Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Neurosci Bull ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39190095

RESUMEN

IL-33 and its receptor ST2 play crucial roles in tissue repair and homeostasis. However, their involvement in optic neuropathy due to trauma and glaucoma remains unclear. Here, we report that IL-33 and ST2 were highly expressed in the mouse optic nerve and retina. Deletion of IL-33 or ST2 exacerbated retinal ganglion cell (RGC) loss, retinal thinning, and nerve fiber degeneration following optic nerve (ON) injury. This heightened retinal neurodegeneration correlated with increased neurotoxic astrocytes in Il33-/- mice. In vitro, rIL-33 mitigated the neurotoxic astrocyte phenotype and reduced the expression of pro-inflammatory factors, thereby alleviating the RGC death induced by neurotoxic astrocyte-conditioned medium in retinal explants. Exogenous IL-33 treatment improved RGC survival in Il33-/- and WT mice after ON injury, but not in ST2-/- mice. Our findings highlight the role of the IL-33/ST2 axis in modulating reactive astrocyte function and providing neuroprotection for RGCs following ON injury.

2.
Front Endocrinol (Lausanne) ; 15: 1412138, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39027475

RESUMEN

Diabetic retinopathy is the major cause of blindness in diabetic patients, with limited treatment options that do not always restore optimal vision. Retinal nerve degeneration and vascular degeneration are two primary pathological processes of diabetic retinopathy. The retinal nervous system and vascular cells have a close coupling relationship. The connection between neurodegeneration and vascular degeneration is not yet fully understood. Recent studies have found that microRNA plays a role in regulating diabetic retinal neurovascular degeneration and can help delay the progression of the disease. This article will review how microRNA acts as a bridge connecting diabetic retinal neurodegeneration and vascular degeneration, focusing on the mechanisms of apoptosis, oxidative stress, inflammation, and endothelial factors. The aim is to identify valuable targets for new research and clinical treatment of diabetic retinopathy.


Asunto(s)
Retinopatía Diabética , MicroARNs , Estrés Oxidativo , Humanos , MicroARNs/genética , Retinopatía Diabética/genética , Retinopatía Diabética/patología , Retinopatía Diabética/metabolismo , Animales , Degeneración Retiniana/genética , Degeneración Retiniana/patología , Apoptosis , Vasos Retinianos/patología , Retina/patología , Retina/metabolismo
3.
Pharmaceuticals (Basel) ; 17(7)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39065688

RESUMEN

Diabetic retinopathy (DR) remains the leading cause of blindness among the global working-age population. Emerging evidence underscores the significance of diabetic retinal neurodegeneration (DRN) as a pivotal biomarker in the progression of vasculopathy. Inflammation, oxidative stress, neural cell death, and the reduction in neurotrophic factors are the key determinants in the pathophysiology of DRN. Non-apoptotic programmed cell death (PCD) plays a crucial role in regulating stress response, inflammation, and disease management. Therapeutic modalities targeting PCD have shown promising potential for mitigating DRN. In this review, we highlight recent advances in identifying the role of various PCD types in DRN, with specific emphasis on necroptosis, pyroptosis, ferroptosis, parthanatos, and the more recently characterized PANoptosis. In addition, the therapeutic agents aimed at the regulation of PCD for addressing DRN are discussed.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38878068

RESUMEN

PURPOSE: Neurovascular coupling impairment and inner retinal layer thinning are early detectable retinal changes in diabetes, and both worsen during progression of diabetic retinopathy (DR). However, direct interactions between these features have not been investigated so far. Therefore, we aimed to analyze associations between the retinal functional hyperemic response to light stimulation and the thickness of individual neuroretinal layers in eyes with early non-proliferative DR. METHODS: Thirty patients with type 1 diabetes featuring mild (n = 15) or moderate (n = 15) non-proliferative DR and 14 healthy subjects were included in this cross-sectional study. Retinal vessel diameters were measured before and during illumination with flickering light using a dynamic vessel analyzer. Individual layer thickness in the macula was analyzed from spectral domain optical coherence tomography. RESULTS: Flicker light-induced vessel dilation was significantly reduced in patients compared to healthy controls (veins: 3.0% vs. 6.1%, p < 0.001; arteries: 1.3% vs. 5.1%, p = 0.005). Univariately, the response in retinal veins of diabetes patients correlated significantly with ganglion cell layer (GCL) thickness (r = 0.46, p = 0.010), and negatively with hemoglobin A1c (HbA1c) levels (r=-0.41, p = 0.023) and age (r=-0.38, p = 0.037), but not with baseline diameters, glucose levels, or diabetes duration. In a multiple regression model only GCL thickness (p = 0.017, ß = 0.42) and HbA1c (p = 0.045, ß=-0.35) remained significantly associated with the vascular flicker light response. CONCLUSION: The results indicate that thinner GCL and worse glycemic control both contribute to reduced retinal neurovascular coupling in patients with clinical signs of DR. Progression of neurovascular dysfunction in DR might be related to structural degeneration of the neurovascular complex in the inner retina.

5.
Eur J Neurol ; 31(7): e16288, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38716763

RESUMEN

BACKGROUND AND PURPOSE: The eye is a well-established model of brain structure and function, yet region-specific structural correlations between the retina and the brain remain underexplored. Therefore, we aim to explore and describe the relationships between the retinal layer thicknesses and brain magnetic resonance image (MRI)-derived phenotypes in UK Biobank. METHODS: Participants with both quality-controlled optical coherence tomography (OCT) and brain MRI were included in this study. Retinal sublayer thicknesses and total macular thickness were derived from OCT scans. Brain image-derived phenotypes (IDPs) of 153 cortical and subcortical regions were processed from MRI scans. We utilized multivariable linear regression models to examine the association between retinal thickness and brain regional volumes. All analyses were corrected for multiple testing and adjusted for confounders. RESULTS: Data from 6446 participants were included in this study. We identified significant associations between volumetric brain MRI measures of subregions in the occipital lobe (intracalcarine cortex), parietal lobe (postcentral gyrus), cerebellum (lobules VI, VIIb, VIIIa, VIIIb, and IX), and deep brain structures (thalamus, hippocampus, caudate, putamen, pallidum, and accumbens) and the thickness of the innermost retinal sublayers and total macular thickness (all p < 3.3 × 10-5). We did not observe statistically significant associations between brain IDPs and the thickness of the outer retinal sublayers. CONCLUSIONS: Thinner inner and total retinal thicknesses are associated with smaller volumes of specific brain regions. Notably, these relationships extend beyond anatomically established retina-brain connections.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Fenotipo , Retina , Tomografía de Coherencia Óptica , Humanos , Masculino , Femenino , Retina/diagnóstico por imagen , Retina/anatomía & histología , Persona de Mediana Edad , Tomografía de Coherencia Óptica/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/anatomía & histología , Anciano , Adulto
6.
Acta Neurol Belg ; 124(3): 987-993, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38546932

RESUMEN

We aimed to investigate the diagnostic value of Optical coherence tomography (OCT) in Alzheimer's disease (AD) and to assess the correlation between OCT and fluorodeoxyglucose (FDG)-positron emission tomography (PET) which shows high diagnostic agreement with findings from postmortem histopathology-the gold standard method. Patients who were diagnosed with AD-related dementia were selected for the study. Patients with a mini mental test (MMT) score between 18 and 23 were included in the study (n = 31). Volunteers with MMT ≥ 28 and no cognitive impairment were included in the study as the control group (n = 31). OCT imaging was performed in the patient and control groups after detailed ophthalmological examinations including visual acuity and intraocular pressure measurements. Brain glucose metabolism measurement was performed using 18 F-FDG PET/computed tomography. When adjusted for age and sex, mean retinal nerve fiber layer thickness (RNFL) thickness showed a significant difference between groups and the RNFL thickness in the superior temporal and superior nasal quadrants in AD-related mild dementia group showed a significant difference (p < 0.05). Furthermore, only the RNFL thickness in the inferior nasal quadrant of the right eye showed a significant difference between the groups (p = 0.016). It is thought that OCT is a promising imaging method in the elderly population due to its low-cost, non-invasive and easily applicability, and therefore, it may contribute in the future as a tool in the periodic follow-up of patients diagnosed with AD.


Asunto(s)
Enfermedad de Alzheimer , Fluorodesoxiglucosa F18 , Tomografía de Emisión de Positrones , Retina , Tomografía de Coherencia Óptica , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Femenino , Masculino , Anciano , Tomografía de Coherencia Óptica/métodos , Retina/diagnóstico por imagen , Retina/patología , Retina/metabolismo , Tomografía de Emisión de Positrones/métodos , Persona de Mediana Edad , Anciano de 80 o más Años , Radiofármacos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos
7.
Neurosci Biobehav Rev ; 159: 105592, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38365136

RESUMEN

Type 2 diabetes (T2D) is associated with cognitive impairment and dementia. The detection of cognitive impairment is important because this population is at higher risk of experiencing difficulties in the self-management of diabetes. Mild cognitive impairment (MCI) often remains undiagnosed due to lack of simple tools for screening at large scale. This represents an important gap in the patients' management because subjects with diabetes and MCI are at high risk of progressing to dementia. Due to its developmental origin as a brain-derived tissue, the retina has been proposed as a potential means of non-invasive and readily accessible exploration of brain pathology. Recent evidence showed that retinal imaging and/or functional tests are correlated with the cognitive function and brain changes in T2D. Simple retinal functional tests (i.e. retinal microperimetry) have proven to be useful as reliable tool for the cognitive evaluation and monitoring in patients with T2D>65 years. This review gives an overall update on the usefulness of retinal imaging in identifying patients with T2D at risk of developing dementia.


Asunto(s)
Disfunción Cognitiva , Demencia , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/diagnóstico , Síntomas Prodrómicos , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/etiología , Retina/diagnóstico por imagen , Demencia/diagnóstico por imagen , Demencia/etiología
8.
J Neuroinflammation ; 21(1): 43, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38317227

RESUMEN

Glaucoma is a complex neurodegenerative disorder characterized by the progressive loss of retinal ganglion cells (RGC) and optic nerve axons, leading to irreversible visual impairment. Despite its clinical significance, the underlying mechanisms of glaucoma pathogenesis remain poorly understood. In this study, we aimed to unravel the multifaceted nature of glaucoma by investigating the interaction between T cells and retinas. By utilizing clinical samples, murine glaucoma models, and T cell transfer models, we made several key findings. Firstly, we observed that CD4+ T cells from glaucoma patients displayed enhanced activation and a bias towards T helper (Th) 1 responses, which correlated with visual impairment. Secondly, we identified the infiltration of Th1 cells into the retina, where they targeted RGC and integrated into the pro-inflammatory glial network, contributing to progressive RGC loss. Thirdly, we discovered that circulating Th1 cells upregulated vascular cell adhesion protein 1 (VCAM-1) on retinal microvessels, facilitating their entry into the neural retina. Lastly, we found that Th1 cells underwent functional reprogramming before reaching the retina, acquiring a phenotype associated with lymphocyte migration and neurodegenerative diseases. Our study provides novel insights into the role of peripheral CD4+ T cells in glaucoma pathogenesis, shedding light on the mechanisms underlying their infiltration into the retina and offering potential avenues for innovative therapeutic interventions in this sight-threatening disease.


Asunto(s)
Glaucoma , Células Ganglionares de la Retina , Humanos , Ratones , Animales , Células Ganglionares de la Retina/patología , Molécula 1 de Adhesión Celular Vascular/metabolismo , Células TH1/patología , Glaucoma/metabolismo , Retina/patología , Trastornos de la Visión/patología , Modelos Animales de Enfermedad
9.
Sci Rep ; 14(1): 3010, 2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-38321224

RESUMEN

Activated microglia have been implicated in the pathogenesis of age-related macular degeneration (AMD), diabetic retinopathy, and other neurodegenerative and neuroinflammatory disorders, but our understanding of the mechanisms behind their activation is in infant stages. With the goal of identifying novel genes associated with microglial activation in the retina, we applied a semiquantitative fundus spot scoring scale to an unbiased, state-of-the-science mouse forward genetics pipeline. A mutation in the gene encoding the E3 ubiquitin ligase Herc3 led to prominent accumulation of fundus spots. CRISPR mutagenesis was used to generate Herc3-/- mice, which developed prominent accumulation of fundus spots and corresponding activated Iba1 + /CD16 + subretinal microglia, retinal thinning on OCT and histology, and functional deficits by Optomotory and electrophysiology. Bulk RNA sequencing identified activation of inflammatory pathways and differentially expressed genes involved in the modulation of microglial activation. Thus, despite the known expression of multiple E3 ubiquitin ligases in the retina, we identified a non-redundant role for Herc3 in retinal homeostasis. Our findings are significant given that a dysregulated ubiquitin-proteasome system (UPS) is important in prevalent retinal diseases, in which activated microglia appear to play a role. This association between Herc3 deficiency, retinal microglial activation and retinal degeneration merits further study.


Asunto(s)
Microglía , Degeneración Retiniana , Animales , Humanos , Ratones , Microglía/metabolismo , Retina/patología , Degeneración Retiniana/patología , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinas/metabolismo
10.
Alzheimers Dement ; 20(1): 316-329, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37611119

RESUMEN

INTRODUCTION: The retina may provide non-invasive, scalable biomarkers for monitoring cerebral neurodegeneration. METHODS: We used cross-sectional data from The Maastricht study (n = 3436; mean age 59.3 years; 48% men; and 21% with type 2 diabetes [the latter oversampled by design]). We evaluated associations of retinal nerve fiber layer, ganglion cell layer, and inner plexiform layer thicknesses with cognitive performance and magnetic resonance imaging indices (global grey and white matter volume, hippocampal volume, whole brain node degree, global efficiency, clustering coefficient, and local efficiency). RESULTS: After adjustment, lower thicknesses of most inner retinal layers were significantly associated with worse cognitive performance, lower grey and white matter volume, lower hippocampal volume, and worse brain white matter network structure assessed from lower whole brain node degree, lower global efficiency, higher clustering coefficient, and higher local efficiency. DISCUSSION: The retina may provide biomarkers that are informative of cerebral neurodegenerative changes in the pathobiology of dementia.


Asunto(s)
Diabetes Mellitus Tipo 2 , Sustancia Blanca , Masculino , Humanos , Persona de Mediana Edad , Femenino , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Estudios Transversales , Retina/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Biomarcadores , Cognición
11.
Alzheimers Dement ; 20(1): 211-220, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37551793

RESUMEN

INTRODUCTION: Our main objective was to investigate whether retinal neurodegeneration, estimated from lower thickness of inner retinal layers, was associated with incident all-cause dementia and Alzheimer's disease (AD). METHODS: We performed an individual participant data meta-analysis using unpublished data from four prospective cohort studies with a total of 69,955 participants (n = 1087 cases of incident all-cause dementia; n = 520 cases incident AD; follow-up time median [interquartile range] 11.3 [8.8-11.5] years). RESULTS: General baseline characteristics of the study population were mean (standard deviation) age, 58.1 (8.8) years; 47% women. After adjustment, lower baseline macular retinal nerve fiber layer thickness was significantly associated with a 10% and 11% higher incidence of all-cause dementia and AD, respectively. Lower baseline macular ganglion cell-inner plexiform layer thickness was not significantly associated with these outcomes. DISCUSSION: These findings suggest that retinal neurodegeneration precedes the onset of clinical dementia. Retinal imaging tools may be informative biomarkers for the study of the early pathophysiology of dementia.


Asunto(s)
Enfermedad de Alzheimer , Tomografía de Coherencia Óptica , Humanos , Femenino , Persona de Mediana Edad , Masculino , Estudios Prospectivos , Tomografía de Coherencia Óptica/métodos , Retina/diagnóstico por imagen , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/epidemiología , Enfermedad de Alzheimer/complicaciones , Análisis de Datos
12.
Prog Retin Eye Res ; 98: 101220, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37944588

RESUMEN

Diabetic macular oedema (DMO) is the major cause of visual impairment in people with diabetes. Optical coherence tomography (OCT) is now the most widely used modality to assess presence and severity of DMO. DMO is currently broadly classified based on the involvement to the central 1 mm of the macula into non-centre or centre involved DMO (CI-DMO) and DMO can occur with or without visual acuity (VA) loss. This classification forms the basis of management strategies of DMO. Despite years of research on quantitative and qualitative DMO related features assessed by OCT, these do not fully inform physicians of the prognosis and severity of DMO relative to visual function. Having said that, recent research on novel OCT biomarkers development and re-defined classification of DMO show better correlation with visual function and treatment response. This review summarises the current evidence of the association of OCT biomarkers in DMO management and its potential clinical importance in predicting VA and anatomical treatment response. The review also discusses some future directions in this field, such as the use of artificial intelligence to quantify and monitor OCT biomarkers and retinal fluid and identify phenotypes of DMO, and the need for standardisation and classification of OCT biomarkers to use in future clinical trials and clinical practice settings as prognostic markers and secondary treatment outcome measures in the management of DMO.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Edema Macular , Humanos , Edema Macular/diagnóstico por imagen , Edema Macular/terapia , Tomografía de Coherencia Óptica/métodos , Inteligencia Artificial , Agudeza Visual , Retinopatía Diabética/diagnóstico por imagen , Retinopatía Diabética/terapia , Retinopatía Diabética/complicaciones , Biomarcadores
13.
Ann N Y Acad Sci ; 1531(1): 49-59, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38084081

RESUMEN

This study aimed to examine the impact of diabetes and hypertension on retinal nerve fiber layer (RNFL) thickness components. Optical coherence tomography (OCT) measurements do not consider blood vessel contribution, which this study addressed. We hypothesized that diabetes and/or hypertension would lead to thinner RNFL versus controls due to the vascular component. OCT angiography was used to measure the RNFL in 121 controls, 50 diabetes patients, 371 hypertension patients, and 177 diabetes patients with hypertension. A novel technique separated the RNFL thickness into original (vascular component) and corrected (no vascular component) measurements. Diabetes-only (98 ± 1.7 µm; p = 0.002) and diabetes with hypertension (99 ± 0.8 µm; p = 0.001) patients had thinner original RNFL versus controls (102 ± 0.8 µm). No difference was seen between hypertension-only patients (101 ± 0.5 µm; p = 0.083) and controls. After removing the blood vessel component, diabetes/hypertension groups had thinner corrected RNFL versus controls (p = 0.024). Discrepancies in diabetes/hypertension patients were due to thicker retinal blood vessels within the RNFL thickness (p = 0.002). Our findings suggest that diabetes and/or hypertension independently contribute to neurodegenerative thinning of the RNFL, even in the absence of retinopathy. The differentiation of neuronal and vascular components in RNFL thickness measurements provided by the novel technique highlights the importance of considering vascular changes in individuals with these conditions.


Asunto(s)
Diabetes Mellitus , Hipertensión , Enfermedades de la Retina , Humanos , Células Ganglionares de la Retina , Fibras Nerviosas , Hipertensión/complicaciones , Tomografía de Coherencia Óptica/métodos
14.
International Eye Science ; (12): 24-29, 2024.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1003500

RESUMEN

AIM: To study the protective effect of fenofibrate on diabetic retinal neurodegeneration and observe its effect on miR-26a-5p and its target gene PTEN in the retinal of diabetic mice.METHODS: Diabetic mice models were established and they were gavaged by fenofibrate. H&#x0026;#x0026; E staining and transmission electron microscopy were used to observe the impairments of retinal neurons. Real-time PCR was used to examine the expression of miR-26a-5p, and Western blotting was employed to measure the expression of phosphatase and tensin homologue(PTEN)in the retina of diabetic mice. The expression level of nuclear factor-κB(NF-κB), interleukin-1β(IL-1β)and the morphology of neural tissues were observed.RESULTS: When compared with the diabetic mice, fenofibrate significantly attenuated the damage to retinal ganglion cells and the atrophy of retinal nerve fiber layer. While the level of miR-26a-5p was increased and the levels of PTEN and inflammatory mediators were significantly decreased in the retina of fenofibrate treated diabetic mice, with significant statistical significance(P&#x0026;#x003C;0.05).CONCLUSIONS: Fenofibrate protects against diabetic retinal neurodegeneration by upregulating miR-26a-5p and inhibiting PTEN, attenuating the inflammatory response and alleviating retinal cell injury.

15.
International Eye Science ; (12): 216-220, 2024.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1005383

RESUMEN

Based on the neurovascular unit(NVU), neurovascular coupling functions as a barrier to maintain the homeostasis of the microenvironment by regulating the signaling and metabolic activity of nerve cells and capillaries. Widely dispersed across the retina, the NVU is essential to preserving its normal physiological function. A disturbance in retinal neurovascular homeostasis produced by a range of factors can result in a variety of retinal disorders, such as diabetic retinopathy(DR), glaucoma, retinitis pigmentosa(RP)and age-related macular degeneration(ARMD). The retina also has a widespread distribution of brain-derived neurotrophic factor(BDNF), which functions to promote neuron growth and repair damage by binding to its receptor TrkB. In recent years, BDNF was found to play a protective role against damage in the early stage of retinal neurovascular homeostasis imbalance, often known as the neurodegenerative stage. It also helps to reduce the production of pro-angiogenic substances of neurological origin and offers a fresh approach for the early detection and treatment of associated eye disorders.

16.
Aging (Albany NY) ; 15(19): 10705-10731, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37819813

RESUMEN

Glaucoma is a leading cause of irreversible vision loss characterized by retinal neurodegeneration. Circular RNAs (circRNAs) have emerged as the potential biomarkers and therapeutic targets for neurodegenerative diseases. However, the expression profiling of circRNAs in glaucomatous neurodegeneration has not been fully understood. In this study, we built a glaucomatous neurodegeneration model via the injection of microbeads into anterior chamber. circRNA expression profile and bioinformatics analysis revealed that compared with normal retinas, 171 circRNAs were dysregulated in the glaucomatous retinas, including 101 up-regulated circRNAs and 70 down-regulated circRNAs. Detecting the level of circular RNA-glycine receptor α2 subunit gene (cGlra2) in aqueous humor made it possible to distinguish glaucoma patients from cataract patients. Silencing of cGlra2 protected against oxidative stress- or hydrostatic pressure-induced retinal ganglion cell (RGC) injury in vitro. Moreover, silencing of cGlra2 retarded ocular hypertension-induced retinal neurodegeneration in vivo as shown by increased TUJ1 staining, reduced reactive gliosis, decreased retinal cell apoptosis, enhanced visual acuity, and improved retinal function. cGlra2 acted as a miRNA sponge to regulate RGC function through cGlra2/miR-144/BCL2L11 signaling axis. Collectively, this study provides novel insights into the underlying mechanism of retinal neurodegeneration and highlights the potential of cGlra2 as a target for the diagnosis and treatment of glaucoma.


Asunto(s)
Glaucoma , Hipertensión Ocular , Humanos , Animales , ARN Circular/genética , ARN Circular/metabolismo , Retina/metabolismo , Hipertensión Ocular/genética , Hipertensión Ocular/metabolismo , Células Ganglionares de la Retina , Modelos Animales de Enfermedad
17.
Neurobiol Aging ; 131: 74-87, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37586253

RESUMEN

This study quantified age-related changes to retinal autophagy using the CAG-RFP-EGFP-LC3 autophagy reporter mice and considered how aging impacts autophagic responses to acute intraocular pressure (IOP) stress. IOP was elevated to 50 mm Hg for 30 minutes in 3-month-old and 12-month-old CAG-RFP-EGFP-LC3 (n = 7 per age group) and Thy1-YFPh transgenic mice (n = 3 per age group). Compared with younger eyes, older eyes showed diminished basal autophagy in the outer retina, while the inner retina was unaffected. Autophagic flux (red:yellow puncta ratio) was elevated in the inner plexiform layer. Three days following IOP elevation, older eyes showed poorer functional recovery, most notably in ganglion cell responses compared to younger eyes (12 months old: -33.4 ±â€¯5.3% vs. 3 months mice: -13.4 ±â€¯4.5%). This paralleled a reduced capacity to upregulate autophagic puncta volume in the inner retina in older eyes, a response that was seen in younger eyes. Age-related decline in basal and stress-induced autophagy in the retina is associated with greater retinal ganglion cells' susceptibility to IOP elevation.


Asunto(s)
Presión Intraocular , Retina , Ratones , Animales , Células Ganglionares de la Retina/fisiología , Modelos Animales de Enfermedad , Ratones Transgénicos , Autofagia/genética
18.
Mol Med Rep ; 28(3)2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37539744

RESUMEN

The degeneration of retinal ganglion cells (RGCs) often causes irreversible vision impairment. Prevention of RGC degeneration can prevent or delay the deterioration of visual function. The present study aimed to investigate retinal metabolic profiles following optic nerve transection (ONT) injury and identify the potential metabolic targets for the prevention of RGC degeneration. Retinal samples were dissected from ONT group and non­ONT group. The untargeted metabolomics were carried out using liquid chromatography­tandem mass spectrometry. The involved pathways and biomarkers were analyzed using Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and MetaboAnalyst 5.0. In the ONT group, 689 disparate metabolites were detected, including lipids and lipid­like molecules. A total of 122 metabolites were successfully annotated and enriched in 50 KEGG pathways. Among them, 'sphingolipid metabolism' and 'primary bile acid biosynthesis' were identified involved in RGC degeneration. A total of five metabolites were selected as the candidate biomarkers for detecting RGC degeneration with an AUC value of 1. The present study revealed that lipid­related metabolism was involved in the pathogenesis of retinal neurodegeneration. Taurine, taurochenodesoxycholic acid, taurocholic acid (TCA), sphingosine, and galabiosylceramide are shown as the promising biomarkers for the diagnosis of RGC degeneration.


Asunto(s)
Traumatismos del Nervio Óptico , Humanos , Traumatismos del Nervio Óptico/metabolismo , Nervio Óptico/metabolismo , Retina/metabolismo , Metabolómica , Biomarcadores/metabolismo , Lípidos
19.
Ann Transl Med ; 11(9): 307, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37404990
20.
Pharmaceuticals (Basel) ; 16(7)2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37513944

RESUMEN

Retinal neurodegeneration is a major cause of vision loss. Retinoic acid signaling is critical for the maintenance of retinal function, and its dysfunction can cause retinal neurodegeneration. However, the therapeutic effects of retinoic acid drugs on retinal neurodegeneration remain unclear. In this study, we designed a novel retinoic acid drug called EYE-503 and investigated its therapeutic effects of EYE-503 on retinal neurodegeneration. The optic nerve crush (ONC) model was selected for the retinal neurodegeneration study. H&E staining, TUNEL staining, immunofluorescence staining, and visual electrophysiology assays were performed to determine the role of EYE-503 in retinal neurodegeneration in vivo. The CCK-8 assay, EdU incorporation assay, PI staining, and flow cytometry assays were performed to investigate the effects of EYE-503 administration on retinal neurodegeneration in vitro. The potential mechanism of EYE-503 in retinal neurodegeneration was investigated by network pharmacology and Western blots. The results showed that EYE-503 administration had no detectable cytotoxicity and tissue toxicity. EYE-503 administration alleviated ONC-induced retinal injury and optic nerve injury in vivo. EYE-503 administration attenuated retinal ganglion cell apoptosis, inhibited reactive gliosis, and retarded the progression of retinal neurodegeneration. Mechanistically, EYE-503 regulated retinal neurodegeneration by targeting the JNK/p38 signaling pathway. This study suggests that EYE-503 is a promising therapeutic agent for retinal neurodegenerative diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA