Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Protein Chem Struct Biol ; 140: 525-555, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38762279

RESUMEN

There is an urgent need to combat pathogen infestations in crop plants to ensure food security worldwide. To counter this, plants have developed innate immunity mediated by Pattern Recognition Receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs) and damage- associated molecular patterns (DAMPs). PRRs activate Pattern-Triggered Immunity (PTI), a defence mechanism involving intricate cell-surface and intracellular receptors. The diverse ligand-binding ectodomains of PRRs, including leucine-rich repeats (LRRs) and lectin domains, facilitate the recognition of MAMPs and DAMPs. Pathogen resistance is mediated by a variety of PTI responses, including membrane depolarization, ROS production, and the induction of defence genes. An integral part of intracellular immunity is the Nucleotide-binding Oligomerization Domain, Leucine-rich Repeat proteins (NLRs) which recognize and respond to effectors in a potent manner. Enhanced understanding of PRRs, their ligands, and downstream signalling pathways has contributed to the identification of potential targets for genetically modified plants. By transferring PRRs across plant species, it is possible to create broad-spectrum resistance, potentially offering innovative solutions for plant protection and global food security. The purpose of this chapter is to provide an update on PRRs involved in disease resistance, clarify the mechanisms by which PRRs recognize ligands to form active receptor complexes and present various applications of PRRs and PTI in disease resistance management for plants.


Asunto(s)
Plantas Modificadas Genéticamente , Receptores de Reconocimiento de Patrones , Receptores de Reconocimiento de Patrones/metabolismo , Receptores de Reconocimiento de Patrones/inmunología , Proteínas de Plantas/inmunología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Inmunidad de la Planta
2.
Rice (N Y) ; 17(1): 24, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587574

RESUMEN

The quality of rice (Oryza sativa L) is determined by a combination of appearance, flavor, aroma, texture, storage characteristics, and nutritional composition. Rice quality directly influences acceptance by consumers and commercial value. The genetic mechanism underlying rice quality is highly complex, and is influenced by genotype, environment, and chemical factors such as starch type, protein content, and amino acid composition. Minor variations in these chemical components may lead to substantial differences in rice quality. Among these components, starch is the most crucial and influential factor in determining rice quality. In this study, quantitative trait loci (QTLs) associated with eight physicochemical properties related to the rapid viscosity analysis (RVA) profile were identified using a high-density sequence map constructed using recombinant inbred lines (RILs). Fifty-nine QTLs were identified across three environments, among which qGT6.4 was a novel locus co-located across all three environments. By integrating RNA-seq data, we identified the differentially expressed candidate gene OsCRLK2 within the qGT6.4 interval. osclrk2 mutants exhibited decreased gelatinization temperature (GT), apparent amylose content (AAC) and viscosity, and increased chalkiness. Furthermore, osclrk2 mutants exhibited downregulated expression of the majority of starch biosynthesis-related genes compared to wild type (WT) plants. In summary, OsCRLK2, which encodes a receptor-like protein kinase, appears to consistently influence rice quality across different environments. This discovery provides a new genetic resource for use in the molecular breeding of rice cultivars with improved quality.

3.
Plants (Basel) ; 12(3)2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36771514

RESUMEN

Accompanying the process of growth and development, plants are exposed to ever-changing environments, which consequently trigger abiotic or biotic stress responses. The large protein family known as receptor-like protein kinases (RLKs) is involved in the regulation of plant growth and development, as well as in the response to various stresses. Understanding the biological function and molecular mechanism of RLKs is helpful for crop breeding. Research on the role and mechanism of RLKs has recently received considerable attention regarding the balance between plant growth and environmental adaptability. In this paper, we systematically review the classification of RLKs, the regulatory roles of RLKs in plant development (meristem activity, leaf morphology and reproduction) and in stress responses (disease resistance and environmental adaptation). This review focuses on recent findings revealing that RLKs simultaneously regulate plant growth and stress adaptation, which may pave the way for the better understanding of their function in crop improvement. Although the exact crosstalk between growth constraint and plant adaptation remains elusive, a profound study on the adaptive mechanisms for decoupling the developmental processes would be a promising direction for the future research.

4.
Int J Mol Sci ; 23(20)2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36293031

RESUMEN

Cell surface receptors play essential roles in perceiving and processing external and internal signals at the cell surface of plants and animals. The receptor-like protein kinases (RLK) and receptor-like proteins (RLPs), two major classes of proteins with membrane receptor configuration, play a crucial role in plant development and disease defense. Although RLPs and RLKs share a similar single-pass transmembrane configuration, RLPs harbor short divergent C-terminal regions instead of the conserved kinase domain of RLKs. This RLP receptor structural design precludes sequence comparison algorithms from being used for high-throughput predictions of the RLP family in plant genomes, as has been extensively performed for RLK superfamily predictions. Here, we developed the RLPredictiOme, implemented with machine learning models in combination with Bayesian inference, capable of predicting RLP subfamilies in plant genomes. The ML models were simultaneously trained using six types of features, along with three stages to distinguish RLPs from non-RLPs (NRLPs), RLPs from RLKs, and classify new subfamilies of RLPs in plants. The ML models achieved high accuracy, precision, sensitivity, and specificity for predicting RLPs with relatively high probability ranging from 0.79 to 0.99. The prediction of the method was assessed with three datasets, two of which contained leucine-rich repeats (LRR)-RLPs from Arabidopsis and rice, and the last one consisted of the complete set of previously described Arabidopsis RLPs. In these validation tests, more than 90% of known RLPs were correctly predicted via RLPredictiOme. In addition to predicting previously characterized RLPs, RLPredictiOme uncovered new RLP subfamilies in the Arabidopsis genome. These include probable lipid transfer (PLT)-RLP, plastocyanin-like-RLP, ring finger-RLP, glycosyl-hydrolase-RLP, and glycerophosphoryldiester phosphodiesterase (GDPD, GDPDL)-RLP subfamilies, yet to be characterized. Compared to the only Arabidopsis GDPDL-RLK, molecular evolution studies confirmed that the ectodomain of GDPDL-RLPs might have undergone a purifying selection with a predominance of synonymous substitutions. Expression analyses revealed that predicted GDPGL-RLPs display a basal expression level and respond to developmental and biotic signals. The results of these biological assays indicate that these subfamily members have maintained functional domains during evolution and may play relevant roles in development and plant defense. Therefore, RLPredictiOme provides a framework for genome-wide surveys of the RLP superfamily as a foundation to rationalize functional studies of surface receptors and their relationships with different biological processes.


Asunto(s)
Arabidopsis , Proteínas de Plantas , Animales , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Plastocianina/genética , Plastocianina/metabolismo , Teorema de Bayes , Leucina/metabolismo , Plantas/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Receptores de Superficie Celular/metabolismo , Aprendizaje Automático , Hidrolasas/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Lípidos , Filogenia
5.
Mol Plant Microbe Interact ; 34(6): 587-601, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33512246

RESUMEN

Plants adjust amplitude and duration of immune responses via different strategies to maintain growth, development, and resistance to pathogens. Pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI) play vital roles. Pattern recognition receptors, comprising a large number of receptor-like protein kinases and receptor-like proteins, recognize related ligands and trigger immunity. PTI is the first layer of the innate immune system, and it recognizes PAMPs at the plasma membrane to prevent infection. However, pathogens exploit effector proteins to bypass or directly inhibit the PTI immune pathway. Consistently, plants have evolved intracellular nucleotide-binding domain and leucine-rich repeat-containing proteins to detect pathogenic effectors and trigger a hypersensitive response to activate ETI. PTI and ETI work together to protect plants from infection by viruses and other pathogens. Diverse receptors and the corresponding ligands, especially several pairs of well-studied receptors and ligands in PTI immunity, are reviewed to illustrate the dynamic process of PTI response here.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Moléculas de Patrón Molecular Asociado a Patógenos , Inmunidad de la Planta , Inmunidad Innata , Plantas , Receptores de Reconocimiento de Patrones
6.
Plants (Basel) ; 9(5)2020 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-32456239

RESUMEN

Tyrosine phosphorylation constitutes up to 5% of the total phophoproteome. However, only limited studies are available on protein tyrosine kinases (PTKs) that catalyze protein tyrosine phosphorylation in plants. In this study, domain analysis of the 27 annotated PTK genes in rice genome led to the identification of 18 PTKs with tyrosine kinase domain. The kinase domain of rice PTKs shared high homology with that of dual specificity kinase BRASSINOSTEROID- INSENSITIVE 1 (BRI1) of Arabidopsis. In phylogenetic analysis, rice PTKs clustered with receptor-like cytoplasmic kinases-VII (RLCKs-VII) of Arabidopsis. mRNAseq analysis using Genevestigator revealed that rice PTKs except PTK9 and PTK16 express at moderate to high level in most tissues. PTK16 expression was highly abundant in panicle at flowering stage. mRNAseq data analysis led to the identification of drought, heat, salt, and submergence stress regulated PTK genes in rice. PTK14 was upregulated under all stresses. qRT-PCR analysis also showed that all PTKs except PTK10 were significantly upregulated in root under osmotic stress. Tissue specificity and abiotic stress mediated differential regulation of PTKs suggest their potential role in development and stress response of rice. The candidate dual specificity PTKs identified in this study paves way for molecular analysis of tyrosine phosphorylation in rice.

7.
Front Plant Sci ; 11: 588846, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33414796

RESUMEN

Malectin domain (MD) is a ligand-binding protein motif of pro- and eukaryotes. It is particularly abundant in Viridiplantae, where it occurs as either a single (MD, PF11721) or tandemly duplicated domain (PF12819) called malectin-like domain (MLD). In herbaceous plants, MD- or MLD-containing proteins (MD proteins) are known to regulate development, reproduction, and resistance to various stresses. However, their functions in woody plants have not yet been studied. To unravel their potential role in wood development, we carried out genome-wide identification of MD proteins in the model tree species black cottonwood (Populus trichocarpa), and analyzed their expression and co-expression networks. P. trichocarpa had 146 MD genes assigned to 14 different clades, two of which were specific to the genus Populus. 87% of these genes were located on chromosomes, the rest being associated with scaffolds. Based on their protein domain organization, and in agreement with the exon-intron structures, the MD genes identified here could be classified into five superclades having the following domains: leucine-rich repeat (LRR)-MD-protein kinase (PK), MLD-LRR-PK, MLD-PK (CrRLK1L), MLD-LRR, and MD-Kinesin. Whereas the majority of MD genes were highly expressed in leaves, particularly under stress conditions, eighteen showed a peak of expression during secondary wall formation in the xylem and their co-expression networks suggested signaling functions in cell wall integrity, pathogen-associated molecular patterns, calcium, ROS, and hormone pathways. Thus, P. trichocarpa MD genes having different domain organizations comprise many genes with putative foliar defense functions, some of which could be specific to Populus and related species, as well as genes with potential involvement in signaling pathways in other tissues including developing wood.

8.
aBIOTECH ; 1(3): 157-168, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36303569

RESUMEN

Generation of the root greatly benefits higher plants living on land. Continuous root growth and development are achieved by the root apical meristem, which acts as a reservoir of stem cells. The stem cells, on the one hand, constantly renew themselves through cell division. On the other hand, they differentiate into functional cells to form diverse tissues of the root. The balance between the maintenance and consumption of the root apical meristem is governed by cell-to-cell communications. Receptor-like protein kinases (RLKs), a group of signaling molecules localized on the cell surface, have been implicated in sensing multiple endogenous and environmental signals for plant development and stress adaptation. Over the past two decades, various RLKs and their ligands have been revealed to participate in regulating root meristem homeostasis. In this review, we focus on the recent studies about RLK-mediated signaling in regulating the maintenance and consumption of the root apical meristem.

9.
J Mol Biol ; 425(22): 4455-67, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23911552

RESUMEN

Brassinosteroid signaling kinases (BSKs) are plant-specific receptor-like cytoplasmic protein kinases involved in the brassinosteroid signaling pathway. Unlike common protein kinases, they possess a naturally occurring alanine residue at the "gatekeeper" position, as well as other sequence variations. How BSKs activate downstream proteins such as BSU1, as well as the structural consequences of their unusual sequential features, was unclear. We crystallized the catalytic domain of BSK8 and solved its structure by multiple-wavelength anomalous dispersion phasing methods to a resolution of 1.5Å. In addition, a co-crystal structure of BSK8 with 5-adenylyl imidodiphosphate (AMP-PNP) revealed unusual conformational arrangements of the nucleotide phosphate groups and catalytic key motifs, typically not observed for active protein kinases. Sequential analysis and comparisons with known pseudokinase structures suggest that BSKs represent constitutively inactive protein kinases that regulate brassinosteroid signal transfer through an allosteric mechanism.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas Quinasas/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas de Arabidopsis/metabolismo , Sitios de Unión , Dominio Catalítico , Modelos Moleculares , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Quinasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA