Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 678(Pt B): 588-598, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39265331

RESUMEN

With rapid advancements in health and human-computer interaction, wearable electronic skins (e-skins) designed for application on the human body provide a platform for real-time detection of physiological signals. Wearable strain sensors, integral functional units within e-skins, can be integrated with Internet of Things (IoT) technology to broaden the applications for human body monitoring. A significant challenge lies in the reliance of most existing wearable strain sensors on rigid external power supplies, limiting their practical flexibility. In this study, we present an innovative strategy to fabricate glutaraldehyde (GA)-poly(vinyl alcohol) (PVA)/cellulose nanocrystals (CNC)/Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) conductive hydrogels through multiple hydrogen bonding systems. Combining the advantageous rheological properties of the precursor solution and the high specific surface area after freeze-thaw cycling, we have created a self-powered sensing system prepared by large-area printing using direct ink writing (DIW) printing. The resulting conductive hydrogel exhibits commendable mechanical properties (411 KPa), impressive stretchability (580 %), and robust self-healing capabilities (>98.3 %). The strain sensor, derived from the conductive hydrogel, demonstrates a gauge factor (GF) of 2.5 within a stretching range of 0-580 %. Additionally, the resultant supercapacitor displays a peak energy density of 0.131 mWh/cm3 at a power density of 3.6 mW/cm3. Benefiting from its elevated strain response and remarkable power density features, this self-powered strain sensing system enables the real-time monitoring of human joint motion. The incorporation of a 5G transmission module enhances its capabilities for remote data monitoring, thereby contributing to the progress of wireless tracking technologies for self-powered electronic skin.

2.
Carbohydr Polym ; 346: 122607, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39245491

RESUMEN

Integrating flexible piezoelectric nanogenerators (PENGs) into wearable and portable electronics offers promising prospects for motion monitoring. However, it remains a significant challenge to develop environmentally friendly PENGs using biodegradable and cost-effective natural polymers for mechanical energy harvesting and self-powered sensing. Herein, reduced graphene oxide (rGO) and barium titanate (BTO) were introduced into regenerated cellulose pulp to fabricate a composite porous film-based PENG. The incorporation of rGO not only increased the electrical conductivity of the porous film but also enhanced the dispersibility of BTO. Moreover, the unique pore structure of the composite porous film improved the polarization effect of the air inside the pores, thereby greatly boosting the overall piezoelectric performance. The piezoelectric coefficient of the resulting composite porous film reaches up to 41.5 pC·N-1, which is comparable to or higher than those reported in similar studies. Consequently, the PENG assembled from this cellulose/rGO/BTO composite porous film (CGB-PENG) achieved an output voltage of 47 V, a current of 4.6 µA, and a power density of 30 µW·cm-2, approximately three times the output voltage and ten times the power density of similar studies. This work presents a feasible approach for the fabrication of high-performance cellulose-based PENGs derived from recycled waste cotton textiles.

3.
Talanta ; 279: 126570, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39018949

RESUMEN

The amplification strategies used for self-powered biosensor based on biofuel cell (BFC-SPB) need to be further developed. Because the currently developed strategies utilized the complicated hybridization of DNA or poorly readable current signal of capacitors for amplification, which limits the practical application in public health emergencies. Here, we present a facile chemical amplification strategy for BFC-SPB. The 5-min amplification was triggered by simply adding H2O2 solution dropwise to the sensing cathode after the formation of the immune sandwich. The Ag NP of immunoprobe were oxidized to Ag(I), which can be served as the electron acceptor of the cathode. The amount of immunoprobe was positively correlated with that of the antigen, resulting in corresponding and high concentration of Ag(I) after the amplification, which enhanced the ability of the cathode as the electron acceptor. Meanwhile the glucose oxidation reaction (GOR) was performed on the bioanode modified with glucose oxidase (GOx). After assembling the bioanode and sensing cathode, the open circuit voltage of the BFC-SPB, measured by digital multimeter, distinctly rised with the elevated concentration of the antigen. To demonstrate the proof of concept, immunoglobulin G (IgG), selecting as a model analyte, was sensitively detected using this method. Result indicated that the limit of detection was 4.4 fg mL-1 (0.03 amol mL-1) in the linear range of 1 pg mL-1-10 µg mL-1. This work initiates a brand-new way of chemical amplification strategy for BFC-SPB, and offers a promising platform for practical applications.


Asunto(s)
Técnicas Biosensibles , Electrodos , Glucosa Oxidasa , Peróxido de Hidrógeno , Oxidación-Reducción , Plata , Peróxido de Hidrógeno/química , Técnicas Biosensibles/métodos , Plata/química , Glucosa Oxidasa/química , Glucosa Oxidasa/metabolismo , Inmunoglobulina G/química , Límite de Detección , Glucosa/análisis , Glucosa/química , Fuentes de Energía Bioeléctrica , Técnicas Electroquímicas/métodos
4.
Food Chem ; 459: 140380, 2024 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-39003862

RESUMEN

As a common heavy metal contaminant, Cd2+ has adverse effects on food safety and consumer health. It is very important for human health to realize highly sensitive Cd2+ detection methods. The self-powered sensing system based on enzyme biofuel cells (EBFCs) does not need an external power supply, which can simplify the experimental equipment and has great application value in portable detection. Thus, the biosensor is innovatively integrated into the screen-printed electrode to construct a new type of portable sensor suitable for on-site and real-time Cd2+ detection. Hybridization chain reaction (HCR) combined with the Cd2+-dependent deoxyribose (DNAzyme) signal amplification strategy is used to enhance the detection sensitivity while specifically recognizing the Cd2+. Moreover, the self-powered sensor combines with smartphones to realize quantitative Cd2+ detection without other instruments and has the characteristic of Effectively improving the hazard detection technology is essential to ensure food safety. Portability, simplicity, and speed are suitable for real-time Cd2+ detection in the field. The dual mechanism and three quantitative modes combining colorimetric and two electrical signals output modes are adopted to realize the visualization and accurate detection. A series of research results confirm that this strategy is of great significance to strengthen the development of intelligent Cd2+ technology, expand the application of self-powered sensing technology, and improve the safety detection system.


Asunto(s)
Técnicas Biosensibles , Cadmio , Contaminación de Alimentos , Cadmio/análisis , Cadmio/química , Técnicas Biosensibles/instrumentación , Contaminación de Alimentos/análisis , Colorimetría/instrumentación , Límite de Detección , ADN Catalítico/química , ADN Catalítico/metabolismo , Fuentes de Energía Bioeléctrica
5.
Small ; : e2403394, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958093

RESUMEN

The rapid growth of Internet of Things (IoT) in recent years has increased demand for various sensors to collect a wide range of data. Among various sensors, the demand for force sensors that can recognize physical phenomena in 3D space has notably increased. Recent research has focused on developing energy harvesting methods for sensors to address their maintenance problems. Triboelectric nanogenerator (TENG) based force sensors are a promising solution for converting external motion into electrical signals. However, conventional TENG-based force sensors that use the signal peak can negatively affect data accuracy. In this study, a Scott-Russell linkage-inspired TENG (SRI-TENG) is developed. The SRI-TENG has completely separate signal generation and measurement sections, and the number of peaks in the electrical output is measured to prevent disturbing output signals. In addition, the lubricant liquid enhances durability, enabling stable force signal measurements for 270 000 cycles. The SRI system demonstrates consistent peak counts and high accuracy across different contacting surfaces, indicating that it can function as a contact material-independent self-powered force sensor. Furthermore, using a deep learning method, it is demonstrated that it can function as a multimodal sensor by realizing the tactile properties of various materials.

6.
Heliyon ; 10(11): e32361, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38961958

RESUMEN

Within the domain of wearable devices that are self-powered and sensory, triboelectric nanogenerators (TENGs) have surfaced as a notable solution to meet the growing needs for energy harvesting. This study unveils an innovative wearable and stretchable multifunctional double-layered TENG, based on PDMS/MXene, known as PM-TENG. Furthermore, PM-TENG can also be used as a joint sensor to monitor the movement of athletes' joints during volleyball training. By augmenting the matrix with PDMS/MXene, which possesses dual capabilities-namely, charge capture and charge movement-the intermediary layer is integrated. This leads to a two fold increase in the ability to trap charges and the overall triboelectric performance. With a power density reaching 11.27 mW, it notably exceeds the performance of its counterparts that solely utilize PDMS, by nearly 11 times. This academic effort elucidates the important role of PM-TENG in biomechanical energy capture and autonomous wearable sports motion sensing.

7.
ACS Appl Mater Interfaces ; 16(27): 34549-34560, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38940307

RESUMEN

Self-powered sensors have the potential to enable real-time health monitoring without contributing to the ever-growing demand for energy. Piezoelectric nanogenerators (PENGs) respond to mechanical deformations to produce electrical signals, imparting a sensing capability without external power sources. Textiles conform to the human body and serve as an interactive biomechanical energy harvesting and sensing medium without compromising comfort. However, the textile-based PENG fabrication process is complex and lacks scalability, making these devices impractical for mass production. Here, we demonstrate the fabrication of a long-length PENG fiber compatible with industrial-scale manufacturing. The thermal drawing process enables the one-step fabrication of self-poled MoS2-poly(vinylidene fluoride) (PVDF) nanocomposite fiber devices integrated with electrodes. Heat and stress during thermal drawing and MoS2 nanoparticle addition facilitate interfacial polarization and dielectric modulation to enhance the output performance. The fibers show a 57 and 70% increase in the output voltage and current compared to the pristine PVDF fiber, respectively, at a considerably low MoS2 loading of 3 wt %. The low Young's modulus of the outer cladding ensures an effective stress transfer to the piezocomposite domain and allows minute motion detection. The flexible fibers demonstrate wireless, self-powered physiological sensing and biomotion analysis capability. The study aims to guide the large-scale production of highly sensitive integrated fibers to enable textile-based and plug-and-play wearable sensors.

8.
Nano Lett ; 24(25): 7809-7818, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38874576

RESUMEN

Noncontact sensing technology serves as a pivotal medium for seamless data acquisition and intelligent perception in the era of the Internet of Things (IoT), bringing innovative interactive experiences to wearable human-machine interaction perception networks. However, the pervasive limitations of current noncontact sensing devices posed by harsh environmental conditions hinder the precision and stability of signals. In this study, the triboelectric nanopaper prepared by a phase-directed assembly strategy is presented, which possesses low charge transfer mobility (1618 cm2 V-1 s-1) and exceptional high-temperature stability. Wearable self-powered noncontact sensors constructed from triboelectric nanopaper operate stably under high temperatures (200 °C). Furthermore, a temperature warning system for workers in hazardous environments is demonstrated, capable of nonintrusively identifying harmful thermal stimuli and detecting motion status. This research not only establishes a technological foundation for accurate and stable noncontact sensing under high temperatures but also promotes the sustainable intelligent development of wearable IoT devices under extreme environments.

9.
Mikrochim Acta ; 191(7): 379, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38856817

RESUMEN

A novel high-precision aptasensor of microcystin-RR (MC-RR) is developed based on a ratiometric self-powered photoelectrochemical platform. In detail, the defective MoS2/Ti3C2 nanocomposite with good photoelectric activity was designed to serve as the photoanode of the sensor for enhancing the signal and improving the detection sensitivity. In order to effectively eliminate external interferences, the key point of this ratiometric device is the introduction of the spatial-resolved technique, which includes the detection section and the reference section, generating reference signals and response signals, respectively. Moreover, output power was used as the detection signal, instead of the traditional photocurrent or photovoltage. Further, potassium persulfate was introduced as electron acceptor, which was beneficial for improving the electron transport efficiency, hindering electron-hole recombination, and significantly promoting the performance of the sensor. Finally, aptamer was adopted as recognition element to capture MC-RR molecules. The prepared sensor had a linear range from 10-12 to 10-6 M, and the detection limit was 5.6 × 10-13 M (S/N = 3). It has good precision, selectivity, and sensitivity, which shows great prospects in the on-site accurate analysis of samples with high energy output in the self-powered sensing field.

10.
ACS Sens ; 9(6): 2907-2914, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38759108

RESUMEN

Flexible self-powered tactile sensors, with applications spanning wearable electronics, human-machine interaction, prosthetics, and soft robotics, offer real-time feedback on tactile interactions in diverse environments. Despite advances in their structural development, challenges persist in sensitivity and robustness, particularly when additional functionalities, such as high transparency and stretchability. In this study, we present a novel approach integrating a bionic fingerprint ring structure with a PVDF-HFP/AgNWs composite fiber electrode membrane, fabricated via 3D printing technology and electrospinning, respectively, yielding a triboelectric nanogenerator (TENG)-based self-powered tactile sensor. The sensor demonstrates high sensitivity (5.84 V/kPa in the 0-10 kPa range) and rapid response time (10 ms), attributed to the microring texture on its surface, and exhibits exceptional robustness, maintaining electrical output integrity even after 24,000 cycles of loading. These findings highlight the potential of the microring structures in addressing critical challenges in flexible sensor technology.


Asunto(s)
Biónica , Tacto , Dispositivos Electrónicos Vestibles , Humanos , Electrodos , Suministros de Energía Eléctrica , Impresión Tridimensional , Polivinilos/química
11.
ACS Sens ; 9(6): 2946-2955, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38768377

RESUMEN

Obtaining bioenergy from human movement is not only a prospective complementation to electrochemical power supply such as batteries in portable electronics but also a decipherable process for developing self-powered sensors that can simultaneously monitor the physiological movement. In this study, a low-cost, robust, and environmentally friendly triboelectric nanogenerator (TENG) was prepared with enhanced mechanical stability and tunneling conductivity on the base of cotton fabric. The as-designed TENG may produce energy sustainably by physical movements, and it can yield an amazing 417 V open-circuit voltage, 11.7 µA short-circuit current, and 237.60 mW/m2 excellent power density, showcasing its potential for efficient energy conversion in the single-electrode mode. Besides, such a design also shows real-time tactile perception ability toward human physiological signal and body motion where intelligent application of these environmental benign TENGs in sports and writing training were demonstrated, thus providing vital instruction for the creation of versatile and sustainable TENGs in the Internet of Things era.


Asunto(s)
Tacto , Humanos , Suministros de Energía Eléctrica , Dispositivos Electrónicos Vestibles , Conductividad Eléctrica
12.
Sensors (Basel) ; 24(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38732880

RESUMEN

Multifunctional sensors have played a crucial role in constructing high-integration electronic networks. Most of the current multifunctional sensors rely on multiple materials to simultaneously detect different physical stimuli. Here, we demonstrate the large piezo-pyroelectric effect in ferroelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) single crystals for simultaneous pressure and temperature sensing. The outstanding piezoelectric and pyroelectric properties of PMN-PT result in rapid response speed and high sensitivity, with values of 46 ms and 28.4 nA kPa-1 for pressure sensing, and 1.98 s and 94.66 nC °C-1 for temperature detection, respectively. By leveraging the distinct differences in the response speed of piezoelectric and pyroelectric responses, the piezo-pyroelectric effect of PMN-PT can effectively detect pressure and temperature from mixed-force thermal stimuli, which enables a robotic hand for stimuli classification. With appealing multifunctionality, fast speed, high sensitivity, and compact structure, the proposed self-powered bimodal sensor therefore holds significant potential for high-performance artificial perception.

13.
Polymers (Basel) ; 16(10)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38794497

RESUMEN

In advancing the transition of the energy sector toward heightened sustainability and environmental friendliness, biopolymers have emerged as key elements in the construction of triboelectric nanogenerators (TENGs) due to their renewable sources and excellent biodegradability. The development of these TENG devices is of significant importance to the next generation of renewable and sustainable energy technologies based on carbon-neutral materials. This paper introduces the working principles, material sources, and wide-ranging applications of biopolymer-based triboelectric nanogenerators (BP-TENGs). It focuses on the various categories of biopolymers, ranging from natural sources to microbial and chemical synthesis, showcasing their significant potential in enhancing TENG performance and expanding their application scope, while emphasizing their notable advantages in biocompatibility and environmental sustainability. To gain deeper insights into future trends, we discuss the practical applications of BP-TENG in different fields, categorizing them into energy harvesting, healthcare, and environmental monitoring. Finally, the paper reveals the shortcomings, challenges, and possible solutions of BP-TENG, aiming to promote the advancement and application of biopolymer-based TENG technology. We hope this review will inspire the further development of BP-TENG towards more efficient energy conversion and broader applications.

14.
Nanomicro Lett ; 16(1): 170, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38592515

RESUMEN

Rapid advancements in flexible electronics technology propel soft tactile sensing devices toward high-level biointegration, even attaining tactile perception capabilities surpassing human skin. However, the inherent mechanical mismatch resulting from deficient biomimetic mechanical properties of sensing materials poses a challenge to the application of wearable tactile sensing devices in human-machine interaction. Inspired by the innate biphasic structure of human subcutaneous tissue, this study discloses a skin-compliant wearable iontronic triboelectric gel via phase separation induced by competitive hydrogen bonding. Solvent-nonsolvent interactions are used to construct competitive hydrogen bonding systems to trigger phase separation, and the resulting soft-hard alternating phase-locked structure confers the iontronic triboelectric gel with Young's modulus (6.8-281.9 kPa) and high tensile properties (880%) compatible with human skin. The abundance of reactive hydroxyl groups gives the gel excellent tribopositive and self-adhesive properties (peel strength > 70 N m-1). The self-powered tactile sensing skin based on this gel maintains favorable interface and mechanical stability with the working object, which greatly ensures the high fidelity and reliability of soft tactile sensing signals. This strategy, enabling skin-compliant design and broad dynamic tunability of the mechanical properties of sensing materials, presents a universal platform for broad applications from soft robots to wearable electronics.

15.
Polymers (Basel) ; 16(6)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38543395

RESUMEN

The increasing number of IoT devices has led to more electronic waste production, which harms the environment and human health. Self-powered sensor systems are a solution, but they often use toxic materials. We propose using biocompatible peanut skin as the active material for a self-powered humidity sensor (PSP-SPHS) through integration with a peanut-skin-based triboelectric nanogenerator (PSP-TENG). The PSP-TENG was characterized electrically and showed promising results, including an open circuit voltage (162 V), short circuit current (0.2 µA), and instantaneous power (2.2 mW) at a loading resistance of 20 MΩ. Peanut skin is a great choice for the sensor due to its porous surface, large surface area, eco-friendliness, and affordability. PSP-TENG was further used as a power source for the PSP-humidity sensor. PSP-SPHS worked as a humidity-dependent resistor, whose resistance decreased with increasing relative humidity (%RH), which further resulted in decreasing voltage across the humidity sensor. This proposed PSP-SPHS exhibited a good sensitivity (0.8 V/RH%), fast response/recovery time (4/10 s), along with excellent stability and repeatability, making it a potential candidate for self-powered humidity sensor technology.

16.
Sensors (Basel) ; 24(6)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38544024

RESUMEN

Real-time monitoring of rainwater is a critical issue in the development of autonomous vehicles and smart homes, while the corresponding sensors play a pivotal role in ensuring their sensitivity. Here, we study a self-powered intelligent water droplet monitoring sensor based on a solid-liquid triboelectric nanogenerator (SL-TENG). The sensor comprises a SL-TENG, a signal acquisition module, a central processing unit (CPU), and a wireless transmission module, facilitating the real-time monitoring of water droplet signals. It is worth noting that the SL-TENG has self-powering characteristics and can convert the kinetic energy of water droplets into electrical energy. The excellent output performance, with open-circuit voltage of 9 V and short-circuit current of 2 µA without any treatment of the SL-TENG, can provide an effective solution to the problem that traditional sensor need battery replacement. In addition, the SL-TENG can generate stable amplitude electrical signals through water droplets, exemplified by the absence of decay in a short-circuit current within 7 days. More importantly, the sensor is equipped with intelligent analytical capabilities, allowing it to assess rainfall based on variables such as amplitude and frequency. Due to its excellent stability and intelligent analysis, this sensor can be used for roof rainwater monitoring, intravenous administration monitoring, and especially in automobile automatic wipers and other fields.

17.
Nano Lett ; 24(12): 3826-3834, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38498923

RESUMEN

Lightweight, easily processed, and durable polymeric materials play a crucial role in wearable sensor devices. However, achieving simultaneously high strength and toughness remains a challenge. This study addresses this by utilizing an ion-specific effect to control crystalline domains, enabling the fabrication of a polymeric triboelectric material with tunable mechanical properties. The dense crystal-domain cross-linking enhances energy dissipation, resulting in a material boasting both high tensile strength (58.0 MPa) and toughness (198.8 MJ m-3), alongside a remarkable 416.7% fracture elongation and 545.0 MPa modulus. Leveraging these properties, the material is successfully integrated into wearable self-powered devices, enabling real-time feedback on human joint movement. This work presents a valuable strategy for overcoming the strength-toughness trade-off in polymeric materials, paving the way for their enhanced applicability and broader use in diverse sensing applications.

18.
Nano Lett ; 24(10): 3273-3281, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38427598

RESUMEN

As intelligent technology surges forward, wearable electronics have emerged as versatile tools for monitoring health and sensing our surroundings. Among these advancements, porous triboelectric materials have garnered significant attention for their lightness. However, these materials face the challenge of improving structural stability to further enhance the sensing accuracy of triboelectric sensors. In this study, a lightweight and strong porous cellulosic triboelectric material is designed by cell wall nanoengineering. By tailoring of the cell wall structure, the material shows a high mechanical strength of 51.8 MPa. The self-powered sensor constructed by this material has a high sensitivity of 33.61 kPa-1, a fast response time of 36 ms, and excellent pressure detection durability. Notably, the sensor still enables a high sensing performance after the porous cellulosic triboelectric material exposure to 200 °C and achieves real-time feedback of human motion, thereby demonstrating great potential in the field of wearable electronic devices.


Asunto(s)
Pared Celular , Dispositivos Electrónicos Vestibles , Humanos , Electrónica , Movimiento (Física) , Porosidad
19.
Small ; 20(28): e2309758, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38326102

RESUMEN

Achieving relatively uniform dispersion in organic-inorganic composites with overwhelming differences in surface energy is a perennial challenge. Herein, novel eliminated polyvinylidene fluoride (EPVDF)/EPVDF functionalized barium titanate nanoparticles (EPVDF@BT) flexible piezoelectric nanogenerators (PENGs) with strong interfacial adhesion are developed via thermal stretching following sequential click chemistry. Thanks to the strong interfacial adhesion, the optimal PENGs containing ultra-high ß-phase content (97.2%) exhibit not only optimized mechanical and dielectric behaviors but also excellent piezoelectric properties with high piezoelectric output (V = 10.7 V, I = 216 nA), reliable durability (8000 cycles), ultrafast response time (20 ms), and good sensitivity (2.09 nA kPa-1), far outperforming most reported PVDF-based composites. Furthermore, COMSOL finite element simulations (FEM) confirm that the elevated stress transfer efficiency induced by the strong interfacial adhesion is the main driving force for enhanced piezoelectric performances. For practical applications, self-powered PENGs can simply but stably capture mechanical energy, drive tiny electronic devices, and serve as potential multifunctional and durable sensors for detecting human physiological motions. This work opens a pioneering avenue to break the trade-offs between piezoelectric and other properties, which is of great importance for developing self-powered flexible sensors.

20.
Polymers (Basel) ; 16(4)2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38399914

RESUMEN

Pulsating flow, a common term in industrial and medical contexts, necessitates precise water flow measurement for evaluating hydrodynamic system performance. Addressing challenges in measurement technologies, particularly for pulsating flow, we propose a flowing liquid-based triboelectric nanogenerator (FL-TENG). To generate sufficient energy for a self-powered device, we employed a fluorinated functionalized technique on a polyvinylidene fluoride (PVDF) membrane to enhance the performance of FL-TENG. The results attained a maximum instantaneous power density of 50.6 µW/cm2, and the energy output proved adequate to illuminate 10 white LEDs. Regression analysis depicting the dependence of the output electrical signals on water flow revealed a strong linear relationship between the voltage and flow rate with high sensitivity. A high correlation coefficient R2 within the range from 0.951 to 0.998 indicates precise measurement accuracy for the proposed FL-TENG. Furthermore, the measured time interval between two voltage peaks precisely corresponds to the period of pulsating flow, demonstrating that the output voltage can effectively sense pulsating flow based on voltage and the time interval between two voltage peaks. This work highlights the utility of FL-TENG as a self-powered pulsating flow rate sensor.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA