Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(36): 25349-25358, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39179534

RESUMEN

Quantum photonics promises significant advances in secure communications, metrology, sensing, and information processing/computation. Single-photon sources are fundamental to this endeavor. However, the lack of high-quality single photon sources remains a significant obstacle. We present here a paradigm for the control of single photon emitters (SPEs) and single photon purity by integrating monolayer WS2 with the organic ferroelectric polymer poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)). We demonstrate that the ferroelectric domains in the P(VDF-TrFE) film control the purity of single photon emission from the adjacent WS2. By switching the ferroelectric polarization, we reversibly tune the single photon purity between the semiclassical and quantum light regimes, with single photon purities as high as 94%. This demonstrates a method for modulating and encoding quantum photonic information, complementing more complex approaches. This multidimensional heterostructure introduces an approach for control of quantum emitters by combining the nonvolatile ferroic properties of a ferroelectric with the radiative properties of the zero-dimensional atomic-scale emitters embedded in the two-dimensional WS2 semiconductor monolayer.

2.
Nano Lett ; 24(32): 9777-9783, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39088739

RESUMEN

2D quantum materials have opened infinite doors, hosting intriguing phenomena and featuring incredible engineering potential. Whether these qualities can boost the use of 2D crystals for quantum applications remains an open field with yet unexplored paths.

3.
ACS Nano ; 18(33): 21886-21893, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39011947

RESUMEN

We perform laser spectroscopy at liquid helium temperatures (T = 2 K) to investigate single dibenzoterrylene (DBT) molecules doped in anthracene crystals of nanoscopic height fabricated by electrohydrodynamic dripping. Using high-resolution fluorescence excitation spectroscopy, we show that zero-phonon lines of single molecules in printed nanocrystals are nearly as narrow as the Fourier-limited transitions observed for the same guest-host system in the bulk. Moreover, the spectral instabilities are comparable to or less than one line width. By recording super-resolution images of DBT molecules and varying the polarization of the excitation beam, we determine the dimensions of the printed crystals and the orientation of the crystals' axes. Electrohydrodynamic printing of organic nano- and microcrystals is of interest for a series of applications, where controlled positioning of quantum emitters with narrow optical transitions is desirable.

4.
Nano Lett ; 24(18): 5529-5535, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38668677

RESUMEN

Quantum emitters are essential components of quantum photonic circuitry envisioned beyond the current optoelectronic state-of-the-art. Two dimensional materials are attractive hosts for such emitters. However, the high single photon purity required is rarely realized due to the presence of spectrally degenerate classical light originating from defects. Here, we show that design of a van der Waals heterostructure effectively eliminates this spurious light, resulting in purities suitable for a variety of quantum technological applications. Single photon purity from emitters in monolayer WSe2 increases from 60% to 92% by incorporating this monolayer in a simple graphite/WSe2 heterostructure. Fast interlayer charge transfer quenches a broad photoluminescence background by preventing radiative recombination through long-lived defect bound exciton states. This approach is generally applicable to other 2D emitter materials, circumvents issues of material quality, and offers a path forward to achieve the ultrahigh single photon purities ultimately required for photon-based quantum technologies.

5.
Sci Rep ; 14(1): 6920, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519600

RESUMEN

2D materials have important fundamental properties allowing for their use in many potential applications, including quantum computing. Various Van der Waals materials, including Tungsten disulfide (WS2), have been employed to showcase attractive device applications such as light emitting diodes, lasers and optical modulators. To maximize the utility and value of integrated quantum photonics, the wavelength, polarization and intensity of the photons from a quantum emission (QE) must be stable. However, random variation of emission energy, caused by the inhomogeneity in the local environment, is a major challenge for all solid-state single photon emitters. In this work, we assess the random nature of the quantum fluctuations, and we present time series forecasting deep learning models to analyse and predict QE fluctuations for the first time. Our trained models can roughly follow the actual trend of the data and, under certain data processing conditions, can predict peaks and dips of the fluctuations. The ability to anticipate these fluctuations will allow physicists to harness quantum fluctuation characteristics to develop novel scientific advances in quantum computing that will greatly benefit quantum technologies.

6.
Proc Natl Acad Sci U S A ; 121(14): e2308247121, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38551833

RESUMEN

Diamond color centers have proven to be versatile quantum emitters and exquisite sensors of stress, temperature, electric and magnetic fields, and biochemical processes. Among color centers, the silicon-vacancy (SiV[Formula: see text]) defect exhibits high brightness, minimal phonon coupling, narrow optical linewidths, and high degrees of photon indistinguishability. Yet the creation of reliable and scalable SiV[Formula: see text]-based color centers has been hampered by heterogeneous emission, theorized to originate from surface imperfections, crystal lattice strain, defect symmetry, or other lattice impurities. Here, we advance high-resolution cryo-electron microscopy combined with cathodoluminescence spectroscopy and 4D scanning transmission electron microscopy (STEM) to elucidate the structural sources of heterogeneity in SiV[Formula: see text] emission from nanodiamond with sub-nanometer-scale resolution. Our diamond nanoparticles are grown directly on TEM membranes from molecular-level seedings, representing the natural formation conditions of color centers in diamond. We show that individual subcrystallites within a single nanodiamond exhibit distinct zero-phonon line (ZPL) energies and differences in brightness that can vary by 0.1 meV in energy and over 70% in brightness. These changes are correlated with the atomic-scale lattice structure. We find that ZPL blue-shifts result from tensile strain, while ZPL red shifts are due to compressive strain. We also find that distinct crystallites host distinct densities of SiV[Formula: see text] emitters and that grain boundaries impact SiV[Formula: see text] emission significantly. Finally, we interrogate nanodiamonds as small as 40 nm in diameter and show that these diamonds exhibit no spatial change to their ZPL energy. Our work provides a foundation for atomic-scale structure-emission correlation, e.g., of single atomic defects in a range of quantum and two-dimensional materials.

7.
Adv Mater ; 36(25): e2314242, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38346232

RESUMEN

Strain-engineering in atomically thin metal dichalcogenides is a useful method for realizing single-photon emitters (SPEs) for quantum technologies. Correlating SPE position with local strain topography is challenging due to localization inaccuracies from the diffraction limit. Currently, SPEs are assumed to be positioned at the highest strained location and are typically identified by randomly screening narrow-linewidth emitters, of which only a few are spectrally pure. In this work, hyperspectral quantum emitter localization microscopy is used to locate 33 SPEs in nanoparticle-strained WSe2 monolayers with sub-diffraction-limit resolution (≈30 nm) and correlate their positions with the underlying strain field via image registration. In this system, spectrally pure emitters are not concentrated at the highest strain location due to spectral contamination; instead, isolable SPEs are distributed away from points of peak strain with an average displacement of 240 nm. These observations point toward a need for a change in the design rules for strain-engineered SPEs and constitute a key step toward realizing next-generation quantum optical architectures.

8.
ACS Nano ; 18(2): 1396-1403, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-37943020

RESUMEN

Perovskite nanocrystals (NCs) have attracted increasing interest in the realization of single-photon emitters owing to their ease of chemical synthesis, wide spectral tunability, fast recombination rate constant, scalability, and high quantum yield. However, the integration of a single perovskite NC into a photonic structure has yet to be accomplished. In this work, the integration of a highly stable individual zwitterionic ligand-based CsPbBr3 perovskite NC with a circular Bragg grating (CBG) is successfully demonstrated. The far-field radiation pattern of the NC inside the CBG exhibits high directionality toward a low azimuthal angle, which is consistent with the simulation results. A 5.4-fold enhancement in brightness is observed due to an increase in collection efficiency. Moreover, a 1.95-fold increase in the recombination rate constant is achieved. This study offers ultrafast (<100 ps) single-photon emission and an improved brightness of perovskite NCs, which are critical factors for practical quantum optical applications.

9.
Small ; : e2308676, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-38072780

RESUMEN

Highly emissive semiconductor nanocrystals, or so-called quantum dots (QDs) possess a variety of applications from displays and biology labeling, to quantum communication and modern security. Though ensembles of QDs have already shown very high photoluminescent quantum yields (PLQYs) and have been widely utilized in current optoelectronic products, QDs that exhibit high absorption cross-section, high emission intensity, and, most important, nonblinking behavior at single-dot level have long been desired and not yet realized at room temperature. In this work, infrared-emissive MAPbI3 -based halide perovskite QDs is demonstrated. These QDs not only show a ≈100% PLQY at the ensemble level but also, surprisingly, at the single-dot level, display an extra-large absorption cross-section up to 1.80 × 10-12 cm2 and non-blinking single photon emission with a high single photon purity of 95.3%, a unique property that is extremely rare among all types of quantum emitters operated at room temperature. An in-depth analysis indicates that neither trion formation nor band-edge carrier trapping is observed in MAPbI3 QDs, resulting in the suppression of intensity blinking and lifetime blinking. Fluence-dependent transient absorption measurements reveal that the coexistence of non-blinking behavior and high single photon purity in these perovskite QDs results from a significant repulsive exciton-exciton interaction, which suppresses the formation of biexciton, and thus greatly reduces photocharging. The robustness of these QDs is confirmed by their excellent stability under continuous 1 h electron irradiation in high-resolution transmission electron microscope inspection. It is believed that these results mark an important milestone in realizing nonblinking single photon emission in semiconductor QDs.

10.
Nano Lett ; 23(22): 10532-10537, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37917860

RESUMEN

Key requirements for quantum plasmonic nanocircuits are reliable single-photon sources, high coupling efficiency to the plasmonic structures, and low propagation losses. Self-assembled epitaxially grown GaAs quantum dots are close to ideal as stable, bright, and narrowband single-photon emitters. Likewise, wet-chemically grown monocrystalline silver nanowires are among the best plasmonic waveguides. However, large propagation losses of surface plasmons on the high-index GaAs substrate prevent their direct combination. Here, we show by experiment and simulation that the best overall performance of the quantum plasmonic nanocircuit based on these building blocks is achieved in the intermediate field regime with an additional spacer layer between the quantum dot and the plasmonic waveguide. High-resolution cathodoluminescence measurements allow a precise determination of the coupling distance and support a simple analytical model to explain the overall performance. The coupling efficiency is increased up to four times by standing wave interference near the end of the waveguide.

11.
ACS Nano ; 17(20): 20308-20314, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37791727

RESUMEN

Multichannel quantum emission is in high demand for advanced quantum photonic applications such as quantum communications, quantum computing, and quantum cryptography. However, to date, the most common way for shaping photon emission from quantum emitters (QEs) is to utilize free-standing (external) bulky optical components. Here, we develop the multichannel holography approach for flexibly designing on-chip QE-coupled metasurfaces that make use of nonradiatively QE-excited surface plasmon polaritons for generating far-field quantum emission, which propagates in designed directions carrying specific spin and orbital angular momenta (SAM and OAM, respectively). We further design, fabricate, and characterize on-chip quantum light sources of multichannel quantum emission encoded with different SAMs and OAMs. The holography-based inverse design approach developed and demonstrated on-chip quantum light sources with multiple degrees of freedoms, thereby enabling a powerful platform for quantum nanophotonics, especially relevant for advanced quantum photonic applications, e.g., high-dimensional quantum information processing.

12.
Nanomaterials (Basel) ; 13(16)2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37630929

RESUMEN

Atomically thin two-dimensional (2D) hexagonal boron nitride (hBN) has emerged as an essential material for the encapsulation layer in van der Waals heterostructures and efficient deep ultraviolet optoelectronics. This is primarily due to its remarkable physical properties and ultrawide bandgap (close to 6 eV, and even larger in some cases) properties. Color centers in hBN refer to intrinsic vacancies and extrinsic impurities within the 2D crystal lattice, which result in distinct optical properties in the ultraviolet (UV) to near-infrared (IR) range. Furthermore, each color center in hBN exhibits a unique emission spectrum and possesses various spin properties. These characteristics open up possibilities for the development of next-generation optoelectronics and quantum information applications, including room-temperature single-photon sources and quantum sensors. Here, we provide a comprehensive overview of the atomic configuration, optical and quantum properties, and different techniques employed for the formation of color centers in hBN. A deep understanding of color centers in hBN allows for advances in the development of next-generation UV optoelectronic applications, solid-state quantum technologies, and nanophotonics by harnessing the exceptional capabilities offered by hBN color centers.

13.
Nano Lett ; 23(7): 2615-2622, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36926921

RESUMEN

Cesium lead halide perovskite nanocrystals (PNCs) have emerged as a potential next-generation single quantum emitter (QE) material for quantum optics and quantum information science. Optical dephasing processes at cryogenic temperatures are critical to the quality of a QE, making a mechanistic understanding of coherence losses of fundamental interest. We use photon-correlation Fourier spectroscopy (PCFS) to obtain a lower bound to the optical coherence times of single PNCs as a function of temperature. We find that 20 nm CsPbBr3 PNCs emit nearly exclusively into a narrow zero-phonon line from 4 to 13 K. Remarkably, no spectral diffusion is observed at time scales of 10 µs to 5 ms. Our results suggest that exciton dephasing in this temperature range is dominated by elastic scattering from phonon modes with characteristic frequencies of 1-3 meV, while inelastic scattering is minimal due to weak exciton-phonon coupling.

14.
Adv Mater ; 35(5): e2208066, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36373540

RESUMEN

Solid-state single photon emitters (SPEs) within atomically thin transition metal dichalcogenides (TMDs) have recently attracted interest as scalable quantum light sources for quantum photonic technologies. Among TMDs, WSe2 monolayers (MLs) are promising for the deterministic fabrication and engineering of SPEs using local strain fields. The ability to reliably produce isolatable SPEs in WSe2 is currently impeded by the presence of numerous spectrally overlapping states that occur at strained locations. Here nanoparticle (NP) arrays with precisely defined positions and sizes are employed to deterministically create strain fields in WSe2 MLs, thus enabling the systematic investigation and control of SPE formation. Using this platform, electron beam irradiation at NP-strained locations transforms spectrally overlapped sub-bandgap emission states into isolatable, anti-bunched quantum emitters. The dependence of the emission spectra of WSe2 MLs as a function of strain magnitude and exposure time to electron beam irradiation is quantified and provides insight into the mechanism for SPE production. Excitons selectively funnel through strongly coupled sub-bandgap states introduced by electron beam irradiation, which suppresses spectrally overlapping emission pathways and leads to measurable anti-bunched behavior. The findings provide a strategy to generate isolatable SPEs in 2D materials with a well-defined energy range.

15.
Nano Lett ; 22(23): 9748-9756, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36318636

RESUMEN

Optically active defects in 2D materials, such as hexagonal boron nitride (hBN) and transition-metal dichalcogenides (TMDs), are an attractive class of single-photon emitters with high brightness, operation up to room temperature, site-specific engineering of emitter arrays with strain and irradiation techniques, and tunability with external electric fields. In this work, we demonstrate a novel approach to precisely align and embed hBN and TMDs within background-free silicon nitride microring resonators. Through the Purcell effect, high-purity hBN emitters exhibit a cavity-enhanced spectral coupling efficiency of up to 46% at room temperature, exceeding the theoretical limit (up to 40%) for cavity-free waveguide-emitter coupling and demonstrating nearly a 1 order of magnitude improvement over previous work. The devices are fabricated with a CMOS-compatible process and exhibit no degradation of the 2D material optical properties, robustness to thermal annealing, and 100 nm positioning accuracy of quantum emitters within single-mode waveguides, opening a path for scalable quantum photonic chips with on-demand single-photon sources.

16.
ACS Nano ; 16(9): 14582-14589, 2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36095839

RESUMEN

Isolated impurity states in epitaxially grown semiconductor systems possess important radiative features such as distinct wavelength emission with a very short radiative lifetime and low inhomogeneous broadening, which make them promising for the generation of indistinguishable single photons. In this study, we investigate chlorine-doped ZnSe/ZnMgSe quantum well (QW) nanopillar (NP) structures as a highly efficient solid-state single-photon source operating at cryogenic temperatures. We show that single photons are generated due to the radiative recombination of excitons bound to neutral Cl atoms in ZnSe QW and the energy of the emitted photon can be tuned from about 2.85 down to 2.82 eV with ZnSe well width increase from 2.7 to 4.7 nm. Following the developed advanced technology, we fabricate NPs with a diameter of about 250 nm using a combination of dry and wet-chemical etching of epitaxially grown ZnSe/ZnMgSe QW structures. The remaining resist mask serves as a spherical- or cylindrical-shaped solid immersion lens on top of NPs and leads to the emission intensity enhancement by up to an order of magnitude in comparison to the pillars without any lenses. NPs with spherical-shaped lenses show the highest emission intensity values. The clear photon-antibunching effect is confirmed by the measured value of the second-order correlation function at a zero time delay of 0.14. The developed single-photon sources are suitable for integration into scalable photonic circuits.

17.
ACS Nano ; 16(6): 9651-9659, 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35621266

RESUMEN

Two-dimensional chalcogenide semiconductors have recently emerged as a host material for quantum emitters of single photons. While several reports on defect- and strain-induced single-photon emission from 2D chalcogenides exist, a bottom-up, lithography-free approach to producing a high density of emitters remains elusive. Further, the physical properties of quantum emission in the case of strained 2D semiconductors are far from being understood. Here, we demonstrate a bottom-up, scalable, and lithography-free approach for creating large areas of localized emitters with high density (∼150 emitters/um2) in a WSe2 monolayer. We induce strain inside the WSe2 monolayer with high spatial density by conformally placing the WSe2 monolayer over a uniform array of Pt nanoparticles with a size of 10 nm. Cryogenic, time-resolved, and gate-tunable luminescence measurements combined with near-field luminescence spectroscopy suggest the formation of localized states in strained regions that emit single photons with a high spatial density. Our approach of using a metal nanoparticle array to generate a high density of strained quantum emitters will be applied to scalable, tunable, and versatile quantum light sources.

18.
Nano Lett ; 22(12): 4702-4711, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35622690

RESUMEN

Plasmonic nanoparticle clusters promise to support unique engineered electromagnetic responses at optical frequencies, realizing a new concept of devices for nanophotonic applications. However, the technological challenges associated with the fabrication of three-dimensional nanoparticle clusters with programmed compositions remain unresolved. Here, we present a novel strategy for realizing heterogeneous structures that enable efficient near-field coupling between the plasmonic modes of gold nanoparticles and various other nanomaterials via a simple three-dimensional coassembly process. Quantum dots embedded in the plasmonic structures display ∼56 meV of a blue shift in the emission spectrum. The decay enhancement factor increases as the total contribution of radiative and nonradiative plasmonic modes increases. Furthermore, we demonstrate an ultracompact diagnostic platform to detect M13 viruses and their mutations from femtoliter volume, sub-100 pM analytes. This platform could pave the way toward an effective diagnosis of diverse pathogens, which is in high demand for handling pandemic situations.


Asunto(s)
Nanopartículas del Metal , Nanoestructuras , Puntos Cuánticos , Oro/química , Nanopartículas del Metal/química , Nanoestructuras/química , Puntos Cuánticos/química
19.
Nano Lett ; 22(6): 2365-2373, 2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35285655

RESUMEN

We investigate the quantum-optical properties of the light emitted by a nanoparticle-on-mirror cavity filled with a single quantum emitter. Inspired by recent experiments, we model a dark-field setup and explore the photon statistics of the scattered light under grazing laser illumination. Exploiting analytical solutions to Maxwell's equations, we quantize the nanophotonic cavity fields and describe the formation of plasmon-exciton polaritons (or plexcitons) in the system. This way, we reveal that the rich plasmonic spectrum of the nanocavity offers unexplored mechanisms for nonclassical light generation that are more efficient than the resonant interaction between the emitter natural transition and the brightest optical mode. Specifically, we find three different sample configurations in which strongly antibunched light is produced. Finally, we illustrate the power of our approach by showing that the introduction of a second emitter in the platform can enhance photon correlations further.

20.
Nano Lett ; 21(24): 10193-10198, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34870435

RESUMEN

Motional narrowing is a phenomenon by which a quantum state can be entangled with a noisy environment and still retain its intrinsic coherence. Using two optically induced motional forces driving the environmental electrical field amplitude and fluctuations, we present a compelling illustration of the effects of motional narrowing on the energy, line shape, and line width of a single quantum emitter, a Te2 molecule embedded in ZnSe, subject to spectral diffusion. Motional narrowing is achieved in several regimes, irrespectively of the inhomogeneous disorder initially present and the charge reservoir state sourcing the field. The optimal coherence limit set by the radiative rate can be approached by accelerating spectral diffusion into the THz regime. Motional narrowing applies to any quantum systems for which environmental fluctuations can be deliberately accelerated and alleviates the need for perfected materials and devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA