Your browser doesn't support javascript.
loading
High-Resolution Cryogenic Spectroscopy of Single Molecules in Nanoprinted Crystals.
Musavinezhad, Mohammad; Renger, Jan; Zirkelbach, Johannes; Utikal, Tobias; Hail, Claudio U; Basché, Thomas; Poulikakos, Dimos; Götzinger, Stephan; Sandoghdar, Vahid.
Afiliación
  • Musavinezhad M; Max Planck Institute for the Science of Light, D-91058 Erlangen, Germany.
  • Renger J; Department of Physics, Friedrich Alexander University Erlangen-Nuremberg, D-91058 Erlangen, Germany.
  • Zirkelbach J; Max Planck Institute for the Science of Light, D-91058 Erlangen, Germany.
  • Utikal T; Faculty of Physics, Ludwig-Maximilians-Universität München, D-85748 Garching, Germany.
  • Hail CU; Max Planck Institute for the Science of Light, D-91058 Erlangen, Germany.
  • Basché T; California Institute of Technology, Pasadena, California 91125, United States.
  • Poulikakos D; Department of Chemistry, Johannes Gutenberg-University, 55099 Mainz, Germany.
  • Götzinger S; Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zurich, Switzerland.
  • Sandoghdar V; Max Planck Institute for the Science of Light, D-91058 Erlangen, Germany.
ACS Nano ; 18(33): 21886-21893, 2024 Aug 20.
Article en En | MEDLINE | ID: mdl-39011947
ABSTRACT
We perform laser spectroscopy at liquid helium temperatures (T = 2 K) to investigate single dibenzoterrylene (DBT) molecules doped in anthracene crystals of nanoscopic height fabricated by electrohydrodynamic dripping. Using high-resolution fluorescence excitation spectroscopy, we show that zero-phonon lines of single molecules in printed nanocrystals are nearly as narrow as the Fourier-limited transitions observed for the same guest-host system in the bulk. Moreover, the spectral instabilities are comparable to or less than one line width. By recording super-resolution images of DBT molecules and varying the polarization of the excitation beam, we determine the dimensions of the printed crystals and the orientation of the crystals' axes. Electrohydrodynamic printing of organic nano- and microcrystals is of interest for a series of applications, where controlled positioning of quantum emitters with narrow optical transitions is desirable.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Nano Año: 2024 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Nano Año: 2024 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Estados Unidos