Your browser doesn't support javascript.
loading
Self-Poled Piezoelectric Nanocomposite Fiber Sensors for Wireless Monitoring of Physiological Signals.
Hasan, Md Mehdi; Rahman, Mahmudur; Sadeque, Md Sazid Bin; Ordu, Mustafa.
Afiliación
  • Hasan MM; UNAM─Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Türkiye.
  • Rahman M; Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems, Texas A&M University, College Station, Texas 77843, United States.
  • Sadeque MSB; UNAM─Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Türkiye.
  • Ordu M; Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, U.K.
ACS Appl Mater Interfaces ; 16(27): 34549-34560, 2024 Jul 10.
Article en En | MEDLINE | ID: mdl-38940307
ABSTRACT
Self-powered sensors have the potential to enable real-time health monitoring without contributing to the ever-growing demand for energy. Piezoelectric nanogenerators (PENGs) respond to mechanical deformations to produce electrical signals, imparting a sensing capability without external power sources. Textiles conform to the human body and serve as an interactive biomechanical energy harvesting and sensing medium without compromising comfort. However, the textile-based PENG fabrication process is complex and lacks scalability, making these devices impractical for mass production. Here, we demonstrate the fabrication of a long-length PENG fiber compatible with industrial-scale manufacturing. The thermal drawing process enables the one-step fabrication of self-poled MoS2-poly(vinylidene fluoride) (PVDF) nanocomposite fiber devices integrated with electrodes. Heat and stress during thermal drawing and MoS2 nanoparticle addition facilitate interfacial polarization and dielectric modulation to enhance the output performance. The fibers show a 57 and 70% increase in the output voltage and current compared to the pristine PVDF fiber, respectively, at a considerably low MoS2 loading of 3 wt %. The low Young's modulus of the outer cladding ensures an effective stress transfer to the piezocomposite domain and allows minute motion detection. The flexible fibers demonstrate wireless, self-powered physiological sensing and biomotion analysis capability. The study aims to guide the large-scale production of highly sensitive integrated fibers to enable textile-based and plug-and-play wearable sensors.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article Pais de publicación: Estados Unidos