Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38891414

RESUMEN

In order to study the microscopic reaction mechanism and kinetic model of Al/PTFE, a reactive force field (ReaxFF) was used to simulate the interface model of the Al/PTFE system with different oxide layer thicknesses (0 Å, 5 Å, 10 Å), and the thermochemical behavior of Al/PTFE at different heating rates was analyzed by simultaneous thermal analysis (TG-DSC). The results show that the thickness of the oxide layer has a significant effect on the reaction process of Al/PTFE. In the system with an oxide layer thickness of 5 Å, the compactness of the oxide layer changes due to thermal rearrangement, resulting in the diffusion of reactants (fluorine-containing substances) through the oxide layer into the Al core. The reaction mainly occurs between the oxide layer and the Al core. For the 10 Å oxide layer, the reaction only exists outside the interface of the oxide layer. With the movement of the oxygen ions in the oxide layer and the Al atoms in the Al core, the oxide layer moves to the Al core, which makes the reaction continue. By analyzing the reaction process of Al/PTFE, the mechanism function of Al/PTFE was obtained by combining the shrinkage volume model (R3 model) and the three-dimensional diffusion (D3 model). In addition, the activation energy of Al/PTFE was 258.8 kJ/mol and the pre-exponential factor was 2.495 × 1015 min-1. The research results have important theoretical significance and reference value for the in-depth understanding of the microscopic chemical reaction mechanism and the quantitative study of macroscopic energy release of Al/PTFE reactive materials.

2.
Sci Total Environ ; 904: 166918, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37689195

RESUMEN

With rapid industrial development and population growth, the pollution of soil and groundwater has become a critical concern all over the world. Yet, remediation of contaminated soil and water remains a major challenge. In recent years, apatite has gained a surging interest in environmental remediation because of its high treatment efficiency, low cost, and environmental benignity. This review summarizes recent advances in: (1) natural apatite of phosphate ores and biological source; (2) synthesis of engineered apatite particles (including stabilized or surface-modified apatite nanoparticles); (3) treatment effectiveness of apatite towards various environmental pollutants in soil and groundwater, including heavy metals (e.g., Pb, Zn, Cu, Cd, and Ni), inorganic anions (e.g., As oxyanions and F-), radionuclides (e.g., thorium (Th), strontium (Sr), and uranium (U)), and organic pollutants (e.g., antibiotics, dyes, and pesticides); and (4) the removal and/or interaction mechanisms of apatite towards the different contaminants. Lastly, the knowledge or technology gaps are identified and future research needs are proposed.

3.
Materials (Basel) ; 16(7)2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37049009

RESUMEN

To study the penetration and cratering effect of reactive material composite jets, a series of experiments are carried out for the shaped charge (SC) with different composite liners damaging steel targets. The inner layer of composite liners is metal and the outer one is a polytetrafluoroethylene/aluminum (PTFE/Al) reactive material. Copper (Cu), titanium (Ti) and Al inner liners are used in this paper. The reactive material liner is composed of 73.5 wt.% PTFE and 26.5 wt.% Al powder through mass-matched ratios. Reactive material composite liners are prepared through machining, cold pressing and a sintering process. The SC mainly consists of a case, a composite liner, high-energy explosive and an initiator. The steel target is steel 45#, with a thickness of 66 mm. A standoff of 1.0 CD (charge diameter) is selected to conduct the penetration experiments. The experimental results show that when the inner layer of the composite liner is composed of Ti and Al, the hole diameters on the steel target formed by the reactive material composite jet are significantly larger than that of the inner Cu liner. By introducing the initiation delay time (τ) and detonation-like reaction model of PTFE/Al reactive materials, an integrated numerical simulation algorithm of the penetration and detonation-like effects of reactive material composite jets is realized. Numerical simulations demonstrate that the initial penetration holes on the steel targets are enlarged under the detonation-like effects of PTFE/Al reactive materials, and the simulated perforation sizes are in good agreement with the experimental results.

4.
Polymers (Basel) ; 15(3)2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36771918

RESUMEN

With the improvement of protection technology, the damage power of conventional penetrators has become increasingly inferior. Reactive material is a new type of energetic material, which has strong energy release capabilities under high-velocity-impact conditions. In this paper, the reactive materials were put into the penetrator, and its penetration characteristics were studied. First, the penetrator with enhanced lateral effect (PELE) projectile structure with better penetration capability was obtained by numerical simulation. Then, based on the established polytetrafluoroethylene (PTFE)/Al reactive material reaction model, the numerical simulation and experimental research of the PELE projectile with a reactive inner core penetrating the target were carried out. The results show that the simulation results are in good agreement with the experimental results, which verifies the confidence of the numerical simulation. The PELE projectile had a significant increase in power with the use of a truncated conical head and reactive materials. The residual velocity of the truncated cone PELE projectile increases by 8.41-21% over conventional PELE projectiles. Its damage range is 43% higher than that of conventional penetrators. The simulation method and the conclusions obtained in this paper can provide support and reference for further research on reactive materials and on effectively improving the damage power of the penetrator.

5.
Polymers (Basel) ; 14(21)2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36365625

RESUMEN

PTFE/Al reactive material is an energetic material that releases energy under impact conditions, resulting in a wide range of application prospects. In order to improve its damage ability-considering the higher heat of the reaction per unit mass when Ni2O3 is involved in the aluminothermic reaction-we designed and studied PTFE/Al/Ni2O3, a reaction material based on polytetrafluoroethylene (PTFE). We also designed two other kinds (PTFE/Al, PTFE/Al/CuO) for comparative study, with the mass fraction of the metal oxides added at 10%, 20%, and 30%, respectively. The quasi-static compression properties and impact initiation behavior of the material were investigated by a universal material testing machine and a drop hammer test. The reaction process of different materials under a high strain rate was recorded using a high-speed camera. The results show that with the increase in Ni2O3 content, the strength of the PTFE/Al/Ni2O3 reactive material shows an increasing trend followed by a decreasing trend. Among the three reactive materials, when the content of Al/Ni2O3 reaches 30 wt.%, the reaction duration is the longest (at 4 ms) and the reaction fireball is the largest. The addition of Ni2O3 is helpful to improve the reactivity and reaction duration of the PTEF/Al reactive material.

6.
Front Bioeng Biotechnol ; 10: 921284, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35957647

RESUMEN

Bone tissues are dynamically reconstructed during the entire life cycle phase, which is an exquisitely regulated process controlled by intracellular and intercellular signals transmitted through physicochemical and biochemical stimulation. Recently, the role of electrical activity in promoting bone regeneration has attracted great attention, making the design, fabrication, and selection of bioelectric bio-reactive materials a focus. Under specific conditions, piezoelectric, photoelectric, magnetoelectric, acoustoelectric, and thermoelectric materials can generate bioelectric signals similar to those of natural tissues and stimulate osteogenesis-related signaling pathways to enhance the regeneration of bone defects, which can be used for designing novel smart biological materials for engineering tissue regeneration. However, literature summarizing studies relevant to bioelectric materials for bone regeneration is rare to our knowledge. Consequently, this review is mainly focused on the biological mechanism of electrical stimulation in the regeneration of bone defects, the current state and future prospects of piezoelectric materials, and other bioelectric active materials suitable for bone tissue engineering in recent studies, aiming to provide a theoretical basis for novel clinical treatment strategies for bone defects.

7.
Materials (Basel) ; 15(15)2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35955291

RESUMEN

Reactive material (RM) is a special kind of energetic material that can react and release chemical energy under highly dynamic loads. However, its energy release behavior is limited by its own strength, showing unique unsustainable characteristics, which lack a theoretical description. In this paper, an impact-initiated chemical reaction model is proposed to describe the ignition and energy release behavior of Al/PTFE RM. The hotspot formation mechanism of pore collapse was first introduced to describe the decomposition process of PTFE. Material fragmentation and PTFE decomposition were used as ignition criteria. Then the reaction rate of the decomposition product with aluminum was calculated according to the gas-solid chemical reaction model. Finally, the reaction states of RM calculated by the model are compared and qualitatively consistent with the experimental results. The model provides insight into the thermal-mechanical-chemical responses and references for the numerical simulation of impact ignition and energy release behavior of RM.

8.
Polymers (Basel) ; 14(7)2022 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-35406234

RESUMEN

As a new type of energetic material, reactive materials are widely used at present; in particular, the metal/polymer mixtures type reactive materials show great advantages in engineering applications. This type of reactive material has good mechanical properties, and its overall performance is insensitive and high-energy under external impact loading. After a large number of previous studies, our team found that the energy release characteristics of PTFE/Al/Si reactive material are prominent. In order to master the mechanical properties of PTFE/Al/Si reactive materials, the quasi-static mechanical properties and dynamic mechanical properties were obtained by carrying out a quasi-static compression test and a dynamic SHPB test in this paper. Based on the experimental data, a Johnson-Cook constitutive model of PTFE/Al/Si reactive material considering strain hardening effect, strain rate hardening effect and thermal softening effect was constructed. The relevant research results will be used to guide future research on the reaction mechanism of PTFE/Al/Si reactive materials, in order to promote the engineering application of PTFE/Al/Si reactive materials.

9.
Sci Total Environ ; 825: 153992, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35192815

RESUMEN

This paper aims to provide insights on mechanochemistry as a green and versatile tool to synthesize advanced materials for water remediation. In particular, mechanochemical methodologies for preparation of reagents and catalysts for the removal of organic pollutants are reviewed and discussed, focusing on those materials that, directly or indirectly, induce redox reactions in the contaminants (i.e., photo-, persulfate-, ozone-, and Fenton-catalysts, as well as redox reagents). Methods reported in the literature include surface reactivity enhancement for single-component materials, as well as multi-component material design to obtain synergistic effects in catalytic efficiency and/or reactivity. It was also amply demonstrated that mechanochemical surface activation or the incorporation of catalytic/reactive components boost the generation of reactive species in water by accelerating charge transfer, increasing superficial active sites, and developing pollutant absorption. Finally, indications for potential future developments in this field are debated.


Asunto(s)
Contaminantes Ambientales , Agua , Catálisis , Descontaminación , Indicadores y Reactivos , Oxidación-Reducción
10.
Materials (Basel) ; 14(13)2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34279272

RESUMEN

The incorporation of reactive material damage element technology in ammunition warheads is a research hotspot in the development of conventional ammunition. The research results are of great significance and military application value to promote the development of high-efficiency damage ammunition technology. In this paper, we aimed to understand the behavior of the reactive jet and its damage effect on a steel target by undertaking theoretical analysis, numerical simulation, and experimental research. We studied the influence of structural and material parameters on the shape of the reactive jet based on autodyn-2d finite element simulation software, and the formation behavior of the reactive jet was verified using a pulsed X-ray experiment. By studying the combined damage caused by the steel target penetrating and exploding the reactive jet, the influence of the structural and performance parameters, and the explosion height of the reactive jet liner on the damage effect to the steel target was studied. A static explosion experiment was carried out, and the optimal structural and performance parameters for the reactive material and explosion height of the reactive jet liner were obtained.

11.
Materials (Basel) ; 14(8)2021 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-33920467

RESUMEN

Polytetrafluoroethylene (PTFE)/Al reactive material with different aluminum particle sizes were prepared by molding and sintering, and the effect of aluminum particle size on the impact behavior of PTFE/Al reactive material with a mass ratio of 50:50 was investigated. The results show that aluminum particle size has significant effects on the shock-reduced reaction diffusion, reaction speed, and degree of reaction of the PTFE/Al reactive material. At a moderate strain rate, the reaction delay of PTFE/Al increased, and the reaction duration and degree decreased, with the increase of aluminum particle size. Under the strong impact of explosive loading, aluminum particle size has little effect on the reaction delay, which maintains at about 1.5 µs-2.5 µs, but the reaction durability and degree of reaction of PTFE/Al decrease with increasing aluminum particle size. There is also a strain rate threshold for the shock-induced reaction of PTFE/Al reactive material, which is closely related to aluminum particle size. The shock-induced reaction occurs when the strain rate threshold is exceeded.

12.
Environ Sci Pollut Res Int ; 27(36): 45297-45310, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32785894

RESUMEN

It is necessary to determine an environmentally friendly method of reusing the vast amount of coal waste that is generated during coal preparation. This study evaluates the applicability of using weathered coal waste in a permeable reactive barrier to prevent groundwater contamination. Coal waste, with different weathering degrees, was obtained from two coal mining sites in South Jeolla Province, Korea. The reactivities of the coal waste with inorganic contaminants, such as copper, cadmium, and arsenic, were examined in batch and column experiments. The batch experiment results indicate that the coal waste removal efficiencies of copper (99.8%) and cadmium (95.4%) were higher than those of arsenic (71.0%). The maximum adsorption capacities of coal waste for copper, cadmium, and arsenic calculated from the Langmuir isotherm model were 4.440 mg/g, 3.660 mg/g, and 0.718 mg/g, respectively. The equilibrium of adsorption was attained within 8 h. The column experiment results reveal that the coal waste effectively removed inorganic contaminants under flow-through conditions. Faster breakthrough times were observed in single solute system (As(V) = 19.3 PV, Cu(II) = 47.6 PV) compared with binary solute system (As(V) = 27.8 PV, Cu(II) = 65.4 PV). To confirm the applicability of using coal waste in a groundwater environment, its decontamination ability was analyzed at low concentrations and under various pH conditions. To examine the potential ecological risks in the subsurface environment, a test to determine acute toxicity to Daphnia magna and a toxic characteristic leaching procedure (TCLP) test were conducted. The coal waste was found to satisfy appropriate standards. The acute toxicity test also confirmed the ecological safety of using coal waste in a groundwater environment. The acceptably high capacity and fast kinetics of inorganic contaminant sorption by the coal waste indicate it could potentially be employed as a reactive material. The recycling and application of this abundant waste material will contribute to solving both coal waste disposal and water pollution problems.


Asunto(s)
Arsénico , Agua Subterránea , Contaminantes Químicos del Agua , Adsorción , Arsénico/análisis , Carbón Mineral , República de Corea , Contaminantes Químicos del Agua/análisis
14.
Materials (Basel) ; 13(5)2020 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-32155873

RESUMEN

Phosphates may pose a threat to the aquatic ecosystem when there is a connection or a path between the soil and the aquatic ecosystem. Runoff and drainage ditches connect arable land with the waters of the receiver. Phosphates in the runoff and the ditches contribute to the negative phenomenon of surface water eutrophication. In order to prevent it, certain reactive materials are used which are capable of the selective removal of compounds by way of sorption or precipitation. Zeolites can be distinguished among the many reactive materials. Within the present analysis, the modification of a reactive material containing zeolites was carried out using calcium hydroxide solutions of different concentrations. A certain concentration of calcium hydroxide was created for use in further studies. In order to characterise the new material, an analysis was done of the chemical and mineral composition, as well as the porous texture and morphology. The efficacy of phosphate removal for its typical concentrations in drainage waters in Poland was confirmed by way of an experiment. Using a modified reactive material as an element of landscape structures may reduce the negative impact of phosphates on the quality of surface water.

15.
Materials (Basel) ; 12(23)2019 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-31795111

RESUMEN

Currently, PTFE/Al is widely used in the reactive fragmentation warhead. However, for the same explosive yield, the reactive fragments usually have a smaller damage-radius than the inert fragments because PTFE/Al has a poor penetration ability and needs an impact-speed up to 1000 m/s to stimulate its chemical reaction. To enhance the damage power of reactive fragments, six kinds of reactive materials (PTFE/Al, PTFE/B, PTFE/Si, PTFE/Al/B, PTFE/Al/Si, and PTFE/Al/CuO) based on PTFE were designed and studied. Through the drop weight system and the self-designed energy release test device, qualitative and quantitative analysis of the energy release ability of six kinds of reactive materials were carried out. The qualitative analysis results indicate that the reactions of PTFE/B and PTFE/Si are weak under the impact of drop hammer with only a very weak fire light produced, while the reactions of PTFE/Al, PTFE/Al/B, PTFE/Al/Si, and PTFE/Al/CuO are relatively intense, and the reaction of PTFE/Al/Si is the most intense. Through the self-designed energy release test device, the energy release ability of the reactive material was quantitatively compared and analyzed. The results show that the energy release ability of the four formulations were as follows: PTFE/Al/Si > PTFE/Al/CuO > PTFE/Al/B > PTFE/Al. Therefore, it can be concluded that the PTFE/Al/Si formulation is a new reactive material with strong energy release ability, which can be a new choice for reactive fragment.

16.
J Microbiol Biotechnol ; 28(12): 2113-2120, 2018 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-30380821

RESUMEN

Cross-reactive material 197 (CRM197) is a non-toxic mutant of diphtheria toxin containing a single amino acid substitution of glycine 52 with glutamic acid. CRM197 has been used as a carrier protein for poorly immunogenic polysaccharide antigens to improve immune responses. In this study, to develop a sandwich ELISA that can detect CRM197 and CRM197 conjugate vaccines, we generated a human anti-CRM197 monoclonal antibody (mAb) 3F9 using a phage-displayed human synthetic Fab library and produced mouse anti-CRM197 polyclonal antibody. The affinity (KD) of 3F9 for CRM197 was 3.55 nM, based on Bio-Layer interferometry, and it bound specifically to the B fragment of CRM197. The sandwich ELISA was carried out using 3F9 as a capture antibody and the mouse polyclonal antibody as a detection antibody. The detection limit of the sandwich ELISA was <1 ng/ml CRM197. In addition, the 3F9 antibody bound to the CRM197-polysaccharide conjugates tested in a dose-dependent manner. This ELISA system will be useful for the quantification and characterization of CRM197 and CRM197 conjugate vaccines. To our knowledge, this study is the first to generate a human monoclonal antibody against CRM197 and to develop a sandwich ELISA for CRM197 conjugate vaccines.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Proteínas Bacterianas/inmunología , Técnicas de Visualización de Superficie Celular/métodos , Ensayo de Inmunoadsorción Enzimática/métodos , Vacunas Conjugadas/inmunología , Animales , Anticuerpos Antibacterianos , Anticuerpos Monoclonales/aislamiento & purificación , Formación de Anticuerpos , Reacciones Antígeno-Anticuerpo , Antígenos Bacterianos/genética , Antígenos Bacterianos/inmunología , Proteínas Bacterianas/genética , Mapeo Epitopo , Humanos , Inmunoglobulina G/inmunología , Límite de Detección , Ratones , Modelos Moleculares
17.
Vaccines (Basel) ; 5(2)2017 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-28513561

RESUMEN

Smoking remains one of the major causes of morbidity and mortality worldwide. One approach to assisting smoking cessation is via anti-nicotine vaccines, composed of nicotine-like haptens conjugated to a carrier protein plus adjuvant(s). We have previously shown that the carrier, hapten, linker, hapten load, degree of conjugate aggregation, and presence of adducts can each influence the function (nicotine-binding capacity) of the antibody (Ab) induced. Herein, we extend those findings and show that tertiary structure is also critical to the induction of functional immune responses and that this can be influenced by conjugation conditions. We evaluated immunogenicity in mice using six lots of NIC7-CRM, a conjugate of 5-aminoethoxy-nicotine (Hapten 7), and a single point (glycine 52 to glutamic acid) mutant nontoxic form of diphtheria toxin, cross-reactive material 197 (CRM197), which were synthesized under different reaction conditions resulting in conjugates with equivalent molecular characteristics (hapten load, aggregates, adducts), but a different tertiary structure. When tested in mice, better functional responses (reduced nicotine in the brain of immunized animals relative to non-immunized controls) were obtained with conjugates with a more closed structure than those with an open conformation. These studies highlight the need for a better understanding of the physicochemical properties of small molecule conjugate vaccines.

18.
Vaccine ; 31(46): 5486-94, 2013 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-24004465

RESUMEN

BACKGROUND: Given the concurrent administration of multiple vaccines during routine pediatric immunizations, efforts to elucidate the potential interference of any vaccine on the immune response to the concomitantly administered antigens are fundamental to prelicensure clinical research. METHODS: This phase 3 randomized controlled trial of 13-valent pneumococcal conjugate vaccine (PCV13) versus 7-valent PCV (PCV7) assessed immune responses of concomitantly administered meningococcal group C conjugated to diphtheria toxin cross-reactive material 197 (MnCCV-CRM197) in a 2-dose infant series and 15-month toddler dose. RESULTS: 619 subjects were randomized, 315 to PCV13 and 304 to PCV7. MnCCV-CRM197-induced immune responses were similar between the PCV13 and PCV7 groups, with >97% of the subjects achieving a ≥1:8 meningococcal serum bactericidal assay (SBA) titer after both dose 2 and the toddler dose. Geometric mean titers were lower in the PCV13 group 191.22 (167.72, 218.02) versus 266.19 (234.86, 301.71) following dose 2 and 432.28 (361.22, 517.31) versus 730.84 (642.05, 831.91) following the toddler dose. The geometric mean (GM) meningococcal SBA titer ratios (PCV13/PCV7) were 0.72 after dose 2 and 0.59 after the toddler dose. The criteria for MnCCV-CRM197 non-inferiority for GM titers were satisfied after dose 2. Percent responders was similar up to titers of 1:128. PCV13 elicited substantial antipneumococcal responses against all 13 serotypes, with ≥90% of the subjects achieving an antibody concentration ≥0.35µg/mL after dose 3 in the infant series. Safety and tolerability were similar between the vaccine groups. CONCLUSIONS: Immunogenicity results of MnCCV-CRM197 for PCV13 compared with PCV7 included lower GMTs, but the clinical significance of this is unknown as the proportion of infants achieving protective MenC antibody titers was comparable in the two groups. Percent responders were similar up to titers of 1:128. PCV13 has an acceptable safety profile in infants and toddlers, while providing expanded coverage against pneumococcal disease.


Asunto(s)
Vacunas Meningococicas/administración & dosificación , Vacunas Meningococicas/inmunología , Vacunas Neumococicas/administración & dosificación , Vacunas Neumococicas/inmunología , Vacunación/métodos , Anticuerpos Antibacterianos/sangre , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/epidemiología , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/patología , Femenino , Voluntarios Sanos , Vacuna Neumocócica Conjugada Heptavalente , Humanos , Esquemas de Inmunización , Lactante , Masculino , Vacunas Meningococicas/efectos adversos , Vacunas Neumococicas/efectos adversos , España , Vacunación/efectos adversos
19.
Vaccine ; 31(35): 3594-602, 2013 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-23688525

RESUMEN

BACKGROUND: Unlike free polysaccharide vaccines, pneumococcal polysaccharide conjugate vaccines (PCVs) induce a T cell-dependent immune response and have the potential to provide an extended duration of protection with repeated vaccinations. METHODS: This was an extension of a previous study in pneumococcal vaccine-naïve adults aged 50-64 years in which adults 60-64 years of age were given 13-valent PCV (PCV13) or 23-valent pneumococcal polysaccharide vaccine (PPSV23) and adults aged 50-59 were given PCV13. In this follow up study conducted about 4 years later, the 60-64 year olds initially given PCV13 received PCV13 or PPSV23, and those initially given PPSV23 received another PPSV23. All adults aged 50-59 years were re-vaccinated with PCV13. Anti-pneumococcal opsonophagocytic activity (OPA) titers were measured before and 1 month after vaccination. RESULTS: A second PCV13 given about 4 years after a first vaccination induced OPA titers that were significantly higher than those following the initial vaccination for 7 of 13 serotypes in the older group, and 6 of 13 serotypes in the younger group, and responses to the remaining serotypes were largely non-inferior. In contrast, OPA titers following revaccination with PPSV23 were statistically significantly lower for 9 of the 13 serotypes, and non-inferior for the remaining serotypes, when compared to the responses to the first PPSV23. OPA titers in the older adults who received PPSV23 after initial PCV13 were significantly higher than those following a first PPSV23 for 10 of the 13 serotypes. CONCLUSION: In adults 50 to 64 years of age, initial vaccination with PCV13 establishes an immune state that results in recall anti-pneumococcal responses upon subsequent vaccination with either conjugated or free polysaccharide vaccine. In contrast, initial vaccination with PPSV23 results in an immune state in which subsequent PPSV23 administration yields generally lower responses compared with the initial responses.


Asunto(s)
Inmunización Secundaria , Vacunas Neumococicas , Neumonía Neumocócica/prevención & control , Vacunas Conjugadas , Anticuerpos Antibacterianos/sangre , Método Doble Ciego , Femenino , Humanos , Masculino , Persona de Mediana Edad , Vacunas Neumococicas/efectos adversos , Vacunas Neumococicas/inmunología , Vacunas Neumococicas/uso terapéutico , Neumonía Neumocócica/inmunología , Polisacáridos Bacterianos/inmunología , Streptococcus pneumoniae/inmunología , Estados Unidos , Vacunas Conjugadas/efectos adversos , Vacunas Conjugadas/inmunología , Vacunas Conjugadas/uso terapéutico
20.
Vaccine ; 31(35): 3577-84, 2013 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-23688526

RESUMEN

BACKGROUND: Streptococcus pneumoniae is a major cause of morbidity and mortality among adults 50 years of age and older in the United States. Pneumococcal conjugate vaccines are efficacious against pneumococcal disease in children and may also offer advantages in adults. METHODS: We performed a randomized, modified double-blind trial that compared a single dose of 13-valent pneumococcal conjugate vaccine (PCV13) with 23-valent pneumococcal polysaccharide vaccine (PPSV23) in 831 pneumococcal vaccine naive adults 60-64 years of age. An additional group of 403 adults 50-59 years of age received open-label PCV13. Anti-pneumococcal opsonophagocytic activity (OPA) titers were measured at baseline, and at 1 month and 1 year after vaccination. RESULTS: In the randomized trial, the month 1 post-vaccination OPA geometric mean titers in the PCV13 group were statistically significantly higher than in the PPSV23 group for 8 of the 12 serotypes common to both vaccines and for serotype 6A, a serotype unique to PCV13, and were comparable for the other 4 common serotypes. The immune response to PCV13 was generally greater in adults 50-59 years of age compared to adults 60-64 years of age. OPA titers declined from 1 month to 1 year after PCV13 administration but remained higher than pre-vaccination baseline titers. CONCLUSIONS: PCV13 induces a greater functional immune response than PPSV23 for the majority of serotypes covered by PCV13, suggesting that PCV13 could offer immunological advantages over PPSV23 for prevention of vaccine-type pneumococcal infection.


Asunto(s)
Vacunas Neumococicas , Neumonía Neumocócica/prevención & control , Streptococcus pneumoniae/inmunología , Vacunas Conjugadas , Anticuerpos Antibacterianos/sangre , Método Doble Ciego , Femenino , Humanos , Masculino , Persona de Mediana Edad , Vacunas Neumococicas/efectos adversos , Vacunas Neumococicas/inmunología , Vacunas Neumococicas/uso terapéutico , Neumonía Neumocócica/inmunología , Polisacáridos Bacterianos/inmunología , Estados Unidos , Vacunas Conjugadas/efectos adversos , Vacunas Conjugadas/inmunología , Vacunas Conjugadas/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA