Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
1.
Front Genet ; 15: 1432105, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39233740

RESUMEN

The objective of this study is to analyze environmental genetic selection signals in large-scale sheep populations with conflicting environmental adaptations, aiming to identify and isolate genes associated with environmental adaptations in sheep populations. Kirghiz sheep, which inhabit high-altitude environments year-round, demonstrate the ability to adapt to extreme conditions. In this study, 42 Kirghiz sheep, 24 Tien-Shan in Kyrgyzstan sheep, 189 Qira black sheep, and 160 Chinese Merino sheep were genotyped using Illumina Ovine SNP50K chip. Regions exhibiting a selection signal threshold of 5%, as well as PI analysis and haplotype statistical scanning gene data were annotated, and intersecting genes were identified as candidate genes. Through Fst and haplotype statistical analysis revealed the key gene PDGFD and its vicinity's impact on fat deposition in sheep tails. Additionally, Fst and PI analysis uncovered genes related to high-altitude adaptation as well as those linked to animal growth and reproduction.Further GO and KEGG enrichment pathway analyses unveiled pathways associated with high-altitude adaptation such as negative regulation of peptidyl-tyrosine phosphorylation and xenobiotic metabolism processes.This investigation into the adaptability of Kirghiz sheep provides theoretical support and practical guidance for the conservation and genetic enhancement of Kirghiz sheep germplasm resources.

2.
Poult Sci ; 103(11): 104240, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39217661

RESUMEN

Taihang chickens is precious genetic resource with excellent adaptability and disease resistance, as well as high-quality eggs and meat. However, the genetic mechanism underlying important economic traits remain largely unknown. To address this gap, we conducted whole-genome resequencing of 66 Taihang and 15 White Plymouth rock chicken (Baiyu). The population structure analysis revealed that Taihang chickens and Baiyu are 2 independent populations. The genomic regions with strong selection signals and some candidate genes related to economic and appearance traits were identified. Additionally, we found a continuously selected 1.2 Mb region on chromosome 2 that is closely related to disease resistance. Therefore, our findings were helpful in further understanding the genetic architecture of the Taihang chickens and provided a worthy theoretical basis and technological support to improve high-quality Taihang chickens.

3.
Animals (Basel) ; 14(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39123689

RESUMEN

The breeding of high-quality beef cattle breeds is crucial for the development of animal husbandry, and whole-genome resequencing is widely applicated in the field of molecular breeding. Advantages in growth and reproductive traits exist in Pinan cattle compared with other cattle breeds, but there is limited research on its genomic mechanism. Using whole-genome resequencing, the genetic structure and genomic selection signatures in Pinan cattle were investigated in this study. Phylogenetic, cluster, and admixture analysis results indicated that Pinan cattle have a closer genetic relationship with Kholmogory cattle and China north cattle breeds. Through a selective sweep strategy, 207 and 54 candidate genes related to growth and reproduction and immunity, respectively, were identified in the Pinan cattle population. Given the crucial role of the glutamate-cysteine ligase catalytic (GCLC) gene in muscle antioxidative defense, the high frequency of allele T of the GCLC c.429 C>T locus in the Pinan cattle population might partially contribute to the advantages of Pinan cattle in growth performance. This study laid the foundation for the genetic improvement in Chinese local beef cattle and provide background for the studies on the growth and development of Pinan cattle.

4.
Artículo en Inglés | MEDLINE | ID: mdl-39142817

RESUMEN

Sheep were domesticated in the Fertile Crescent and then spread globally, where they have been encountering various environmental conditions. The Tibetan sheep has adapted to high altitudes on the Qinghai-Tibet Plateau over the past 3000 years. To explore genomic variants associated with high-altitude adaptation in Tibetan sheep, we analyzed Illumina short-reads of 994 whole genomes representing ∼ 60 sheep breeds/populations at varied altitudes, PacBio High fidelity (HiFi) reads of 13 breeds, and 96 transcriptomes from 12 sheep organs. Association testing between the inhabited altitudes and 34,298,967 variants was conducted to investigate the genetic architecture of altitude adaptation. Highly accurate HiFi reads were used to complement the current ovine reference assembly at the most significantly associated ß-globin locus and to validate the presence of two haplotypes A and B among 13 sheep breeds. The haplotype A carried two homologous gene clusters: (1) HBE1, HBE2, HBB-like, and HBBC, and (2) HBE1-like, HBE2-like, HBB-like, and HBB; while the haplotype B lacked the first cluster. The high-altitude sheep showed highly frequent or nearly fixed haplotype A, while the low-altitude sheep dominated by haplotype B. We further demonstrated that sheep with haplotype A had an increased hemoglobin-O2 affinity compared with those carrying haplotype B. Another highly associated genomic region contained the EGLN1 gene which showed varied expression between high-altitude and low-altitude sheep. Our results provide evidence that the rapid adaptive evolution of advantageous alleles play an important role in facilitating the environmental adaptation of Tibetan sheep.


Asunto(s)
Altitud , Haplotipos , Animales , Ovinos/genética , Haplotipos/genética , Adaptación Fisiológica/genética , Transcriptoma/genética , Polimorfismo de Nucleótido Simple/genética , Proteómica/métodos , Globinas beta/genética , Aclimatación/genética , Tibet , Multiómica
5.
Animals (Basel) ; 14(16)2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39199941

RESUMEN

Africa is home to a wide diversity of locally adapted pig breeds whose genetic architecture offers important insights into livestock adaptation to climate change. However, the majority of these inherent traits have not been fully highlighted. This review presents an overview of the current state of African pig genetic resources, providing highlights on their population and production statistics, production system, population diversity indices, and genomic evidence underlying their evolutionary potential. The study results reveal an incomplete characterization of local pig genotypes across the continent. The characterized population, however, demonstrates moderate to high levels of genetic diversity, enough to support breeding and conservation programs. Owing to low genetic differentiation and limited evidence of distinct population structures, it appears that most local pig populations are strains within larger breeds. Genomic evidence has shown a higher number of selection signatures associated with various economically important traits, thus making them potential candidates for climate change adaptation. The reportedly early evidence of hybridization with wild suid groups further suggests untapped insights into disease resistance and resilience traits that need to be illuminated using higher-density markers. Nevertheless, gene introgression from commercial breeds is prevalent across Africa; thus, efforts to realize and utilize these traits must increase before they are permanently depleted.

6.
Front Genet ; 15: 1457634, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39211736

RESUMEN

Xinjiang is a major province of sheep breeding in China, which plays an important role in meeting people's needs for meat products, increasing farmers' income and sustainable development of animal husbandry. However, the genetic differentiation relationship between breeds was not clear, and most sheep had low fecundity, which seriously restricted the efficient development of sheep industry. Therefore, this study used the whole genome resequencing to detect the genetic variation of Dexin mutton and fine-wool sheep, explored the selected regions and important genes of the litter size traits, analyzed the genetic mechanism of reproductive traits, and provided new insights for the high fecundity breeding of sheep. A total of 5,236.338 G genome data and 35,884,037 SNPs were obtained. Furthermore, we identified 39 selection signals spanning candidate genes, 99 genes were significantly associated related to growth, reproduction and immunity, among which, BRIP1, BMPR1B, BMP4, NGF, etc. genes, and MAKP signaling pathway, Fanconi anemia pathway and Thyroid hormone signaling pathway and other signaling pathways were significantly correlated with litter size trait. Among them, we identified NGF, TrKA and BRIP1 genes was the important genes for sheep litter size traits and the mutation frequencies of 9 SNPs in BRIP1 gene were significantly different in domestic sheep in the world. The research provided new insights for the breeding of self-cultivated meat fine-wool sheep.

7.
Physiol Genomics ; 56(9): 609-620, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949516

RESUMEN

Chilika, a native buffalo breed of the Eastern coast of India, is mainly distributed around the Chilika brackish water lake connected with the Bay of Bengal Sea. This breed possesses a unique ability to delve deep into the salty water of the lake and stay there to feed on local vegetation of saline nature. Adaptation to salinity is a genetic phenomenon; however, the genetic basis underlying salinity tolerance is still limited in animals, specifically in livestock. The present study explores the genetic evolution that unveils the Chilika buffalo's adaptation to the harsh saline habitat, including both water and food systems. For this study, whole genome resequencing data on 18 Chilika buffalo and for comparison 10 Murrah buffalo of normal habitat were generated. For identification of selection sweeps, intrapopulation and interpopulation statistics were used. A total of 709, 309, 468, and 354 genes were detected to possess selection sweeps in Chilika buffalo using the nucleotide diversity (θπ), Tajima's D, nucleotide diversity ratio (θπ-ratio), and FST methods, respectively. Further analysis revealed a total of 23 genes including EXOC6B, VPS8, LYPD1, VPS35, CAMKMT, NCKAP5, COMMD1, myosin light chain kinase 3 (MYLK3), and B3GNT2 were found to be common by all the methods. Furthermore, functional annotation study of identified genes provided pathways such as MAPK signaling, renin secretion, endocytosis, oxytocin signaling pathway, etc. Gene network analysis enlists that hub genes provide insights into their interactions with each other. In conclusion, this study has highlighted the genetic basis underlying the local adaptive function of Chilika buffalo under saline environment.NEW & NOTEWORTHY Indian Chilika buffaloes are being maintained on extensive grazing system and have a unique ability to convert local salty vegetation into valuable human food. However, adaptability to saline habitat of Chilika buffalo has not been explored to date. Here, we identified genes and biological pathways involved, such as MAPK signaling, renin secretion, endocytosis, and oxytocin signaling pathway, underlying adaptability of Chilika buffalo to saline environment. This investigation shed light on the mechanisms underlying the buffalo's resilience in its native surroundings.


Asunto(s)
Búfalos , Selección Genética , Animales , Búfalos/genética , Búfalos/fisiología , Adaptación Fisiológica/genética , India , Salinidad , Tolerancia a la Sal/genética , Evolución Molecular , Genoma/genética , Polimorfismo de Nucleótido Simple/genética , Secuenciación Completa del Genoma
8.
Gene ; 927: 148757, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38986751

RESUMEN

High altitude adapted livestock species (cattle, yak, goat, sheep, and horse) has critical role in the human socioeconomic sphere and acts as good source of animal source products including milk, meat, and leather, among other things. These species sustain production and reproduction even in harsh environments on account of adaptation resulting from continued evolution of beneficial traits. Selection pressure leads to various adaptive strategies in livestock whose footprints are evident at the different genomic sites as the "Selection Signature". Scrutiny of these signatures provides us crucial insight into the evolutionary process and domestication of livestock adapted to diverse climatic conditions. These signatures have the potential to change the sphere of animal breeding and further usher the selection programmes in right direction. Technological revolution and recent strides made in genomic studies has opened the routes for the identification of selection signatures. Numerous statistical approaches and bioinformatics tools have been developed to detect the selection signature. Consequently, studies across years have identified candidate genes under selection region found associated with numerous traits which have a say in adaptation to high-altitude environment. This makes it pertinent to have a better understanding about the selection signature, the ways to identify and how to utilize them for betterment of livestock populations as well as farmers. This review takes a closer look into the general concept, various methodologies, and bioinformatics tools commonly employed in selection signature studies and summarize the results of recent selection signature studies related to high-altitude adaptation in various livestock species. This review will serve as an informative and useful insight for researchers and students in the field of animal breeding and evolutionary biology.


Asunto(s)
Altitud , Ganado , Selección Genética , Animales , Ganado/genética , Adaptación Fisiológica/genética , Aclimatación/genética
9.
Genes (Basel) ; 15(7)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39062688

RESUMEN

(1) Background: Matou goats, native to Hunan and Hubei provinces in China, are renowned for their exceptional meat and skin quality. However, a comprehensive whole-genome-based exploration of the genetic architecture of this breed is scant in the literature. (2) Methods: To address this substantial gap, we used whole-genome sequences of 20 Matou goats and compared them with published genomic data of 133 goats of different breeds across China. This comprehensive investigation sought to assess genetic diversity, population structure, and the presence of genomic selection signals. (3) Results: The whole genome of Matou goat populations yielded a substantial catalog of over 19 million single nucleotide polymorphisms (SNPs), primarily distributed within intergenic and intron regions. The phylogenetic tree analysis revealed distinct clades corresponding to each goat population within the dataset. Notably, this analysis positioned Matou goats in a closer genetic affinity with Guizhou White goats, compared to other recognized goat breeds. This observation was corroborated by principal component analysis (PCA) and admixture analysis. Remarkably, Matou goats exhibited diminished genetic diversity and a notable degree of inbreeding, signifying a reduced effective population size. Moreover, the study employed five selective sweep detection methods (including PI, CLR, PI-Ratio, Fst, and XP-EHH) to screen top signal genes associated with critical biological functions, encompassing cardiomyocytes, immunity, coat color, and meat quality. (4) Conclusions: In conclusion, this study significantly advances our understanding of the current genetic landscape and evolutionary dynamics of Matou goats. These findings underscore the importance of concerted efforts in resource conservation and genetic enhancement for this invaluable breed.


Asunto(s)
Cabras , Polimorfismo de Nucleótido Simple , Selección Genética , Secuenciación Completa del Genoma , Animales , Cabras/genética , Secuenciación Completa del Genoma/métodos , Polimorfismo de Nucleótido Simple/genética , Filogenia , China , Cruzamiento , Genoma/genética , Variación Genética
10.
Mamm Genome ; 35(3): 377-389, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39014170

RESUMEN

This study seeks a comprehensive exploration of genome-wide selective processes impacting morphometric traits across diverse cattle breeds, utilizing an array of statistical methods. Morphometric traits, encompassing both qualitative and quantitative variables, play a pivotal role in characterizing and selecting livestock breeds based on their external appearance, size, and physical attributes. While qualitative traits, such as color, horn structure, and coat type, contribute to adaptive features and breed identification, quantitative traits like body weight and conformation measurements bear a closer correlation with production characteristics. This study employs advanced genotyping technologies, including the Illumina BovineSNP50 Bead Chip and next-generation sequencing methods like Reduced Representation sequencing, to identify genomic signatures associated with these traits. We applied four intra-population methods to find evidence of selection, such as Tajima's D, CLR, iHS, and ROH. We found a total of 40 genes under the selection signature, that were associated with morphometric traits in five cattle breeds (Kankrej, Tharparkar, Nelore, Sahiwal, and Gir). Crucial genes such as ADIPDQ, DPP6, INSIG1, SLC35D2 in Kankrej, LPL, ATP6V1B2, CDC14B in Tharparkar, HPSE2, PLAG1 in Nelore, PCSK1, PRKD1 in Sahiwal, and GNAQ, HPCAL1 in Gir were identified in our study. This approach provides valuable insights into the genetic basis of variations in body weight and conformation traits, facilitating informed selection processes and offering a deeper understanding of the evolutionary and domestication processes in diverse cattle breeds.


Asunto(s)
Cruzamiento , Genómica , Selección Genética , Animales , Bovinos/genética , Bovinos/anatomía & histología , Genómica/métodos , Fenotipo , Genoma , India , Polimorfismo de Nucleótido Simple , Carácter Cuantitativo Heredable , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento
11.
Evol Appl ; 17(6): e13697, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38911262

RESUMEN

As an invaluable Chinese sheep germplasm resource, Hu sheep are renowned for their high fertility and beautiful wavy lambskins. Their distinctive characteristics have evolved over time through a combination of artificial and natural selection. Identifying selection signatures in Hu sheep can provide a straightforward insight into the mechanism of selection and further uncover the candidate genes associated with breed-specific traits subject to selection. Here, we conducted whole-genome resequencing on 206 Hu sheep individuals, each with an approximate 6-fold depth of coverage. And then we employed three complementary approaches, including composite likelihood ratio, integrated haplotype homozygosity score and the detection of runs of homozygosity, to detect selection signatures. In total, 10 candidate genomic regions displaying selection signatures were simultaneously identified by multiple methods, spanning 88.54 Mb. After annotating, these genomic regions harbored collectively 92 unique genes. Interestingly, 32 candidate genes associated with reproduction were distributed in nine genomic regions detected. Out of them, two stood out as star candidates: BMPR1B and GNRH2, both of which have documented associations with fertility, and a HOXA gene cluster (HOXA1-5, HOXA9, HOXA10, HOXA11 and HOXA13) had also been linked to fertility. Additionally, we identified other genes that are related to hair follicle development (LAMTOR3, EEF1A2), ear size (HOXA1, KCNQ2), fat tail formation (HOXA10, HOXA11), growth and development (FAF1, CCNDBP1, GJB2, GJA3), fat deposition (ACOXL, JAZF1, HOXA3, HOXA4, HOXA5, EBF4), immune (UBR1, FASTKD5) and feed intake (DAPP1, RNF17, NPBWR2). Our results offer novel insights into the genetic mechanisms underlying the selection of breed-specific traits in Hu sheep and provide a reference for sheep genetic improvement programs.

12.
Plant J ; 119(5): 2151-2167, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38852163

RESUMEN

Sugarcane is the main source of sugar worldwide, and 80% of the sucrose production comes from sugarcane. However, the genetic differentiation and basis of agronomic traits remain obscure. Here, we sequenced the whole-genome of 219 elite worldwide sugarcane cultivar accessions. A total of approximately 6 million high-quality genome-wide single nucleotide polymorphisms (SNPs) were detected. A genome-wide association study identified a total of 2198 SNPs that were significantly associated with sucrose content, stalk number, plant height, stalk diameter, cane yield, and sugar yield. We observed homozygous tendency of favor alleles of these loci, and over 80% of cultivar accessions carried the favor alleles of the SNPs or haplotypes associated with sucrose content. Gene introgression analysis showed that the number of chromosome segments from Saccharum spontaneum decreased with the breeding time of cultivars, while those from S. officinarum increased in recent cultivars. A series of selection signatures were identified in sugarcane improvement procession, of which 104 were simultaneously associated with agronomic traits and 45 of them were mainly associated with sucrose content. We further proposed that as per sugarcane transgenic experiments, ShN/AINV3.1 plays a positive role in increasing stalk number, plant height, and stalk diameter. These findings provide comprehensive resources for understanding the genetic basis of agronomic traits and will be beneficial to germplasm innovation, screening molecular markers, and future sugarcane cultivar improvement.


Asunto(s)
Genoma de Planta , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Saccharum , Secuenciación Completa del Genoma , Saccharum/genética , Polimorfismo de Nucleótido Simple/genética , Genoma de Planta/genética , Fitomejoramiento , Sacarosa/metabolismo , Sitios de Carácter Cuantitativo/genética , Fenotipo
13.
G3 (Bethesda) ; 14(8)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-38833595

RESUMEN

Soybean is an important agricultural crop known for its high protein and oil content, contributing to essential nutritional and health benefits for humans. Domesticated in China over 5,000 years ago, soybean has since adapted to diverse environments and spread worldwide. This study aimed to investigate the genomic characteristics and population structures of 2,317 publicly available soybean whole-genome sequences from diverse geographical regions, including China, Korea, Japan, Europe, North America, and South America. We used large-scale whole-genome sequencing data to perform high-resolution analyses to reveal the genetic characteristics of soybean accessions. Soybean accessions from China and Korea exhibited landrace characteristics, indicating higher genetic diversity and adaptation to local environments. On the other hand, soybean accessions from Japan, the European Union, and South America were found to have low genetic diversity due to artificial selection and breeding for agronomic traits. We also identified key variants and genes associated with the ability to adapt to different environments. In Korean soybean accessions, we observed strong selection signals for isoflavone synthesis, an adaptive trait critical for improving soybean adaptability, survival, and reproductive success by mitigating environmental stress. Identifying specific genomic regions showing unique patterns of selective sweeps for genes such as HIDH, CYP73A11, IFS1, and CYP81E11 associated with isoflavone synthesis provided valuable insights into potential adaptation mechanisms. Our research has significantly improved our understanding of soybean diversity at the genetic level. We have identified key genetic variants and genes influencing adaptability, laying the foundation for future advances in genomics-based breeding programs and crop improvement efforts.


Asunto(s)
Variación Genética , Genoma de Planta , Glycine max , Selección Genética , Secuenciación Completa del Genoma , Glycine max/genética , República de Corea , Genómica/métodos , Polimorfismo de Nucleótido Simple
14.
Int J Mol Sci ; 25(11)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38891877

RESUMEN

The domestic pig (Sus scrofa) and its subfamilies have experienced long-term and extensive gene flow, particularly in Southeast Asia. Here, we analyzed 236 pigs, focusing on Yunnan indigenous, European commercial, East Asian, and Southeast Asian breeds, using the Pig Genomics Reference Panel (PGRP v1) of Pig Genotype-Tissue Expression (PigGTEx) to investigate gene flow and associated complex traits by integrating multiple database resources. In this study, we discovered evidence of admixtures from European pigs into the genome of Yunnan indigenous pigs. Additionally, we hypothesized that a potential conceptual gene flow route that may have contributed to the genetic composition of the Diannan small-ear pig is a gene exchange from the Vietnamese pig. Based on the most stringent gene introgression scan using the fd statistic, we identified three specific loci on chromosome 8, ranging from 51.65 to 52.45 Mb, which exhibited strong signatures of selection and harbored the NAF1, NPY1R, and NPY5R genes. These genes are associated with complex traits, such as fat mass, immunity, and litter weight, in pigs, as supported by multiple bio-functionalization databases. We utilized multiple databases to explore the potential dynamics of genetic exchange in Southeast Asian pig populations and elucidated specific gene functionalities.


Asunto(s)
Flujo Génico , Animales , Asia Sudoriental , Porcinos/genética , Bases de Datos Genéticas , Sus scrofa/genética , Genética de Población , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Genotipo , Cruzamiento , Pueblos del Sudeste Asiático
15.
Int J Mol Sci ; 25(11)2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38892330

RESUMEN

In this study, our primary aim was to explore the genomic landscape of Barka cattle, a breed recognized for high milk production in a semi-arid environment, by focusing on genes with known roles in milk production traits. We employed genome-wide analysis and three selective sweep detection methods (ZFST, θπ ratio, and ZHp) to identify candidate genes associated with milk production and composition traits. Notably, ACAA1, P4HTM, and SLC4A4 were consistently identified by all methods. Functional annotation highlighted their roles in crucial biological processes such as fatty acid metabolism, mammary gland development, and milk protein synthesis. These findings contribute to understanding the genetic basis of milk production in Barka cattle, presenting opportunities for enhancing dairy cattle production in tropical climates. Further validation through genome-wide association studies and transcriptomic analyses is essential to fully exploit these candidate genes for selective breeding and genetic improvement in tropical dairy cattle.


Asunto(s)
Estudio de Asociación del Genoma Completo , Leche , Animales , Bovinos/genética , Estudio de Asociación del Genoma Completo/métodos , Leche/metabolismo , Femenino , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Lactancia/genética , Genoma , Fenotipo
16.
BMC Genomics ; 25(1): 606, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886664

RESUMEN

BACKGROUND: Gangba sheep as a famous breed of Tibetan sheep, its wool color is mainly white and black. Gangba wool is economically important as a high-quality raw material for Tibetan blankets and Tibetan serge. However, relatively few studies have been conducted on the wool color of Tibetan sheep. RESULTS: To fill this research gap, this study conducted an in-depth analysis of two populations of Gangba sheep (black and white wool color) using whole genome resequencing to identify genetic variation associated with wool color. Utilizing PCA, Genetic Admixture, and N-J Tree analyses, the present study revealed a consistent genetic relationship and structure between black and white wool colored Gangba sheep populations, which is consistent with their breed history. Analysis of selection signatures using multiple methods (FST, π ratio, Tajima's D), 370 candidate genes were screened in the black wool group (GBB vs GBW); among them, MC1R, MLPH, SPIRE2, RAB17, SMARCA4, IRF4, CAV1, USP7, TP53, MYO6, MITF, MC2R, TET2, NF1, JAK1, GABRR1 genes are mainly associated with melanin synthesis, melanin delivery, and distribution. The enrichment results of the candidate genes identified 35 GO entries and 19 KEGG pathways associated with the formation of the black phenotype. 311 candidate genes were screened in the white wool group (GBW vs GBB); among them, REST, POU2F1, ADCY10, CCNB1, EP300, BRD4, GLI3, and SDHA genes were mainly associated with interfering with the differentiation of neural crest cells into melanocytes, affecting the proliferation of melanocytes, and inhibiting melanin synthesis. 31 GO entries and 22 KEGG pathways were associated with the formation of the white phenotype. CONCLUSIONS: This study provides important information for understanding the genetic mechanism of wool color in Gangba, and provides genetic knowledge for improving and optimizing the wool color of Tibetan sheep. Genetic improvement and selective breeding to produce wool of specific colors can meet the demand for a diversity of wool products in the Tibetan wool textile market.


Asunto(s)
Polimorfismo de Nucleótido Simple , Lana , Animales , Ovinos/genética , Selección Genética , Pigmentación/genética , Estudio de Asociación del Genoma Completo
17.
Animal ; 18(6): 101147, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38843669

RESUMEN

Understanding the genetic characteristics of indigenous goat breeds is crucial for their conservation and breeding efforts. Hainan black goats, as a native breed of south China's tropical island province of Hainan, possess distinctive traits such as black hair, a moderate growth rate, good meat quality, and small body size. However, they exhibit exceptional resilience to rough feeding conditions, possess high-quality meat, and show remarkable resistance to stress and heat. In this study, we resequenced the whole genome of Hainan black goats to study the economic traits and genetic basis of these goats, we leveraged whole-genome sequencing data from 33 Hainan black goats to analyze single nucleotide polymorphism (SNP) density, Runs of homozygosity (ROH), Integrated Haplotype Score (iHS), effective population size (Ne), Nucleotide diversity Analysis (Pi) and selection characteristics. Our findings revealed that Hainan black goats harbor a substantial degree of genetic variation, with a total of 23 608 983 SNPs identified. Analysis of ROHs identified 53 710 segments, predominantly composed of short fragments, with inbreeding events mainly occurring in ancient ancestors, the estimates of inbreeding based on ROH in Hainan black goats typically exhibit moderate values ranging from 0.107 to 0.186. This is primarily attributed to significant declines in the effective population size over recent generations. Moreover, we identified 921 candidate genes within the intersection candidate region of ROH and iHS. Several of these genes are associated with crucial traits such as immunity (PTPRC, HYAL1, HYAL2, HYAL3, CENPE and PKN1), heat tolerance (GNG2, MAPK8, CAPN2, SLC1A1 and LEPR), meat quality (ACOX1, SSTR1, CAMK2B, PPP2CA and PGM1), cashmere production (AKT4, CHRM2, OXTR, AKT3, HMCN1 and CDK19), and stress resistance (TLR2, IFI44, ENPP1, STK3 and NFATC1). The presence of these genes may be attributed to the genetic adaptation of Hainan black goats to local climate conditions. The insights gained from this study provide valuable references and a solid foundation for the preservation, breeding, and utilization of Hainan black goats and their valuable genetic resources.


Asunto(s)
Variación Genética , Cabras , Polimorfismo de Nucleótido Simple , Selección Genética , Secuenciación Completa del Genoma , Animales , Cabras/genética , Secuenciación Completa del Genoma/veterinaria , China , Cruzamiento , Haplotipos , Endogamia , Homocigoto , Genoma
18.
Front Genet ; 15: 1382128, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38873117

RESUMEN

The Sichuan-Yunnan region is the main production area of yaks in southwestern China, with rich genetic resources of Yaks. Nevertheless, there have been limited study on the genetic characteristics of the entire yak populations in Tibet and southwestern China. In this study, we performed whole-genome resequencing to identify genetic variation information in a total of 198 individuals from six yak breeds (populations) in Sichuan (Muli yak, Jinchuan yak, Changtai yak, Maiwa yak), Yunnan (Zhongdian yak), and Tibet (Tibetan yak). The aim was to investigate the whole-genome genetic diversity, population genetic structure, and genome selection signatures. We observed that all six populations exhibit abundant genetic diversity. Except for Tibetan yaks, which showed low nucleotide diversity (0.00104), the remaining yak populations generally displayed high nucleotide diversity (0.00129-0.00153). Population genetic structure analysis revealed that, among the six yak populations, Muli yak exhibited greater differentiation from other yak populations and formed a distinct cluster independently. The Maiwa yak population displayed a complex genetic structure and exhibited gene exchange with Jinchuan and Changtai yaks. Positive selection signals were detected in candidate genes associated with growth (GNB4, HMGA2, TRPS1, and LTBP1), reproduction (PI4KB, DYNC1I1, and GRIP1), immunity (CD200 and IL1RAP), lactation (SNX13 and CPM), hypoxia adaptation (NDUFB6, PRKN, and MRPS9), hair (KRT24, KRT25, and KRT26), meat quality (SUCLG2), digestion and absorption (CLDN1), and pigment deposition (OCA2) using the integrated Pi and F ST methods. This study provides significant insights into understanding the whole-genome genetic characteristics of yak populations in Tibet and southwestern China.

19.
Poult Sci ; 103(7): 103863, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38810566

RESUMEN

The introduction of exotic breeds and the cultivation of new lines by breeding companies have posed challenges to native chickens in South China, including loss of breed characteristics, decreased genetic diversity, and declining purity. Understanding the population genetic structure and genetic diversity of native chickens in South China is crucial for further advancements in breeding efforts. In this study, we analyzed the population genetic structure and genetic diversity of 321 individuals from 10 different breeds in South China. By comparing commercial chickens with native ones, we identified selection signatures occurring between local chickens and commercial breeds. The analysis of population genetic structure revealed that the native chicken populations in South China exhibited a considerable level of genetic diversity. Moreover, the commercial lines of Xiaobai chicken and Huangma chicken displayed even higher levels of genetic diversity, which distinguished them from other native varieties at the clustering level. However, certain individuals within these commercial varieties showed a discernible genetic relationship with the native populations. Notably, both commercial varieties also retained a significant degree of genetic similarity to their respective native counterparts. In order to investigate the genomic changes occurring during the commercialization of native chickens, we employed 4 methods (Fst, ROD, XPCLR, and XPEHH) to identify potential candidate regions displaying selective signatures in Southern Chinese native chicken population. A total of 168 (identified by Fst and ROD) and 86 (identified by XPCLR and XPEHH) overlapping genes were discovered. Functional annotation analysis revealed that these genes may be associated with reproduction and growth (SAMSN1, HYLS1, ROBO3, FGF14, PRSS23), musculoskeletal development (DNER, MYBPC1, DGKB, ORC1, KLF10), disease resistance and environmental adaptability (PUS3, CRB2, CALD1, USP15, SGCD, LTBP1), as well as egg production (ADGRB3, ACSF3). Overall, native chickens in South China harbor numerous selective sweep regions compared to commercial chickens, enriching valuable genomic resources for future genetic research and breeding conservation.


Asunto(s)
Pollos , Variación Genética , Animales , Pollos/genética , China , Selección Genética , Cruzamiento , Genética de Población
20.
Anim Biosci ; 37(10): 1683-1691, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38754845

RESUMEN

OBJECTIVE: Yellow Korean native chicken (KNC-Y) is one of the five pure Korean indigenous chicken breeds that were restored through a government project in 1992. KNC-Y is recognized for its superior egg production performance compared to other KNC lines. In this study, we performed runs of homozygosity (ROH) analysis to discover selection signatures associated with egg production traits in the KNC-Y population. METHODS: A total of 675 DNA samples from KNC-Y were genotyped to generate single nucleotide polymorphism (SNP) data using custom 60K Affymetrix SNP chips. ROH analysis was performed using PLINK software, with predefined parameters set for the analysis. The threshold of ROH island was defined as the top 1% frequency of SNPs withing the ROH among the population. RESULTS: In the KNC-Y population, a total of 29,958 runs of homozygosity (ROH) fragments were identified. The average total length of ROH was 120.84 Mb, with each ROH fragment having an average length of 2.71 Mb. The calculated ROH-based inbreeding coefficient (FROH) was 0.13. Furthermore, we revealed the presence of ROH islands on chromosomes 1, 2, 4, 5, 7, 8, and 11. Within the identified regions, a total of 111 genes were annotated, and among them were genes related to economic traits, including PRMT3, ANO5, HDAC4, LSS, PLA2G4A, and PTGS2. Most of the overlapping quantitative trait locus regions with ROH islands were found to be associated with production traits. CONCLUSION: This study conducted a comprehensive analysis of ROH in the KNC-Y population. Notably, among the findings, the PTGS2 gene is believed to play a crucial role in influencing the laying performance of KNC-Y.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA