Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Hazard Mater ; 476: 135085, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38968825

RESUMEN

The impairment of the immune system by fluoride is a public health concern worldwide, yet the underlying mechanism is unclear. Both riboflavin and IL-17A are closely related to immune function and regulate the testicular toxicity of fluoride. However, whether riboflavin or IL-17A is involved in fluoride-induced immunotoxicity is unknown. Here, we first established a male ICR mouse model by treating mice with sodium fluoride (NaF) (100 mg/L) via the drinking water for 91 days. The results showed that fluoride increased the expression of the proinflammatory factors IL-1ß and IL-17A, which led to splenic inflammation and morphological injury. Moreover, the expression levels of the riboflavin transporters SLC52A2 and SLC52A3; the transformation-related enzymes RFK and FLAD1; and the key mitochondrial functional determinants SDH, COX, and ATP in the spleen were measured via real-time PCR, Western blotting, and ELISA. The results revealed that fluoride disrupted riboflavin transport, transformation, metabolism, and mitochondrial function. Furthermore, wild-type (WT) and IL-17A knockout (IL-17A-/-) C57BL/6 J male mice of the same age were treated with NaF (24 mg/kg·bw, equivalent to 100 mg/L) and/or riboflavin sodium phosphate (5 mg/kg·bw) via gavage for 91 days. Similar parameters were evaluated as above. The results confirmed that fluoride increased riboflavin metabolism through RFK but not through FLAD1. Fluoride also affected mitochondrial function and activated neutrophils (marked with Ly6g) and macrophages (marked with CD68) in the spleen. Interestingly, IL-17A partly mediated fluoride-induced riboflavin metabolism disorder and immunotoxicity in the spleen. This work not only reveals a novel toxic mechanism for fluoride but also provides new clues for exploring the physiological function of riboflavin and for diagnosing and treating the toxic effects of fluoride in the environment.


Asunto(s)
Interleucina-17 , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Riboflavina , Fluoruro de Sodio , Bazo , Animales , Masculino , Interleucina-17/metabolismo , Bazo/efectos de los fármacos , Bazo/metabolismo , Fluoruro de Sodio/toxicidad , Ratones Noqueados , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Transporte Biológico
2.
Zhongguo Zhong Yao Za Zhi ; 48(19): 5356-5364, 2023 Oct.
Artículo en Chino | MEDLINE | ID: mdl-38114125

RESUMEN

This study aims to investigate the mechanism of Linderae Radix water extract(LRWE) in the prevention and treatment of diarrhea-predominant irritable bowel syndrome(IBS-D) based on serum metabolomics. Eighteen 2-week-old male SD rats were randomized into control, IBS-D model, and LRWE groups. The rats in other groups except the control group received gavage of senna concentrate combined with restraint stress for the modeling of IBS-D. The rats in the LRWE group were administrated with LRWE(5.4 g·kg~(-1)) by gavage, and those in the control and IBS-D model groups with an equal volume of distilled water for a total of 14 days. The visceral sensitivity was evaluated by the abdominal withdrawal reflex(AWR) score, and the degree of diarrhea was assessed by the fecal water content(FWC). The morphological changes of the colon and the morphology and number of goblet cells were observed by hematoxylin-eosin(HE) and periodic acid-schiff(PAS) staining, respectively. Ultra-high performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS) was used for the screening of the potential biomarkers in the rat serum and their related metabolic pathways. The results showed that LRWE reduced the AWR score, decreased FWC, and alleviated visceral sensitivity and diarrhea symptoms in IBS-D rats. HE and PAS staining showed that LRWE mitigated low-grade intestinal inflammation and increased the number of mature secretory goblet cells in the colonic epithelium of IBS-D rats. A total of 25 potential biomarkers of LRWE in treating IBS-D were screened out in this study, which were mainly involved in riboflavin, tryptophan, glycine, serine and threonine metabolism, glyoxylate and dicarboxylate metabolism, and cysteine and methionine metabolism. The regulatory effects were the most significant on the riboflavin and tryptophan metabolism pathways. LRWE may alleviate the visceral hypersensitivity by promoting energy metabolism and amino acid metabolism, enhancing intestinal barrier function, and improving intestinal immune function in IBS-D rats.


Asunto(s)
Síndrome del Colon Irritable , Ratas , Masculino , Animales , Síndrome del Colon Irritable/tratamiento farmacológico , Síndrome del Colon Irritable/metabolismo , Agua , Cromatografía Liquida , Triptófano , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem , Diarrea/tratamiento farmacológico , Biomarcadores , Riboflavina
3.
J Inherit Metab Dis ; 46(5): 848-873, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37530674

RESUMEN

Since the identification of the first disorder of mitochondrial fatty acid oxidation defects (FAOD) in 1973, more than 20 defects have been identified. Although there are some differences, most FAOD have similar clinical signs, which are mainly due to energy depletion and toxicity of accumulated metabolites. However, some of them have an unusual clinical phenotype or specific clinical signs. This manuscript focuses on what we have learnt so far on the pathophysiology of these disorders, which present with clinical signs that are not typical of categorical FAOD. It also highlights that some disorders have not yet been identified and tries to make assumptions to explain why. It also deals with new treatments under consideration in FAOD, including triheptanoin and similar anaplerotic substrates, ketone body treatments, RNA and gene therapy approaches. Finally, it suggests challenges for the diagnosis of FAOD in the coming years, both for symptomatic patients and for those diagnosed through newborn screening. The ultimate goal would be to identify all the patients born with FAOD and ensure for them the best possible quality of life.


Asunto(s)
Errores Innatos del Metabolismo Lipídico , Humanos , Errores Innatos del Metabolismo Lipídico/diagnóstico , Errores Innatos del Metabolismo Lipídico/genética , Errores Innatos del Metabolismo Lipídico/terapia , Calidad de Vida , Oxidación-Reducción , Mitocondrias/metabolismo , Ácidos Grasos/metabolismo
4.
Microbiol Spectr ; : e0405122, 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36847492

RESUMEN

Our previous study reported that seminaturally occurring arthrocolins A to C with unprecedented carbon skeletons could restore the antifungal activity of fluconazole against fluconazole-resistant Candida albicans. Here, we showed that arthrocolins synergized with fluconazole, reducing the fluconazole minimum and dramatically augmenting the survivals of 293T human cells and nematode Caenorhabditis elegans infected with fluconazole-resistant C. albicans. Mechanistically, fluconazole can induce fungal membrane permeability to arthrocolins, leading to the intracellular arthrocolins that were critical to the antifungal activity of the combination therapy by inducing abnormal cell membranes and mitochondrial dysfunctions in the fungus. Transcriptomics and reverse transcription-quantitative PCR (qRT-PCR) analysis indicated that the intracellular arthrocolins induced the strongest upregulated genes that were involved in membrane transports while the downregulated genes were responsible for fungal pathogenesis. Moreover, riboflavin metabolism and proteasomes were the most upregulated pathways, which were accompanied by inhibition of protein biosynthesis and increased levels of reactive oxygen species (ROS), lipids, and autophagy. Our results suggested that arthrocolins should be a novel class of synergistic antifungal compounds by inducing mitochondrial dysfunctions in combination with fluconazole and provided a new perspective for the design of new bioactive antifungal compounds with potential pharmacological properties. IMPORTANCE The prevalence of antifungal-resistant Candida albicans, which is a common human fungal pathogen causing life-threatening systemic infections, has become a challenge in the treatment of fungal infections. Arthrocolins are a new type of xanthene obtained from Escherichia coli fed with a key fungal precursor toluquinol. Different from those artificially synthesized xanthenes used as important medications, arthrocolins can synergize with fluconazole against fluconazole-resistant Candida albicans. Fluconazole can induce the fungal permeability of arthrocolins into fungal cells, and then the intracellular arthrocolins exerted detrimental effects on the fungus by inducing fungal mitochondrial dysfunctions, leading to dramatically reduced fungal pathogenicity. Importantly, the combination of arthrocolins and fluconazole are effective against C. albicans in two models, including human cell line 293T and nematode Caenorhabditis elegans. Arthrocolins should be a novel class of antifungal compounds with potential pharmacological properties.

5.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1008733

RESUMEN

This study aims to investigate the mechanism of Linderae Radix water extract(LRWE) in the prevention and treatment of diarrhea-predominant irritable bowel syndrome(IBS-D) based on serum metabolomics. Eighteen 2-week-old male SD rats were randomized into control, IBS-D model, and LRWE groups. The rats in other groups except the control group received gavage of senna concentrate combined with restraint stress for the modeling of IBS-D. The rats in the LRWE group were administrated with LRWE(5.4 g·kg~(-1)) by gavage, and those in the control and IBS-D model groups with an equal volume of distilled water for a total of 14 days. The visceral sensitivity was evaluated by the abdominal withdrawal reflex(AWR) score, and the degree of diarrhea was assessed by the fecal water content(FWC). The morphological changes of the colon and the morphology and number of goblet cells were observed by hematoxylin-eosin(HE) and periodic acid-schiff(PAS) staining, respectively. Ultra-high performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS) was used for the screening of the potential biomarkers in the rat serum and their related metabolic pathways. The results showed that LRWE reduced the AWR score, decreased FWC, and alleviated visceral sensitivity and diarrhea symptoms in IBS-D rats. HE and PAS staining showed that LRWE mitigated low-grade intestinal inflammation and increased the number of mature secretory goblet cells in the colonic epithelium of IBS-D rats. A total of 25 potential biomarkers of LRWE in treating IBS-D were screened out in this study, which were mainly involved in riboflavin, tryptophan, glycine, serine and threonine metabolism, glyoxylate and dicarboxylate metabolism, and cysteine and methionine metabolism. The regulatory effects were the most significant on the riboflavin and tryptophan metabolism pathways. LRWE may alleviate the visceral hypersensitivity by promoting energy metabolism and amino acid metabolism, enhancing intestinal barrier function, and improving intestinal immune function in IBS-D rats.


Asunto(s)
Ratas , Masculino , Animales , Síndrome del Colon Irritable/metabolismo , Agua , Cromatografía Liquida , Triptófano , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem , Diarrea/tratamiento farmacológico , Biomarcadores , Riboflavina
6.
Free Radic Biol Med ; 174: 40-56, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34332078

RESUMEN

Oxidative stress damage plays a pivotal role in Parkinson's disease (PD) pathogenesis. Previously, we developed a blood brain barrier-penetrating peptide-based "Trojan Horse" strategy to deliver 4,4'-dimethoxychalcone (DMC) for PD therapy and revealed neuroprotective properties of DMC in a PD model; however, the underlying mechanisms remained unclear. Here, we report that DMC attenuated motor impairment, degeneration of DA neurons and α-synuclein aggregation in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and exogenous human α-synuclein-induced PD mouse models. Mechanistically, DMC increased the expression of two critical intermediates in riboflavin metabolism: riboflavin kinase (RFK) and its metabolic product, flavin mononucleotide (FMN). We provide the first direct evidence that FMN ameliorated oxidative stress damage and dopaminergic neuron degeneration both in vitro and in vivo and that riboflavin metabolism was required for DMC-mediated neuroprotection. DMC-induced restoration of redox homeostasis was mediated via the activation of protein kinase Cθ (PKCθ) signaling. Together, our findings reveal that DMC may serve as a novel antioxidant in PD intervention and also define a novel mechanism that underlies its therapeutic activity.


Asunto(s)
Fármacos Neuroprotectores , Enfermedad de Parkinson , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Animales , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas , Homeostasis , Ratones , Ratones Endogámicos C57BL , Fármacos Neuroprotectores/farmacología , Oxidación-Reducción , Enfermedad de Parkinson/tratamiento farmacológico , Riboflavina
7.
Front Microbiol ; 11: 755, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32390989

RESUMEN

Recent research has demonstrated that MAIT cells are activated by individual bacterial or yeasts species that possess the riboflavin biosynthesis pathway. However, little is known about the MAIT cell activating potential of microbial communities and the contribution of individual community members. Here, we analyze the MAIT cell activating potential of a human intestinal model community (SIHUMIx) as well as intestinal microbiota after bioreactor cultivation. We determined the contribution of individual SIHUMIx community members to the MAIT cell activating potential and investigated whether microbial stress can influence their MAIT cell activating potential. The MAIT cell activating potential of SIHUMIx was directly related to the relative species abundances in the community. We therefore suggest an additive relationship between the species abundances and their MAIT cell activating potential. In diverse microbial communities, we found that a low MAIT cell activating potential was associated with high microbial diversity and a high level of riboflavin demand and vice versa. We suggest that microbial diversity might affect MAIT cell activation via riboflavin utilization within the community. Microbial acid stress significantly reduced the MAIT cell activating potential of SIHUMIx by impairing riboflavin availability through increasing the riboflavin demand. We show that MAIT cells can perceive microbial stress due to changes in riboflavin utilization and that riboflavin availability might also play a central role for the MAIT cell activating potential of diverse microbiota.

8.
J Inherit Metab Dis ; 42(4): 608-619, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30680745

RESUMEN

Riboflavin (vitamin B2), a water-soluble vitamin, is an essential nutrient in higher organisms as it is not endogenously synthesised, with requirements being met principally by dietary intake. Tissue-specific transporter proteins direct riboflavin to the intracellular machinery responsible for the biosynthesis of the flavocoenzymes flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). These flavocoenzymes play a vital role in ensuring the functionality of a multitude of flavoproteins involved in bioenergetics, redox homeostasis, DNA repair, chromatin remodelling, protein folding, apoptosis, and other physiologically relevant processes. Hence, it is not surprising that the impairment of flavin homeostasis in humans may lead to multisystem dysfunction including neuromuscular disorders, anaemia, abnormal fetal development, and cardiovascular disease. In this review, we provide an overview of riboflavin absorption, transport, and metabolism. We then focus on the clinical and biochemical features associated with biallelic FLAD1 mutations leading to FAD synthase deficiency, the only known primary defect in flavocoenzyme synthesis, in addition to providing an overview of clinical disorders associated with nutritional deficiency of riboflavin and primary defects of riboflavin transport. Finally, we give a brief overview of disorders of the cellular flavoproteome. Because riboflavin therapy may be beneficial in a number of primary or secondary disorders of the cellular flavoproteome, early recognition and prompt management of these disorders is imperative.


Asunto(s)
Proteínas de Transporte de Membrana/metabolismo , Redes y Vías Metabólicas/genética , Nucleotidiltransferasas/deficiencia , Riboflavina/metabolismo , Animales , Transporte Biológico/genética , Flavina-Adenina Dinucleótido/metabolismo , Homeostasis , Humanos , Proteínas de Transporte de Membrana/genética , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo
9.
Front Microbiol ; 9: 29, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29441044

RESUMEN

Metabolite-enabled killing of antibiotic-resistant pathogens by antibiotics is an attractive strategy to manage antibiotic resistance. Our previous study demonstrated that alanine or/and glucose increased the killing efficacy of kanamycin on antibiotic-resistant bacteria, whose action is through up-regulating TCA cycle, increasing proton motive force and enhancing antibiotic uptake. Despite the fact that alanine altered several metabolic pathways, other mechanisms could be potentially involved in alanine-mediated kanamycin killing of bacteria which remains to be explored. In the present study, we adopted proteomic approach to analyze the proteome changes induced by exogenous alanine. Our results revealed that the expression of three outer membrane proteins was altered and the deletion of nagE and fadL decreased the intracellular kanamycin concentration, implying their possible roles in mediating kanamycin transport. More importantly, the integrated analysis of proteomic and metabolomic data pointed out that alanine metabolism could connect to riboflavin metabolism that provides the source for reactive oxygen species (ROS) production. Functional studies confirmed that alanine treatment together with kanamycin could promote ROS production that in turn potentiates the killing of antibiotic-resistant bacteria. Further investigation showed that alanine repressed the transcription of antioxidant-encoding genes, and alanine metabolism to riboflavin metabolism connected with riboflavin metabolism through TCA cycle, glucogenesis pathway and pentose phosphate pathway. Our results suggest a novel mechanism by which alanine facilitates kanamycin killing of antibiotic-resistant bacteria via promoting ROS production.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA