. Fangchinoline supplementation reduced reactive oxygen species to near normal levels. Fangchinoline supplementation significantly improved superoxide dismutase, glutathione peroxidase, catalase, and reduced glutathione levels in diabetic rats. Total hexoses, sialic acid, hexosamines, and fucose were increased in diabetic rats, whereas fangchinoline supplementation significantly reduced these total hexoses, sialic acid, hexosamines, and fucose to near normal levels CONCLUSIONS Supplementation with fangchinoline led to significant attenuation of the levels of lipid peroxidation, ROS, and glycoprotein components such as total hexoses, hexosamines, sialic acid, and fucose, while improving antioxidant marker levels


Asunto(s)
Animales , Masculino , Ratas , Bencilisoquinolinas/uso terapéutico , Diabetes Mellitus Experimental/tratamiento farmacológico , Especies Reactivas de Oxígeno , Estreptozocina
16.
Viral Immunol ; 34(8): 573-578, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34415814

RESUMEN

Eosinophils participate in the immune response against many pathogens, including viruses. Since mouse eosinophils are susceptible to influenza A virus infection and possess antiviral activity, we evaluated the expression of sialic acid residues in human eosinophils and their response against influenza virus in vitro. We demonstrated that human eosinophils express α2,6- and α2,3-linked sialic acid, and drastically reduced influenza virus titer. After influenza virus exposure, eosinophils upregulated retinoic acid-inducible gene I (RIG-I) mRNA expression, but no other pattern recognition receptors. Finally, high concentrations of interleukin-8 (IL-8) were found in influenza virus-exposed eosinophil cultures. These data suggest that human eosinophils possess antiviral activity and may play a role in the innate immune response to influenza virus.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Humana , Eosinófilos , Humanos , Interleucina-8 , Receptores de Ácido Retinoico
17.
Braz J Cardiovasc Surg ; 36(6): 769-779, 2021 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-34236781

RESUMEN

INTRODUCTION: In this study, patients before and after cardiac surgery with cardiopulmonary bypass (CPB) and control subjects were evaluated for erythrocyte glutathione peroxidase, catalase and superoxide dismutase enzyme activities, in addition to glutathione, malondialdehyde, serum total sialic acid, lipid-bound sialic acid, total antioxidant status, trace elements and mineral levels. The correlation of these variables with coronary artery disease (CAD) was also assessed. METHODS: A total of 30 CAD patients and 30 control subjects were included in the study. CAD patients were divided into three groups: before surgery (BS), first day after surgery (1st day AS) and seventh day after surgery (7th day AS). RESULTS: Malondialdehyde (MDA) and total sialic acid (TSA) levels were significantly higher in CAD (BS) than in the control group (P<0.05, P<0.05). In addition, GSH and TAS levels were significantly lower in the 1st day AS group than in the control group (P<0.001, P<0.01). Moreover, Co, Cu, Mg, Se, V and Zn levels were significantly lower in CAD (BS) group than in the control group (P<0.01, P<0.01, P<0.01, P<0.01, P<0.05, P<0.001). CONCLUSIONS: It was concluded that the levels of LDL-C, total cholesterol, triglycerides and CRP significantly associated with parameters, as well as Cu, Ca and SOD activity, should be measured together to monitor CAD. It is also considered that measuring TSA and MDA might be an appropriate choice for biomarkers of CAD.


Asunto(s)
Enfermedad de la Arteria Coronaria , Oligoelementos , Antioxidantes , Puente de Arteria Coronaria , Enfermedad de la Arteria Coronaria/cirugía , Humanos , Malondialdehído , Ácido N-Acetilneuramínico , Estrés Oxidativo , Superóxido Dismutasa
18.
Biochem Biophys Rep ; 26: 100940, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33732900

RESUMEN

BACKGROUND: Sialic acids are widely distributed in nature and have biological relevance owing to their varied structural and functional roles. Immobilized neuraminidase can selectively remove terminal N-acetyl neuraminic acid from glycoproteins without altering the protein backbone while it can be easily removed from the reaction mixture avoiding sample contamination. This enables the evaluation of changes in glycoprotein performance upon desialylation. METHODS: Neuraminidase was immobilized onto agarose activated with cyanate ester groups and further used for desialylation of model glycoproteins, a lysate from tumour cells and tumour cells. Desialylation process was analysed by lectin binding assay, determination of sialyl-Tn or flow cytometry. RESULTS: Clostridium perfringens neuraminidase was immobilized with 91 % yield and expressed activity yield was of 41%. It was effective in the desialylation of bovine fetal serum fetuin, bovine lactoferrin and ovine submaxilar mucin. A decrease in sialic-specific SNA lectin recognition of 83% and 53 % was observed for fetuin and lactoferrin with a concomitant increase in galactose specific ECA and PNA lectin recognition. Likewise, a decrease in the recognition of a specific antibody (82%) upon mucin desialylation was observed. Moreover, desialylation of a protein lysate from the sialic acid-rich cell line TA3/Ha was also possible leading to a decrease in 47 % in SNA recognition. Immobilized neuraminidase kept 100% of its initial activity upon five desialylation cycles. CONCLUSIONS: Immobilized neuraminidase is an interesting as well as a robust biotechnological tool for enzymatic desialylation purposes. GENERAL SIGNIFICANCE: Immobilized neuraminidase would contribute to understand the role of sialic acid in biological processes.

19.
Arq. bras. med. vet. zootec. (Online) ; 73(1): 239-246, Jan.-Feb. 2021. tab
Artículo en Portugués | LILACS, VETINDEX | ID: biblio-1153047

RESUMEN

Objetivou-se avaliar o coeficiente de digestibilidade aparente (CDA) dos nutrientes, a palatabilidade das dietas e as características fecais de cães alimentados com uma dieta controle e uma dieta contendo 20% de gérmen desengordurado (GD), com e sem adição de complexo enzimático (amilase, xilanase, betaglucanase e mananase). Para o experimento de digestibidade e das características fecais, foram utilizados 12 cães adultos, distribuídos em delineamento em blocos ao acaso, em esquema fatorial 2 x 2 (dieta x enzima). O segundo experimento avaliou a palatabilidade, por meio da primeira escolha e da razão de ingestão (RI) da dieta DC vs. 20% de GD, utilizando-se 16 cães. O teste de palatabilidade contou com três dias consecutivos, totalizando 48 repetições. A dieta com inclusão de 20% de GD teve os menores valores de CDA da MS, da EB e da EM (P<0,05). A inclusão do complexo enzimático melhorou o CDA da MS, da EB e da EM (P<0,05). Não foram observadas diferenças nas características fecais (P>0,05). Em relação à palatabilidade, os cães preferiram a dieta 20% de GD, tanto na primeira escolha como na RI (P<0,05). A inclusão de enzimas às dietas melhora a digestibilidade dos nutrientes e da EM, sendo um aditivo com potencial uso na alimentação de cães.(AU)


The objective was to evaluate the apparent digestibility coefficient (ADC) of nutrients, diet palatability and fecal characteristics of dogs fed diets containing degreased germ (DG), and a control diet (DC) - both with and without the addition of enzyme complex (amylase, xylanase, betaglucanase and mananase). For the digestibility and fecal characteristics experiment 12 adult dogs were used, distributed in a randomized block design, in a 2 x 2 factorial scheme (diet x enzyme). The second experiment evaluated palatability using the first choice and ingestion ratio (IR) of DC diet vs. 20%gD, using 16 dogs. The palatability test had three consecutive days, totaling 48 repetitions. The diet with inclusion of 20% DG had the lowest ADC values of DM, GE and ME (P <0.05). Inclusion of the enzyme complex improved ADC of DM, GE and ME (P <0.05). No differences in fecal characteristics were observed (P >0.05). Regarding palatability, dogs preferred the 20% DG diet in both first choice and IR (P <0.05). Inclusion of enzymes in diets improves nutrient digestibility and ME, being an additive with potential use in dog food.(AU)


Asunto(s)
Animales , Perros , Ácido N-Acetilneuramínico/administración & dosificación , Zea mays/embriología , Enzimas/administración & dosificación , Alimentación Animal/análisis , Heces , Amilasas/administración & dosificación
20.
Methods Mol Biol ; 2261: 55-72, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33420984

RESUMEN

Posttranslational modifications (PTMs) such as phosphorylation, acetylation, and glycosylation are an essential regulatory mechanism of protein function and interaction, and they are associated with a wide range of biological processes. Since most PTMs alter the molecular mass of a protein, mass spectrometry (MS) is the ideal analytical tool for studying various PTMs. However, PTMs are often present in substoichiometric levels, and therefore their unmodified counterpart often suppresses their signal in MS. Consequently, PTM analysis by MS is a challenging task, requiring highly specialized and sensitive PTM-specific enrichment methods. Currently, several methods have been implemented for PTM enrichment, and each of them has its drawbacks and advantages as they differ in selectivity and specificity toward specific protein modifications. Unfortunately, for the vast majority of more than 400 known modifications, we have no or poor tools for selective enrichment.Here, we describe a comprehensive workflow to simultaneously study phosphorylation, acetylation, and N-linked sialylated glycosylation from the same biological sample. The protocol involves an initial titanium dioxide (TiO2) step to enrich for phosphopeptides and sialylated N-linked glycopeptides followed by glycan release and post-fractionation using sequential elution from immobilized metal affinity chromatography (SIMAC) to separate mono-phosphorylated and deglycosylated peptides from multi-phosphorylated ones. The IMAC flow-through and acidic elution are subsequently subjected to a next round of TiO2 enrichment for further separation of mono-phosphopeptides from deglycosylated peptides. Furthermore, the lysine-acetylated peptides present in the first TiO2 flow-through fraction are enriched by immunoprecipitation (IP) after peptide cleanup. Finally, the samples are fractionated by high pH reversed phase chromatography (HpH) or hydrophilic interaction liquid chromatography (HILIC ) to reduce sample complexity and increase the coverage in the subsequent LC-MS /MS analysis. This allows the analysis of multiple types of modifications from the same highly complex biological sample without decreasing the quality of each individual PTM study.


Asunto(s)
Procesamiento Proteico-Postraduccional , Proteínas/análisis , Proteómica , Acetilación , Cromatografía de Afinidad , Cromatografía de Fase Inversa , Glicosilación , Inmunoprecipitación , Fosforilación , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem , Titanio/química , Flujo de Trabajo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA