Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(5): e26951, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38495194

RESUMEN

Steel cross-sections with thin walls are vulnerable to fire-induced buckling instability, which reduces their load-bearing capacity. Eurocode 3 design provisions have been found inadequate, leading to alternative methods such as effective design strategies and advanced structural models built mostly with shell FE, which can be complex. For Class 4 steel beam-columns subjected to fire conditions, beam-type modelling to predict the Flexural-Torsional Buckling (FTB) strength has been proposed as an alternative approach, but it has not yielded satisfactory results for large compressive load eccentricities. This paper presents two new low computational cost modelling strategies based on Timoshenko's beam FE to address this issue: the Single beam-column Model (SbcM) and the Cruciform beam-column Model (CbcM). The first consists of a single line of beam FE, while the second uses a grid of beam FE for more flexibility. Both strategies effectively simulate the FTB behaviour in Class 4 steel beam-column during a fire, offering quicker computations compared to shell models. Still, the single-line model is favoured for its simplicity, making it more efficient in analysing complex fire engineering problems.

2.
Materials (Basel) ; 15(8)2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35454408

RESUMEN

The low carbon martensitic stainless AWS 410NiMo steel has in its chemical composition 13% chromium, 4% nickel, and 0.4% molybdenum (wt.%) and is used in turbine recovery, rotors, and high-pressure steam pump housings due to its resistance to impact at low temperatures, as well as to corrosion and cavitation. Those applications of the AWS 410NiMo steel frequently demand repair, which is performed by welding or cladding. Arc welding is a well-established technique for joining materials and presents several parameters that influence the mechanical performance of the weld bead. Although numerous welding processes exist, optimizing welding parameters for specific applications and materials is always challenging. The present work deals with a systematic study to verify the correlation between the pulsed fluxed core arc welding (FCAW) parameters, namely pulse current and frequency, welding speed, and contact tip work distance (CTWD), and the bead morphology, microstructure formation, residual stress, and hardness of the martensitic clad. The substrate used was the AISI 1020 steel, and the AWS 410NiMo steel was the filler metal for clad deposition. From the initial nine (9) samples, three (3) were selected for in-depth characterization. Lower heat input resulted in lower dilution, more elevated hardness, and lower compressive residual stresses. Therefore, the results highlight the need for selecting the proper heat input, even when using a pulsed FCAW procedure, to achieve the desired performance of the clad. In the present case, a higher heat input appears to be more advantageous owing to the lower convexity index, smooth hardness transition between fusion and heat-affected zones in addition to more elevated compressive stresses.

3.
Nanomaterials (Basel) ; 12(2)2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35055286

RESUMEN

Precise prediction of mechanical behavior of thin films at the nanoscale requires techniques that consider size effects and fabrication-related issues. Here, we propose a test methodology to estimate the Young's modulus of nanometer-thick films using micromachined bilayer cantilevers. The bilayer cantilevers which comprise a well-known reference layer and a tested film deflect due to the relief of the residual stresses generated during the fabrication process. The mechanical relationship between the measured residual stresses and the corresponding deflections was used to characterize the tested film. Residual stresses and deflections were related using analytical and finite element models that consider intrinsic stress gradients and the use of adherence layers. The proposed methodology was applied to low pressure chemical vapor deposited silicon nitride tested films with thicknesses ranging from 46 nm to 288 nm. The estimated Young's modulus values varying between 213.9 GPa and 288.3 GPa were consistent with nanoindentation and alternative residual stress-driven techniques. In addition, the dependence of the results on the thickness and the intrinsic stress gradient of the materials was confirmed. The proposed methodology is simple and can be used to characterize diverse materials deposited under different fabrication conditions.

4.
Materials (Basel) ; 12(7)2019 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-30970660

RESUMEN

Automotive components manufacturers use the 5160 steel in leaf and coil springs. The industrial heat treatment process consists in austenitizing followed by the oil quenching and tempering process. Typically, compressive residual stresses are induced by shot peening on the surface of automotive springs to bestow compressive residual stresses that improve the fatigue resistance and increase the service life of the parts after heat treatment. In this work, a high-speed quenching was used to achieve compressive residual stresses on the surface of AISI/SAE 5160 steel samples by producing high thermal gradients and interrupting the cooling in order to generate a case-core microstructure. A special laboratory equipment was designed and built, which uses water as the quenching media in a high-speed water chamber. The severity of the cooling was characterized with embedded thermocouples to obtain the cooling curves at different depths from the surface. Samples were cooled for various times to produce different hardened case depths. The microstructure of specimens was observed with a scanning electron microscope (SEM). X-ray diffraction (XRD) was used to estimate the magnitude of residual stresses on the surface of the specimens. Compressive residual stresses at the surface and sub-surface of about -700 MPa were obtained.

5.
Ceram Int ; 43(4): 3670-3678, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28163345

RESUMEN

Layered ceramic systems are usually hit by residual thermal stresses created during cooling from high processing temperature. The purpose of this study was to determine the thermal residual stresses at different ceramic multi-layered systems and evaluate their influence on the bending stress distribution. Finite elements method was used to evaluate the residual stresses in zirconia-porcelain and alumina-porcelain multi-layered discs and to simulate the 'piston-on-ring' test. Temperature-dependent material properties were used. Three different multi-layered designs were simulated: a conventional bilayered design; a trilayered design, with an intermediate composite layer with constant composition; and a graded design, with an intermediate layer with gradation of properties. Parameters such as the interlayer thickness and composition profiles were varied in the study. Alumina-porcelain discs present smaller residual stress than the zirconia-porcelain discs, regardless of the type of design. The homogeneous interlayer can yield a reduction of ~40% in thermal stress relative to bilayered systems. Thinner interlayers favoured the formation of lower thermal stresses. The graded discs showed the lowest thermal stresses for a gradation profile given by power law function with p=2. The bending stresses were significantly affected by the thermal stresses in the discs. The risk of failure for all-ceramic dental restorative systems can be significantly reduced by using trilayered systems (homogenous or graded interlayer) with the proper design.

6.
Comput Methods Biomech Biomed Engin ; 19(16): 1738-1748, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27178265

RESUMEN

This work presents experiments, modelling and numerical simulation aimed at describing the mechanical response of human ascending aortas in the ring opening test. The objective is to quantify, from the opening angles measured in the test, the residual stress distribution along the artery wall and, afterwards, how this stress pattern changes when the artery is subjected to standard physiological pressures. The cases studied correspond to four groups including both healthy and pathological arteries. The tissues are characterized via tensile test measurements that enable to derive the material parameters of two constitutive models adopted in the present analysis. Overall, the numerical results obtained for all groups were found to be a useful data that allow to estimate the residual stress and their influence on the vessels under normal and hypertension physiological conditions.


Asunto(s)
Aorta/fisiopatología , Adulto , Aneurisma/fisiopatología , Fenómenos Biomecánicos , Simulación por Computador , Femenino , Análisis de Elementos Finitos , Humanos , Masculino , Síndrome de Marfan/fisiopatología , Modelos Teóricos , Análisis Numérico Asistido por Computador , Presión , Estrés Mecánico , Resistencia a la Tracción , Adulto Joven
7.
Mater Sci Eng C Mater Biol Appl ; 33(3): 1417-22, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23827590

RESUMEN

Grit blasting is a surface plastic deformation technique aimed to increase the surface area available for bone/implant apposition, which contributes to improve fixation and mechanical stability of Ti-6Al-4V implants. Besides roughening, grit blasting also causes surface contamination with embedded grit particles and subtle subsurface microstructural changes that, although does not challenge their biocompatibility, might influence other surface dominated properties like corrosion and ion release. Additional benefits are expected due to the induced compressive residual stresses, hence enhancing fatigue strength. The net effect depends on the type of particles used for blasting, but also on the amount of the subsurface cold work associated to the severe surface plastic deformation. In this work we study the potential of the non-contacting and contacting thermoelectric power (TEP) measurements in the analysis of the global changes induced in the Ti6Al4V when blasting the alloy with Al2O3 or ZrO2 particles, which yields a coarse and a fine rough surface, respectively. To reveal the effect of residual stresses, a set of specimens were thermally treated. The study proves that the non-contacting technique is more sensitive to the presence of residual stresses, whereas the contact technique is strongly influenced by the grain size refinements, work hardening and changes in solute.


Asunto(s)
Electricidad , Ensayo de Materiales/métodos , Temperatura , Titanio/química , Aleaciones , Electrones , Dureza , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA