Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Heliyon ; 10(14): e34447, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39130465

RESUMEN

Timely decontamination will reduce the consequences of a radiological contamination event. For this purpose, pressure washing can be rapidly deployed, but its effectiveness will change if the interactions between the surface and radionuclides changes as the contamination "ages" under the influence of time and precipitation. While effects of this aging have been reported for dissolved cesium, they have not been studied for radionuclides present as particulate, e.g., fallout. This work studied the effects of aging on decontamination with low (<280 kPa/40 psi) and mild (14,000 kPa/2000 psi) pressure washing, on concrete contaminated with surrogate fallout consisting of soluble Cs-137, 0.5 µm silica particles, and 2 µm silica particles. The samples were aged up to 59 days (time between contamination and decontamination) with and without simulated precipitation. The percent removal following decontamination of the soluble cesium decreased over the first ten days of aging until the removals were less than 10 % for both low and mild pressure washing. The particle decontamination was independent of aging time but decontaminating via mild pressure washing (>80 % particle removal) significantly outperformed decontaminating by low pressure washing by flowing solution across (parallel to) the contaminated surface (<25 % particle removal). The observed changes in decontamination efficacy are explained via measurements of the penetration depth of contaminants. For soluble cesium, the results compared favorably with prior studies and theoretical treatment of cesium penetration, and they yielded additional insight into the effect of washing pressures on decontamination. There are no comparable studies for particulate contamination, so this study resulted in several novel observations which are operationally important for timely decontamination of surfaces following a radiological incident. It also suggests an evidence-based pressure washing procedure for timely decontamination of soluble and insoluble radionuclides which can be used throughout the emergency phase and into the early recovery phase.

2.
Chemosphere ; 353: 141570, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38447900

RESUMEN

Selective adsorption is the most suitable technique for eliminating trace amounts of 137Cs from various volumes of 137Cs-contaminated water, including seawater. Although various metal ferrocyanide (MFC)-functionalized magnetic adsorbents have been developed for the selective removal of 137Cs and magnetic recovery of adsorbents, their adsorption capacity for Cs remains low. Here, magnetic hierarchical titanium ferrocyanide (mh-TiFC) was synthesized for the first time for enhanced Cs adsorption. Hierarchical TiFC, comprising 2-dimensional TiFC flakes, was synthesized on SiO2-coated magnetic Fe3O4 particles using a sacrificial TiO2 shell as a source of Ti4+ via a reaction with ferrocyanide under acidic conditions. The resultant mh-TiFC exhibited the highest maximum adsorption capacity (434.8 mg g-1) and enhanced Cs selectivity with an excellent Kd value (6,850,000 mL g-1) compared to those of previously reported magnetic Cs adsorbents. This enhancement was attributed to the hierarchical structure, which reduced intracrystalline diffusion and increased the surface area available for direct Cs adsorption. Additionally, mh-TiFC (0.1 g L-1) demonstrated an excellent removal efficiency of 137Cs exceeding 99.85% for groundwater and seawater containing approximately 22 ppt 137Cs. Therefore, mh-TiFC offers promising applications for the treatment of 137Cs-contaminated water.


Asunto(s)
Radioisótopos de Cesio , Cesio , Contaminantes Químicos del Agua , Cesio/química , Agua/química , Titanio , Ferrocianuros/química , Dióxido de Silicio/química , Adsorción , Fenómenos Magnéticos , Contaminantes Químicos del Agua/análisis
3.
J Fish Biol ; 104(3): 866-877, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38009686

RESUMEN

To understand the relationship between the radioactive cesium (Cs) concentration in muscle of Japanese flounder Paralichthys olivaceus and the species' biological characteristics (size, sex, and age) under conditions of ecological equilibrium (i.e., distributed among ecosystem components over sufficient time, and with nearly constant ratios of Cs concentration in organisms to the concentration in water) as existed before the accident at the Fukushima Dai-ichi Nuclear Power Station (FDNPS), Japan, in 2011, we examined stable Cs, as it is thought to exist in equilibrium in the environment and behave similarly to radioactive Cs in aquatic animals. The concentration of stable Cs in 241 P. olivaceus (range 216-782 mm total length [TL]) collected in Sendai Bay, approximately 90 km north of the FDNPS, in June-July 2015 was expressed as an exponential function with size as an independent variable; the results show the concentration of stable Cs doubled with an increase in TL of 442 mm. Next, to evaluate the cause of the size-dependent change in stable Cs concentration, we examined 909 individuals (200-770 mm TL) collected in September 2013-July 2015 to determine their feeding habit based on size. Analysis of the frequency of occurrence of prey organisms in stomach contents showed that sand lance Ammodytes japonicus (55-180 mm standard length [SL]) was the most consistently consumed across size classes. Analysis on a wet-mass basis showed that A. japonicus and anchovy Engraulis japonicus (65-130 mm SL) were the main food of P. olivaceus sized 200-599 mm TL, whereas chub mackerel Scomber japonicus (120-230 mm SL) and two species of flatfishes (180-205 mm SL) were abundant in the diet of P. olivaceus sized ≥600 mm TL. All these prey items were presumed to have similar concentrations of stable Cs. Based on the above, the effect of diet on the relationship between stable Cs in muscle and fish size was considered negligible. That the diet of P. olivaceus largely did not change with size was also confirmed by C and N stable isotope ratios in P. olivaceus and their prey species. Therefore, the Cs-size relationship is probably determined by changes in the balance between the rate of Cs intake from food and seawater and the excretion rate during growth, both of which change as functions of body mass. Values of stable Cs concentrations among environmental components and animals appear to be a valid indicator for understanding the radioactive Cs distribution in the marine environment and aquatic animals under the equilibrium state, as existed before the 2011 nuclear accident.


Asunto(s)
Peces Planos , Lenguado , Accidente Nuclear de Fukushima , Animales , Tamaño Corporal , Cesio/análisis , Radioisótopos de Cesio/análisis , Dieta/veterinaria , Ecosistema , Japón , Masculino , Femenino
4.
Mar Pollut Bull ; 195: 115463, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37660664

RESUMEN

This study investigates the dispersion behavior of 137Cs and evaluates its origin (atmospheric deposition or direct ocean release) from the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident using a Lagrangian particle tracking model. The ocean circulation fields based on the Modular Ocean Model Version 5 (MOM5) were adopted for the simulation. The MOM5 results represented the formation and migration of subtropical mode water (STMW) comparable with observations and reanalysis data. Particularly, anticyclonic eddies south of the Kuroshio extension promoted surface mixing over 300 m in the cooling season. The particle tracking simulation reproduced well the maximum subsurface activity between 142 and 146°E, where STMW is deep owing to anticyclonic eddies, compared to the activity found via measurements conducted around 149°E in the winter of 2012. It also demonstrated that the 137Cs of the tropical and subtropical regions (10-35°N, 142-146°E) in the winter of 2012 almost entirely originated from atmospheric deposition.


Asunto(s)
Accidente Nuclear de Fukushima , Monitoreo de Radiación , Contaminantes Radiactivos del Agua , Estaciones del Año , Contaminantes Radiactivos del Agua/análisis , Radioisótopos de Cesio/análisis , Agua , Japón , Plantas de Energía Nuclear
5.
Chemosphere ; 339: 139617, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37495045

RESUMEN

Wide-area surface decontamination is essential during the sudden release of radioisotopes to the public, such as nuclear accidents or terrorist attacks. A self-generated hydrogel comprising a reversible complex between poly(vinyl alcohol) (PVA) and phenylboronic acid-grafted poly(methyl vinyl ether-alt-mono-sodium maleate) (PBA-g-PMVE-SM) was developed as a new surface decontamination coating agent to remove radioactive cesium from surfaces. The simultaneous application of PVA and PBA-g-PMVE-SM aqueous polymer solutions containing sulfur-zeolite to contaminated surfaces resulted in the spontaneous formation of a PBA-diol ester bond-based hydrogel. The sulfur-zeolite suspended in the hydrogel selectively removed 137Cs from the contaminated surface and was easily separated from the dissociable used hydrogel. This removal was performed by simple water rinsing without costly incineration to remove the organic materials for final disposal/storage of the radioactive waste, making it suitable for practical wide-area surface decontamination. In radioactive tests, the hydrogel containing sulfur-chabazite (S-CHA) showed substantial 137Cs removal efficiencies of 96.996% for painted cement and 63.404% for cement, which are 2.33 times better than the values for the commercial surface decontamination coating agent DeconGel. Due to its excellent zeolite ion-exchange ability, our hydrogel system has great potential for removing various hazardous contaminants, including radionuclides, from the surface.


Asunto(s)
Hidrogeles , Zeolitas , Alcohol Polivinílico , Descontaminación , Radioisótopos de Cesio/análisis , Cesio , Agua , Maleatos
6.
Chemosphere ; 328: 138566, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37011818

RESUMEN

Radioactive Cs-rich microparticles (CsMPs) released from the Fukushima Daiichi Nuclear Power Plant (FDNPP) are a potential health risk through inhalation. Little has been documented on the occurrence of CsMPs, particularly their occurrence inside buildings. In this study, we quantitatively analyze the distribution and number of CsMPs in indoor dust samples collected from an elementary school located 2.8 km to the southwest of FDNPP. The school had remained deserted until 2016. Then, using a modified version of the autoradiography-based "quantifying CsMPs (mQCP) method," we collected samples and determined the number of CsMPs and Cs radioactive fraction (RF) values of the microparticles (defined as total Cs activity from CsMPs/bulk Cs activity of the entire sample). The numbers of CsMPs ranged from 653 to 2570 particles/(g dust) and 296-1273 particles/(g dust) on the first and second floors of the school, respectively. The corresponding RFs ranged between 6.85 - 38.9% and 4.48-6.61%, respectively. The number of CsMPs and RF values in additional outdoor samples collected near the school building were 23-63 particles/(g dust or soil) and 1.14-1.61%, respectively. The CsMPs were most abundant on the school's first floor near to the entrance, and the relative abundance was higher near the stairs on the second floor, indicating a likely CsMP dispersion path through the building. Additional wetting of the indoor samples combined with autoradiography revealed that indoor dusts had a distinct absence of intrinsic, soluble Cs species, such as CsOH. These combined observations indicate that a significant amount of poorly soluble CsMPs were likely contained in initial radioactive airmass plumes from the FDNPP and that the microparticles penetrated buildings. CsMPs could still be abundant at the location, with locally high Cs activity in indoor environments near to openings.


Asunto(s)
Accidente Nuclear de Fukushima , Monitoreo de Radiación , Contaminantes Radiactivos del Agua , Radioisótopos de Cesio/análisis , Plantas de Energía Nuclear , Monitoreo de Radiación/métodos , Cesio , Polvo , Instituciones Académicas , Japón , Contaminantes Radiactivos del Agua/análisis
7.
Environ Res ; 221: 115309, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36646200

RESUMEN

To date, radiocesium (137Cs) has been considered stable in the form of pollucite mineralized through high-temperature heat treatment. This study presented a possibility through experimental results that the entire medium exists as amorphous aluminosilicate at a relatively low temperature, but cesium is partially and preferentially converted from a composite adsorbent into pollucite. Cesium lowers the eutectic point within the system and initiates the nucleation of pollucite prior to other elements. We confirmed that the partial mineral phase of cesium showed the same chemical stability as when the entire medium was converted to pollucite. X-ray absorption spectroscopy provided direct evidence for this phenomenon; also, the stability results of radioactive cesium shown through a series of sintering experiments supported the conclusion. This method can be applied as a method to immobilize radioactive cesium under relatively mild temperature conditions of atmospheric pressure, while eliminating the problem of diffusion due to its volatilization.


Asunto(s)
Radioisótopos de Cesio , Cesio , Cesio/análisis , Cesio/química , Silicatos de Aluminio
8.
J Hazard Mater ; 442: 129967, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36155300

RESUMEN

There is a growing interest in advanced materials that can effectively treat wastewater contaminated with radioactive cesium (137Cs), which is an extremely hazardous material. Here, we report a new class of Cs-adsorptive membranes compactly assembled with Cs-adsorptive Prussian blue (PB) particles. The PB particle assembly was formed via an in-situ interfacial reaction between two PB precursors in the presence of tannic acid (TA) as a binder on a porous support. While the interfacial reaction enabled the formation of a defect-less PB network, TA enhanced the PB-PB and PB-support compatibilities, consequently producing a uniform, densely packed PB assembly near the support surface. The fabricated TA-assisted PB membrane (PB/TA-M) synergistically rejected Cs via a combination of adsorption and membrane filtration, although adsorption predominantly determined Cs rejection initially. Hence, the PB/TA-M membrane showed considerably higher Cs removal performance than commercial nanofiltration (NF) and reverse osmosis (RO) polyamide (PA) membranes for a sufficiently long operation time. Furthermore, the PB/TA-M membrane displayed excellent radioactive 137Cs removal performance, significantly exceeding those of commercial NF and RO PA membranes due to its higher radiation stability, indicating its viability for application in treating actual radioactive wastewater.


Asunto(s)
Taninos , Aguas Residuales , Adsorción , Nylons , Cesio , Sustancias Peligrosas
9.
J Environ Manage ; 329: 116983, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36565500

RESUMEN

Radioactive cesium-rich microparticles (CsMPs) derived from the Fukushima Daiichi Nnuclear Power Plant accident were detected from soils and river water around Fukushima Prefecture, Japan. Because CsMPs are insoluble and rich in radioactive cesium (RCs), they may cause the overestimation of solid-water distribution coefficient (Kd) for RCs in the water. Previous studies showed the proportion of RCs derived from CsMPs on RCs concentration in soils collected from areas with different contaminated levels. Because the proportion of RCs concentration derived CsMPs to the RCs concentration of soils in the less contaminated areas is higher than that in the highly contaminated areas, the effect of CsMPs on particulate RCs concentration in river water may be larger in the less contaminated areas. However, the difference in the effects of CsMPs on the particulate RCs concentration and Kd in river water flowing through watersheds with different contaminated levels has not been clarified. In this study, we investigated the effect of CsMPs on the particulate RCs concentration and Kd in two rivers, Takase River and Kami-Oguni River, flowing through the watersheds with different RCs contaminated levels in Fukushima Prefecture. CsMPs might enter rivers due to soil erosion because they were detected only in some samples collected from both rivers during flood events. CsMPs accounted for more than half of particulate RCs concentration in some water samples collected in the flood condition. In particular, the proportion of CsMPs in particulate RCs for the Kami-Oguni River was greater than that for the Takase River. However, when evaluating for the entire water sampling in the flood condition, a proportion of RCs concentration derived from CsMPs in the average RCs concentrations per unit mass of SS in both river waters collected in the flood condition was not large. CsMPs might temporarily increase the particulate RCs concentration and Kd in the flood event, but CsMPs did not significantly affect them when evaluated throughout the event.


Asunto(s)
Accidente Nuclear de Fukushima , Monitoreo de Radiación , Contaminantes Radiactivos del Agua , Radioisótopos de Cesio/análisis , Ríos , Contaminantes Radiactivos del Agua/análisis , Cesio , Agua , Polvo , Japón , Plantas de Energía Nuclear , Suelo
10.
Environ Sci Pollut Res Int ; 30(12): 34460-34467, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36509956

RESUMEN

Cesium-137 (137Cs) is one of the radioactive substances that was released into the environment as a result of the Fukushima nuclear disaster. Radiocesium exposure is of great concern due to its potential environmental implications. However, research on 137Cs removal using algae is still limited. This is the first report to describe the kinetic properties of 137Cs uptake by Vacuoliviride crystalliferum in the presence and absence of potassium. In this work, we studied the kinetic properties of 137Cs uptake using a freshwater microalga, V. crystalliferum (NIES 2860). We also analyzed the effects of temperature, light, and potassium (K) on the 137Cs uptake. Results showed that V. crystalliferum can remove up to 90% of 157 nM 137Cs within an hour. At 20 °C, the removal increased by up to 96%, compared to less than 10% at 5 °C. However, the removal was inhibited by nearly 90% in the dark compared to the removal in the light, implying that V. crystalliferum cells require energy to accumulate 137Cs. In the inhibition assay, K concentrations ranged from 0 to 500 µM and the inhibitory constant (Ki) for K was determined to be 16.7 µM. While in the uptake assay without potassium (- K), the Michaelis constant (Km) for Cs was 45 nM and increased to 283 nM by the addition of 20 µM potassium (+ K), indicating that V. crystalliferum had a high affinity for 137Cs. In addition, the maximum uptake velocity (Vmax) also increased from 6.75 to 21.10 nmol (mg Chl h)-1, implying the existence of Cs active transport system. In conclusion, V. crystalliferum is capable of removing radioactive 137Cs from the environment and the removal was favorable at both normal temperature and in the light.


Asunto(s)
Accidente Nuclear de Fukushima , Microalgas , Monitoreo de Radiación , Radioisótopos de Cesio/análisis , Cesio/análisis , Potasio/análisis , Japón
11.
Igaku Butsuri ; 42(3): 164-169, 2022.
Artículo en Japonés | MEDLINE | ID: mdl-36184427

RESUMEN

The Tohoku-Pacific Ocean Earthquake that occurred on March 11, 2011 and the resulting tsunami caused the loss of many people and extensive damage in a wide area. Among the anthropogenic radionuclides dispersed from the Fukushima Daiichi Nuclear Power Plant, 134Cs and 137Cs have very long half-lives of approximately 2 years and 30 years, respectively, and there are concerns about their uptake into soil and living things. This paper describes a study conducted by the authors' group on radiocesium activity concentrations in the environment.


Asunto(s)
Accidente Nuclear de Fukushima , Monitoreo de Radiación , Contaminantes Radiactivos del Agua , Cesio , Radioisótopos de Cesio/análisis , Humanos , Japón , Plantas de Energía Nuclear , Monitoreo de Radiación/métodos , Suelo , Contaminantes Radiactivos del Agua/análisis
12.
Molecules ; 27(19)2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36235017

RESUMEN

Nuclear accidents and decommissioning in the nuclear industry would release a large number of radioactive aerosols which endangers the natural environment and the health of workers. Therefore, there is an urgent need for environment-friendly aerosol suppressants to control and handle environmental pollution problems caused by radioactive aerosols. In this paper, sodium alginate (SA), a type of polyphenol material (TP), and alkyl glycosides (APGs) were selected as the components of the compound aerosol suppressant and the optimal proportion was generated via the method of D-optimal mixture design. Furthermore, the cesium aerosol sedimentation effect of the optimized compound aerosol suppressants was evaluated via sedimentation efficiency, the change in particle concentration cumulative concentration fraction of the cesium aerosol sedimentation process. The results showed that the aerosol sedimentation efficiency was 99.82% which was much higher than nature settlement, 18.6% and water spraying sedimentation, 43.3%. Moreover, after spraying the compound suppressant, it displayed a good effect on settling the cesium aerosol particles with a diameter of less than 1 µm, as the concentration of particles was reduced from 55.49% to 44.53%. Finally, the sedimentation mechanism of the compound aerosol suppressant and cesium aerosol particles, such as the coagulation effect, was analyzed using the particle size distribution.


Asunto(s)
Cesio , Polifenoles , Aerosoles , Alginatos , Biomasa , Glicósidos , Humanos , Tamaño de la Partícula , Agua
13.
Environ Pollut ; 311: 119962, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35981638

RESUMEN

We measured the concentrations of cesium isotopes (133Cs, 134Cs, and 137Cs) in zooplankton samples collected in waters off the east coast of Japan from May 2015 to June 2020. By combining these data with those obtained previously from May 2012 to February 2015, we evaluated the long-term impacts of the Fukushima Dai-ichi Nuclear Power Plant accident on marine zooplankton. Relatively high 137Cs concentrations in zooplankton, exceeding 10 Bq/kg-dry weight, were sporadically observed until June 2016, regardless of year or station. After May-June 2017, 137Cs concentrations decreased to below 1 Bq/kg-dry at most stations, and by May 2020, concentrations were below 0.5 Bq/kg-dry except those off Fukushima Prefecture. Since the accident, the 137Cs/133Cs atom ratios of zooplankton samples were higher than those of ambient seawater until 2019, but in May-June 2020 the ratios matched those of seawater except off Fukushima Prefecture. Highly radioactive particles were not detected in zooplankton samples by autoradiography using imaging plates after May-June 2017, although they were before. Therefore, the persistence of elevated 137Cs/133Cs ratios in zooplankton relative to seawater for nine years after the accident was probably due to the incorporation of highly radioactive particles (cesium-bearing particles or clay-mineral aggregates with highly adsorbed radiocesium) onto/into zooplankton for several years after the accident. However, since at least May-June 2017, these elevated ratios have likely been caused by small highly radioactive particles (or larger particles disaggregated into small pieces) entering the ocean from land via rivers or directly discharged from the Fukushima Nuclear Power Plant. Microplastics enriched with radiocesium with higher 137Cs/133Cs ratios than seawater may have also contributed 137Cs to the zooplankton.


Asunto(s)
Accidente Nuclear de Fukushima , Monitoreo de Radiación , Contaminantes Radiactivos del Agua , Animales , Cesio , Radioisótopos de Cesio/análisis , Japón , Plantas de Energía Nuclear , Plásticos , Contaminantes Radiactivos del Agua/análisis , Zooplancton
14.
Food Saf (Tokyo) ; 10(1): 1-12, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35510072

RESUMEN

We investigated the concentration of radioactive cesium (r-Cs: 134Cs and 137Cs) in commercially-available foods to confirm the effectiveness of pre-shipment radioactive material inspections mainly conducted by local governments. We focused on selected production areas and foods with high probability of r-Cs detection. To this end, we evaluated 715, 685, and 683 samples using scintillation spectrometer and high-purity germanium γ-spectrometer in fiscal years 2017, 2018, and 2019, respectively. The results accounted for 9 samples (1.3%), 10 samples (1.5%), and 5 samples (0.7%) for each fiscal year exceeded the standard limit of radioactive material (100 Bq/kg as r-Cs concentration for general foods). Although we selected and evaluated foods with high probability of r-Cs detection, percentage of samples exceeding the standard limit in each fiscal year was very low, less than 2% to be exact. This suggests that food management system, including pre-shipment inspections, were effectively functioning. In addition, samples exceeding the standard limit were bound to edible wild plants and wild mushrooms, and log-cultivated mushrooms. The former is consider to be difficult for cultivation/feeding control, and the latter was know to be parts of foods greatly affected by radioactive materials. This suggests that the concentration of r-Cs in these items remains at relatively high levels. In contrast, r-Cs was not detected in items with controalble cultivation/feeding. Based on these observations, it is better to be inspected on more difficult-to-cotrol cultivation/feeding items, in order to achieve further streamlining and improving of inspection efficiency. Our results indicate that r-Cs concentration in commercially-available foods of easy-to cultivation/feeding control, such as general vegetables, fruits, and meat, have been well-controlled in Japan, however, difficult-to-cultivation/feeding control items need to be more paid attention to r-Cs concentrations.

15.
Mar Pollut Bull ; 178: 113597, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35366555

RESUMEN

It is essential to evaluate secondary migration caused by riverine input and resuspension from seabed sediments to estimate the future distribution of radioactive cesium (137Cs) in the coastal area off Fukushima Prefecture. In particular, the inflow from rivers cannot be ignored because most of the 137Cs inflow from rivers is deposited on the coast without elute into seawater. Two mooring systems were installed near the Ukedo River's mouth (Fukushima Prefecture) from February 2017 to February 2018. The first contained a sediment trap system, collecting sinking particles during the period. The second comprised a turbidity sensor and a current sensor. The contribution of resuspension and inflow from the river to the mass flux was quantitatively evaluated using multiple regression equations. The results showed that resuspension caused 79%-83% of secondary 137Cs migration in nearshore areas, whereas the influence of riverine 137Cs input on the sediment was only 7% per year.


Asunto(s)
Accidente Nuclear de Fukushima , Monitoreo de Radiación , Radiactividad , Contaminantes Radiactivos del Agua , Sedimentos Geológicos , Contaminantes Radiactivos del Agua/análisis
16.
J Environ Manage ; 306: 114409, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35032940

RESUMEN

After the accident at the Fukushima Daiichi nuclear power plant in Japan, the migration of radioactive cesium (Cs) in soils has become a crucial issue since this can negatively affect human health and the surrounding environment. Dissolved organic matter (DOM) may have different influences on Cs migration in soils depending on Cs adsorption sites with different selectivity. It is unclear how DOM affects the rapid migration of Cs in soils under flowing water conditions during rainfall events. This study evaluated the effects of DOM on Cs migration in weathered granite soil depending on Cs adsorption sites by conducting laboratory experiments under different DOM conditions and Cs concentrations in the liquid phase. Cs concentration can affect the fraction of Cs adsorbed onto differently selective sites, and DOM can have different influences on Cs migration in the soil accordingly. Under condition of high-Cs concentration, the DOM adsorbed on the soil reduced Cs migration due to increasing Cs electrostatic adsorption to less selective sites in the soil. Meanwhile, under low-Cs concentration, the DOM adsorbed on the soil enhanced Cs migration because the DOM on the soil decreased the Cs adsorption to highly selective sites. Furthermore, DOM in the liquid phase detached the Cs adsorbed on the less selective sites and enhanced Cs migration in the soil, regardless of the Cs concentration.


Asunto(s)
Accidente Nuclear de Fukushima , Monitoreo de Radiación , Contaminantes Radiactivos del Suelo , Cesio/análisis , Radioisótopos de Cesio/análisis , Materia Orgánica Disuelta , Humanos , Japón , Dióxido de Silicio , Suelo , Contaminantes Radiactivos del Suelo/análisis , Agua
17.
Artículo en Inglés | MEDLINE | ID: mdl-34501532

RESUMEN

Radionuclide contamination in terrestrial ecosystems has reached a dangerous level. The major artificial radionuclide present in the environment is cesium-137 (137-Cs). In humans, animals, and plants cesium ion (Cs+) behaves like potassium ion (K+) and it is localized mainly inside the cells. Pancreas and salivary glands secrete Cs in the intestine thus eliminating about 14% of ingested Cs with the feces, the remaining 86% is eliminated by the kidney with the urine. Ingested radiocesium can also cause in humans several cases of pancreatitis with secondary diabetes (type 3c), which are both on the rise in the world. The Author studied the correlation between the geographical map of mortality from pancreatic cancer (PC) and the map of nuclear plant accidents, atomic bomb testing, and radioactive fallout. The worldwide death rate of PC is increasing, but the exact cause is still not known. Published data in medical literature at World, European and Italian levels are reviewed and compared. 137-Cs, with a half-life of about 30 years, is still present in the environment for about 300-600 years. Autoradiographic studies in mice have shown that 137-Cs is concentrated in greater quantity in the pancreas, particularly in exocrine cells, where most malignant PCs originate. Some methods of radiocesium removal and PC prevention are also suggested. But there is still a persistent, and not entirely disinterested, the controversy between damage from high and low exposure to ionizing radiations.


Asunto(s)
Accidente Nuclear de Fukushima , Neoplasias Pancreáticas , Exposición a la Radiación , Monitoreo de Radiación , Contaminantes Radiactivos del Suelo , Animales , Biología , Cesio , Radioisótopos de Cesio/análisis , Ecosistema , Japón , Ratones , Contaminantes Radiactivos del Suelo/análisis
18.
J Hazard Mater ; 420: 126654, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34329079

RESUMEN

Prussian blue (PB) has been well known as a pigment crystal to selectively sequestrate the radioactive cesium ion released from aqueous solutions owing to PB cage size similar to the cesium ion. Because the small size of PB is hard to deal with, the adsorbents containing PB have been prepared in the form of composites causing low sequestration efficiency of cesium. In this study, securely anchored PB nanocrystals on the surface of millimeter-sized porous polyacrylamide (PAAm) spheres (PB@PAAm) have been prepared by the crystallization of PB on the Fe3+ adsorbed PAAm. The securely anchored PB nanocrystals have been demonstrated to be selective and efficient adsorbents for sequestration of the radioactive cesium. The well-interconnected-spherical pores and millimeter-sized diameter of the PB@PAAm adsorbents facilitated permeation of Cs+ into the adsorbent and ease of handling respectively. Especially the well-interconnected-spherical pores allowed that PB@PAAm showed 90% of its maximum Cs+ adsorption capacity within 30 min. The PB@PAAm showed an outstanding Cs+ capture ability of 374 mg/g, high removal efficiency of 85% even at low concentration of Cs+ (10 ng/L), and superior selectivity of Cs+ against interference ions of Na+, K+, Mg2+, and Ca2+.


Asunto(s)
Cesio , Nanopartículas , Resinas Acrílicas , Adsorción , Ferrocianuros , Porosidad
19.
Chemosphere ; 280: 130419, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33940450

RESUMEN

We reviewed washing of radioactive Cs-contaminated concrete and soil based on the fate of Cs in concrete and soil, including sorption materials for treatment of supernatant solution. In non-aged cement materials (the calcium silicate hydration (C-S-H) phase), it was possible to decontaminate Cs using ion exchange with monovalent cations, such as NH4+. The clay components in the soil and aggregates were important factors in optimization of the efficiency and mechanism for Cs decontamination with washing solution. The parameters (reagent component, pH, and temperature) of the washing solution should be determined considering soil mineral type (here, weathered biotite (WB) with vermiculite), since monovalent cations such as NH4+ and K+ can inhibit Cs decontamination due to collapse of the hydrated and expanded interlayer regions with cation exchange. In this case, hydrothermal treatment or H2O2 dosing was necessary to expand the collapsed interlayer region for Cs removal by washing with cation exchange or organic acids. Acid and a chelating agent significantly enhanced Cs-release with dissolution of the adsorbent layer containing iron and aluminum oxides. The important characteristics of important and emerging sorption materials for treatment of the radioactive Cs-contaminated supernatant after washing treatment are discussed. Sorbents for treatment of washing supernatant are divided in to two main categories. Clay minerals, metal hexacyanoferrates, and ammonium molybdophosphates are discussed in the inorganic class of materials. Hypercrosslinked polymers, supramolecular sorbents, carbon nanotubes, and graphene oxide are covered in the carbon-based sorbents for Cs removal from water.


Asunto(s)
Nanotubos de Carbono , Contaminantes Radiactivos del Suelo , Adsorción , Cesio , Radioisótopos de Cesio/análisis , Descontaminación , Peróxido de Hidrógeno , Suelo , Contaminantes Radiactivos del Suelo/análisis
20.
Materials (Basel) ; 14(5)2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33804371

RESUMEN

Prussian blue analogs (PBA) are widely studied for radioactive cesium decontamination. However, there are fewer works related to their post use storage. Considering the oxidative stabilization of the material after the selective uptake of Cs, the thermogravimetric properties in powder and bead form, with various Cs and other alkali metal ions adsorbed, and various heating rates were studied. TG-DTA taken in dry air condition shows an exothermic decomposition at ~270 °C. This temperature varied with the heating rate, mass, and the proportion of adsorbed ions. The best condition for complete oxidation of Prussian blue (PB) is found to be a gradual oxidative decomposition by heating in the temperature range of 200-220 °C until the total mass is decreased by >35%. After this, the temperature could be safely increased to >300 °C for the complete oxidative decomposition of PB that formed iron oxide and salt of the adsorbed Cs. A pilot scale test conducted using the radioactive Cs adsorbed Prussian blue microbeads (PB-b) confirmed that no Cs was released in the effluent air during the process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA