Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Macromol Rapid Commun ; : e2400304, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38837515

RESUMEN

A generic model of elastin-like polypeptides (ELP) is derived that includes proline isomerization (ProI). As a case study, conformational transition of a -[valine-proline-glycine-valine-glycine]- sequence is investigated in aqueous ethanol mixtures. While the non-bonded interactions are based on the Lennard-Jones (LJ) parameters, the effect of ProI is incorporated by tuning the intramolecular 3- and 4-body interactions known from the underlying all-atom simulations into the generic model. One of the key advantages of such a minimalistic model is that it readily decouples the effects of geometry and the monomer-solvent interactions due to the presence of ProI, thus gives a clearer microscopic picture that is otherwise rather nontrivial within the all-atom setups. These results are consistent with the available all-atom and experimental data. The model derived here may pave the way to investigate large scale self-assembly of ELPs or biomimetic polymers in general.

2.
Int J Biol Macromol ; 256(Pt 1): 128304, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37992938

RESUMEN

Galectin-3 (Gal-3) is unique in the galectin family, due to the presence of a long N-terminal tail (NT) arising from its conserved carbohydrate recognition domain (CRD). Although functional significance of the NT has remained elusive, our previous studies demonstrated the importance of NT prolines to Gal-3 function. Here, we show that during the time Gal-3 stands in solution for three or more days, Gal-3 NT undergoes a slow, intra-molecular, time-dependent conformational/dynamical change associated with proline cis-trans isomerization. From initial dissolution of Gal-3 in buffer to three days in solution, Gal-3-mediated T cell apoptosis is enhanced from 23 % to 37 %. Western blotting and flow cytometry show that the enhancement occurs via the ROS-ERK pathway, and not by the PKC-ERK pathway. To assess which proline(s) is (are) responsible for this effect, we individually mutated all 14 NT prolines within the first 68 residues to alanines, and assessed their effect on ROS production. Our study shows that isomerization of P46 alone is responsible for the upregulation of ROS and T cell apoptosis. NMR studies show that this unique effect is mediated by a change in dynamic interactions between the NT and CRD F-face, which in turn leads to this change in Gal-3 function.


Asunto(s)
Galectina 3 , Sistema de Señalización de MAP Quinasas , Galectina 3/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Isomerismo , Prolina/química , Galectinas/metabolismo , Carbohidratos/química , Apoptosis , Linfocitos T/metabolismo
3.
Genes (Basel) ; 14(9)2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37761906

RESUMEN

The highly conserved family of cyclophilins comprises multifunctional chaperones that interact with proteins and RNAs, facilitating the dynamic assembly of multimolecular complexes involved in various cellular processes. Cyclophilin A (CypA), the predominant member of this family, exhibits peptidyl-prolyl cis-trans isomerase activity. This enzymatic function aids with the folding and activation of protein structures and often serves as a molecular regulatory switch for large multimolecular complexes, ensuring appropriate inter- and intra-molecular interactions. Here, we investigated the involvement of CypA in the nucleus, where it plays a crucial role in supporting the assembly and trafficking of heterogeneous ribonucleoproteins (RNPs). We reveal that CypA is enriched in the nucleolus, where it colocalizes with the pseudouridine synthase dyskerin, the catalytic component of the multifunctional H/ACA RNPs involved in the modification of cellular RNAs and telomere stability. We show that dyskerin, whose mutations cause the X-linked dyskeratosis (X-DC) and the Hoyeraal-Hreidarsson congenital ribosomopathies, can directly interact with CypA. These findings, together with the remark that substitution of four dyskerin prolines are known to cause X-DC pathogenic mutations, lead us to indicate this protein as a CypA client. The data presented here suggest that this chaperone can modulate dyskerin activity influencing all its partecipated RNPs.


Asunto(s)
Ciclofilina A , Disqueratosis Congénita , Humanos , Catálisis , Disqueratosis Congénita/genética , Ribonucleoproteínas , Proteínas de Unión al ARN
4.
Biology (Basel) ; 12(7)2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37508437

RESUMEN

Proline isomerization, the process of interconversion between the cis- and trans-forms of proline, is an important and unique post-translational modification that can affect protein folding and conformations, and ultimately regulate protein functions and biological pathways. Although impactful, the importance and prevalence of proline isomerization as a regulation mechanism in biological systems have not been fully understood or recognized. Aiming to fill gaps and bring new awareness, we attempt to provide a wholistic review on proline isomerization that firstly covers what proline isomerization is and the basic chemistry behind it. In this section, we vividly show that the cause of the unique ability of proline to adopt both cis- and trans-conformations in significant abundance is rooted from the steric hindrance of these two forms being similar, which is different from that in linear residues. We then discuss how proline isomerization was discovered historically followed by an introduction to all three types of proline isomerases and how proline isomerization plays a role in various cellular responses, such as cell cycle regulation, DNA damage repair, T-cell activation, and ion channel gating. We then explore various human diseases that have been linked to the dysregulation of proline isomerization. Finally, we wrap up with the current stage of various inhibitors developed to target proline isomerases as a strategy for therapeutic development.

5.
J Am Soc Mass Spectrom ; 34(9): 1898-1907, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37102735

RESUMEN

Posttranslational modifications (PTMs) play vital roles in cellular homeostasis and are implicated in various pathological conditions. This work uses two ion mobility spectrometry-mass spectrometry (IMS-MS) modalities, drift-tube IMS (DT-IMS) and trapped IMS (TIMS), to characterize three important nonenzymatic PTMs that induce no mass loss: l/d isomerization, aspartate/isoaspartate isomerization, and cis/trans proline isomerization. These PTMs are assessed in a single peptide system, the recently discovered pleurin peptides, Plrn2, from Aplysia californica. We determine that the DT-IMS-MS/MS can capture and locate asparagine deamidation into aspartate and its subsequent isomerization to isoaspartate, a key biomarker for age-related diseases. Additionally, nonenzymatic peptide cleavage via in-source fragmentation is evaluated for differences in the intensities and patterns of fragment peaks between these PTMs. Peptide fragments resulting from in-source fragmentation, preceded by peptide denaturation by liquid chromatography (LC) mobile phase, exhibited cis/trans proline isomerization. Finally, the effects of differing the fragmentation voltage at the source and solution-based denaturation conditions on in-source fragmentation profiles are evaluated, confirming that LC denaturation and in-source fragmentation profoundly impact N-terminal peptide bond cleavages of Plrn2 and the structures of their fragment ions. With that, LC-IMS-MS/MS coupled with in-source fragmentation could be a robust method to identify three important posttranslational modifications: l/d isomerization, Asn-deamidation leading to Asp/IsoAsp isomerization, and cis/trans proline isomerization.


Asunto(s)
Ácido Aspártico , Ácido Isoaspártico , Secuencia de Aminoácidos , Ácido Aspártico/química , Espectrometría de Masas en Tándem , Péptidos/química , Prolina , Isomerismo
6.
Biomolecules ; 13(1)2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36671537

RESUMEN

Apart from chaperoning, disulfide bond formation, and downstream processing, the molecular sequence of proinsulin folding is not completely understood. Proinsulin requires proline isomerization for correct folding. Since FK506-binding protein 2 (FKBP2) is an ER-resident proline isomerase, we hypothesized that FKBP2 contributes to proinsulin folding. We found that FKBP2 co-immunoprecipitated with proinsulin and its chaperone GRP94 and that inhibition of FKBP2 expression increased proinsulin turnover with reduced intracellular proinsulin and insulin levels. This phenotype was accompanied by an increased proinsulin secretion and the formation of proinsulin high-molecular-weight complexes, a sign of proinsulin misfolding. FKBP2 knockout in pancreatic ß-cells increased apoptosis without detectable up-regulation of ER stress response genes. Interestingly, FKBP2 mRNA was overexpressed in ß-cells from pancreatic islets of T2D patients. Based on molecular modeling and an in vitro enzymatic assay, we suggest that proline at position 28 of the proinsulin B-chain (P28) is the substrate of FKBP2's isomerization activity. We propose that this isomerization step catalyzed by FKBP2 is an essential sequence required for correct proinsulin folding.


Asunto(s)
Células Secretoras de Insulina , Proinsulina , Proinsulina/metabolismo , Pliegue de Proteína , Retículo Endoplásmico/metabolismo , Células Secretoras de Insulina/metabolismo , Chaperonas Moleculares/metabolismo , Prolina/metabolismo , Proteínas de Unión a Tacrolimus/genética , Proteínas de Unión a Tacrolimus/metabolismo , Insulina/metabolismo
7.
J Magn Reson ; 340: 107234, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35617919

RESUMEN

T cells engineered to express artificial chimeric antigen receptors (CARs) that selectively target tumor-specific antigens or deleterious cell types offer transformative therapeutic possibilities. CARs contain an N-terminal extracellular antigen recognition domain, C-terminal intracellular signal transduction domains, and connecting hinge and transmembrane regions, each of which have been varied to optimize targeting and minimize toxicity. We find that a CD22-targeting CAR harboring a CD8α hinge (H) exhibits greater cytotoxicity against a low antigen density CD22+ leukemia as compared to an equivalent CAR with a CD28 H. We therefore studied the biophysical and dynamic properties of the CD8α H by nuclear magnetic resonance (NMR) spectroscopy. We find that a large region of the CD8α H undergoes dynamic chemical exchange between distinct and observable states. This exchanging region contains proline residues dispersed throughout the sequence that undergo cis-trans isomerization. Up to four signals of differing intensity are observed, with the most abundantly populated being intrinsically disordered and with all prolines in the trans isomerization state. The lesser populated states all contain cis prolines and evidence of local structural motifs. Altogether, our data suggest that the CD8α H lacks long-range structural order but has local structural motifs that transiently exchange with a dominant disordered state. We propose that structural plasticity and local structural motifs promoted by cis proline states within the CD8α H are important for relaying and amplifying antigen-binding effects to the transmembrane and signal transduction domains.


Asunto(s)
Prolina , Secuencia de Aminoácidos , Isomerismo , Espectroscopía de Resonancia Magnética , Prolina/química
8.
Macromol Rapid Commun ; 43(12): e2100907, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35124875

RESUMEN

Elastin-like polypeptides (ELPs) are well-known proline-rich stimulus-responsive polymers. They have broad applications ranging from drug delivery to green chemistry. Recently, the authors have shown that the cis/trans proline isomerization can be used to regulate their conformational behavior while keeping the lower critical solution temperature (LCST) unchanged in pure water. In aqueous ethanol mixtures, ELPs typically exhibit an expanded-collapsed-expanded transition known as the co-non-solvency phenomenon. Since it is unclear how proline isomerization affects the solvation behavior of ELPs in aqueous ethanol mixtures, an all-atom insight on single ELPs has been provided to address this question. It is found that if all proline residues are in the cis state, the peptides only experience a collapsed-expanded transition as ethanol concentration increases, i.e., the initial collapse vanishes because cis isomers prefer the compact structures in pure water. The data from the authors also suggest that proline isomerization does not change the shift in solvation free energy of an ELP with given sequence, but it varies the affinity of the peptide to both the solvent and cosolvent molecules.


Asunto(s)
Elastina , Prolina , Elastina/química , Etanol , Isomerismo , Péptidos/química , Solventes/química , Temperatura , Agua/química
9.
Antibodies (Basel) ; 10(2)2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34200826

RESUMEN

Antibody 10E8 is capable of effectively neutralizing HIV through its recognition of the membrane-proximal external region (MPER), and a suitably optimized version of 10E8 might have utility in HIV therapy and prophylaxis. However, 10E8 displays a three-peak profile on size-exclusion chromatography (SEC), complicating its manufacture. Here we show cis-trans conformational isomerization of the Tyr-Pro-Pro (YPP) motif in the heavy chain 3rd complementarity-determining region (CDR H3) of antibody 10E8 to be the mechanistic basis of its multipeak behavior. We observed 10E8 to undergo slow conformational isomerization and delineate a mechanistic explanation for effective comodifiers that were able to resolve its SEC heterogeneity and to allow an evaluation of the critical quality attribute of aggregation. We determined crystal structures of single and double alanine mutants of a key di-proline motif and of a light chain variant, revealing alternative conformations of the CDR H3. We also replicated both multi-peak and delayed SEC behavior with MPER-antibodies 4E10 and VRC42, by introducing a Tyr-Pro (YP) motif into their CDR H3s. Our results show how a conformationally dynamic CDR H3 can provide the requisite structural plasticity needed for a highly hydrophobic paratope to recognize its membrane-proximal epitope.

10.
Structure ; 29(6): 587-597.e8, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-33561387

RESUMEN

Cellulose is the most abundant organic molecule on Earth and represents a renewable and practically everlasting feedstock for the production of biofuels and chemicals. Self-assembled owing to the high-affinity cohesin-dockerin interaction, cellulosomes are huge multi-enzyme complexes with unmatched efficiency in the degradation of recalcitrant lignocellulosic substrates. The recruitment of diverse dockerin-borne enzymes into a multicohesin protein scaffold dictates the three-dimensional layout of the complex, and interestingly two alternative binding modes have been proposed. Using single-molecule fluorescence resonance energy transfer and molecular simulations on a range of cohesin-dockerin pairs, we directly detect varying distributions between these binding modes that follow a built-in cohesin-dockerin code. Surprisingly, we uncover a prolyl isomerase-modulated allosteric control mechanism, mediated by the isomerization state of a single proline residue, which regulates the distribution and kinetics of binding modes. Overall, our data provide a novel mechanistic understanding of the structural plasticity and dynamics of cellulosomes.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Celulosomas/química , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/metabolismo , Isomerasa de Peptidilprolil/metabolismo , Prolina/química , Regulación Alostérica , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Celulosomas/metabolismo , Isomerismo , Modelos Moleculares , Complejos Multienzimáticos/química , Unión Proteica , Conformación Proteica , Imagen Individual de Molécula , Cohesinas
11.
Angew Chem Int Ed Engl ; 59(49): 22086-22091, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32744407

RESUMEN

The C40A/C82A double mutant of barstar has been shown to undergo cold denaturation above the water freezing point. By rapidly applying radio-frequency power to lossy aqueous samples, refolding of barstar from its cold-denatured state can be followed by real-time NMR spectroscopy. Since temperature-induced unfolding and refolding is reversible for this double mutant, multiple cycling can be utilized to obtain 2D real-time NMR data. Barstar contains two proline residues that adopt a mix of cis and trans conformations in the low-temperature-unfolded state, which can potentially induce multiple folding pathways. The high time resolution real-time 2D-NMR measurements reported here show evidence for multiple folding pathways related to proline isomerization, and stable intermediates are populated. By application of advanced heating cycles and state-correlated spectroscopy, an alternative folding pathway circumventing the rate-limiting cis-trans isomerization could be observed. The kinetic data revealed intermediates on both, the slow and the fast folding pathway.


Asunto(s)
Frío , Calefacción , Resonancia Magnética Nuclear Biomolecular , Proteínas/química , Cinética , Modelos Moleculares , Conformación Proteica , Desnaturalización Proteica , Ingeniería de Proteínas , Pliegue de Proteína , Factores de Tiempo
12.
MAbs ; 12(1): 1698128, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31791173

RESUMEN

Proline cis-trans conformational isomerization is a mechanism that affects different types of protein functions and behaviors. Using analytical characterization, structural analysis, and molecular dynamics simulations, we studied the causes of an aberrant two-peak size-exclusion chromatography profile observed for a trispecific anti-HIV antibody. We found that proline isomerization in the tyrosine-proline-proline (YPP) motif in the heavy chain complementarity-determining region (CDR)3 domain of one of the antibody arms (10e8v4) was a component of this profile. The pH effect on the conformational equilibrium that led to these two populations was presumably caused by a histidine residue (H147) in the light chain that is in direct contact with the YPP motif. Finally, we demonstrated that, due to chemical equilibrium between the cis and trans proline conformers, the antigen-binding potency of the trispecific anti-HIV antibody was not significantly affected in spite of a potential structural clash of 10e8v4 YPtransPtrans conformers with the membrane-proximal ectodomain region epitope in the GP41 antigen. Altogether, these results reveal at mechanistic and molecular levels the effect of proline isomerization in the CDR on the antibody binding and analytical profiles, and support further development of the trispecific anti-HIV antibody.


Asunto(s)
Regiones Determinantes de Complementariedad/química , Epítopos/inmunología , Anticuerpos Anti-VIH/química , VIH-1/inmunología , Prolina/química , Secuencias de Aminoácidos , Cromatografía en Gel , Humanos , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica , Estereoisomerismo
13.
Angew Chem Int Ed Engl ; 59(14): 5643-5646, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-31830361

RESUMEN

Peptidylprolyl isomerases (PPIases) catalyze cis/trans isomerization of prolines. The PPIase CypA colocalizes with the Parkinson's disease (PD)-associated protein α-synuclein in cells and interacts with α-synuclein oligomers. Herein, we describe atomic insights into the molecular details of the α-synuclein/CypA interaction. NMR spectroscopy shows that CypA catalyzes isomerization of proline 128 in the C-terminal domain of α-synuclein. Strikingly, we reveal a second CypA-binding site formed by the hydrophobic sequence 47 GVVHGVATVA56 , termed PreNAC. The 1.38 Šcrystal structure of the CypA/PreNAC complex displays a contact between alanine 53 of α-synuclein and glutamine 111 in the catalytic pocket of CypA. Mutation of alanine 53 to glutamate, as found in patients with early-onset PD, weakens the interaction of α-synuclein with CypA. Our study provides high-resolution insights into the structure of the PD-associated protein α-synuclein in complex with the most abundant cellular cyclophilin.


Asunto(s)
Ciclofilina A/metabolismo , alfa-Sinucleína/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Biocatálisis , Cristalografía por Rayos X , Ciclofilina A/química , Isomerismo , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Resonancia Magnética Nuclear Biomolecular , Prolina/química , Unión Proteica , alfa-Sinucleína/química , alfa-Sinucleína/genética
14.
J Biol Chem ; 294(21): 8592-8605, 2019 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-30971428

RESUMEN

The C-terminal domain (CTD) of RNA polymerase II contains a repetitive heptad sequence (YSPTSPS) whose phosphorylation states coordinate eukaryotic transcription by recruiting protein regulators. The precise placement and removal of phosphate groups on specific residues of the CTD are critical for the fidelity and effectiveness of RNA polymerase II-mediated transcription. During transcriptional elongation, phosphoryl-Ser5 (pSer5) is gradually dephosphorylated by CTD phosphatases, whereas Ser2 phosphorylation accumulates. Using MS, X-ray crystallography, protein engineering, and immunoblotting analyses, here we investigated the structure and function of SSU72 homolog, RNA polymerase II CTD phosphatase (Ssu72, from Drosophila melanogaster), an essential CTD phosphatase that dephosphorylates pSer5 at the transition from elongation to termination, to determine the mechanism by which Ssu72 distinguishes the highly similar pSer2 and pSer5 CTDs. We found that Ssu72 dephosphorylates pSer5 effectively but only has low activities toward pSer7 and pSer2 The structural analysis revealed that Ssu72 requires that the proline residue in the substrate's SP motif is in the cis configuration, forming a tight ß-turn for recognition by Ssu72. We also noted that residues flanking the SP motif, such as the bulky Tyr1 next to Ser2, prevent the formation of such configuration and enable Ssu72 to distinguish among the different SP motifs. The phosphorylation of Tyr1 further prohibited Ssu72 binding to pSer2 and thereby prevented untimely Ser2 dephosphorylation. Our results reveal critical roles for Tyr1 in differentiating the phosphorylation states of Ser2/Ser5 of CTD in RNA polymerase II that occur at different stages of transcription.


Asunto(s)
Proteínas de Drosophila/química , Proteínas Tirosina Fosfatasas/química , ARN Polimerasa II/química , Secuencias de Aminoácidos , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Fosforilación , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo
15.
J Am Soc Mass Spectrom ; 30(6): 919-931, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30980380

RESUMEN

We report ion mobility spectrometry and mass spectrometry studies of the non-enzymatic step-by-step degradation of substance P (subP), an 11-residue neuropeptide, with the sequence Arg1-Pro2-Lys3-Pro4-Gln5-Gln6-Phe7-Phe8-Gly9-Leu10-Met11-NH2, in ethanol. At elevated solution temperatures (55 to 75 °C), several reactions are observed, including a protonation event, i.e., [subP+2H]2+ + H+ → [subP+3H]3+, that appears to be regulated by a configurational change and two sequential bond cleavages (the Pro2-Lys3 peptide bond is cleaved to form the smaller nonapeptide Lys3-Met11-NH2 [subP(3-11)], and subsequently, subP(3-11) is cleaved at the Pro4-Gln5 peptide bond to yield the heptapeptide Gln5-Met11-NH2 [subP(5-11)]). Each of the product peptides [subP(3-11) and subP(5-11)] is accompanied by a complementary diketopiperazine (DKP): cyclo-Arg1-Pro2 (cRP) for the first cleavage, and cyclo-Lys3-Pro4 (cKP) for the second. Insight about the mechanism of degradation is obtained by comparing kinetics calculations of trial model mechanisms with experimental data. The best model of our experimental data indicates that the initial cleavage of subP is regulated by a conformational change, likely a trans→cis isomerization of the Arg1-Pro2 peptide bond. The subP(3-11) product has a long lifetime (t1/2 ~ 30 h at 55 °C) and appears to transition through several structural intermediates prior to dissociation, suggesting that subP(3-11) is initially formed with a Lys3-trans-Pro4 peptide bond configuration and that slow trans→cis isomerization regulates the second bond cleavage event as well. From these data and our model mechanisms, we obtain transition state thermochemistry ranging from ΔH‡ = 41 to 85 kJ mol-1 and ΔS‡ = - 43 to - 157 J mol-1 K-1 for each step in the reaction. Graphical Abstract.


Asunto(s)
Etanol/metabolismo , Prolina/metabolismo , Sustancia P/metabolismo , Secuencia de Aminoácidos , Calor , Hidrólisis , Isomerismo , Cinética , Prolina/química , Proteolisis , Sustancia P/química , Termodinámica
16.
Methods Enzymol ; 607: 269-297, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30149861

RESUMEN

Proline isomerization is ubiquitous in proteins and is important for regulating important processes such as folding, recognition, and enzymatic activity. In humans, peptidyl-prolyl isomerase cis-trans isomerase NIMA interacting 1 (Pin1) is responsible for mediating fast conversion between cis- and trans-conformations of serine/threonine-proline (S/T-P) motifs in a large number of cellular pathways, many of which are involved in normal development as well as progression of several cancers and diseases. One of the major processes that Pin1 regulates is phosphatase activity against the RNA polymerase II C-terminal domain (RNAPII CTD). However, molecular tools capable of distinguishing the effects of proline conformation on phosphatase function have been lacking. A key tool that allows us to understand isomeric specificity of proteins toward their substrates is the usage of proline mimicking isosteres that are locked to prevent cis/trans-proline conversion. These locked isosteres can be incorporated into standard peptide synthesis and then used in replacement of native substrates in various experimental techniques such as kinetic and thermodynamic assays as well as X-ray crystallography. We will describe the application of these chemical tools in detail using CTD phosphatases as an example. We will also discuss alternative methods for analyzing the effect of proline conformation such as 13C NMR and the biological implications of proline isomeric specificity of proteins. The chemical and analytical tools presented in this chapter are widely applicable and should help elucidate many questions on the role of proline isomerization in biology.


Asunto(s)
Pruebas de Enzimas/métodos , Isomerasa de Peptidilprolil/metabolismo , ARN Polimerasa II/metabolismo , Transducción de Señal , Isótopos de Carbono/química , Cristalografía por Rayos X , Pruebas de Enzimas/instrumentación , Isoenzimas/química , Isoenzimas/metabolismo , Isomerismo , Modelos Moleculares , Conformación Molecular , Resonancia Magnética Nuclear Biomolecular , Prolina/química , Prolina/metabolismo , Unión Proteica , Dominios Proteicos , ARN Polimerasa II/química , Especificidad por Sustrato
17.
Adv Exp Med Biol ; 966: 163-179, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28815511

RESUMEN

The folding of disulfide bond containing proteins proceeds in a biphasic manner. Initially, cysteines are oxidized to form disulfide bonds. Structure is largely absent during this phase. Next, when a minimally correct number of native linkages of disulfide bonds have been acquired, the biopolymer conformationally folds into the native, or a native-like, state. Thus, at the end of this "oxidative folding" process, a stable and biologically active protein is formed. This review focuses on dissecting the "structure-forming step" in oxidative protein folding. The ability to follow this pivotal step in protein maturation in somewhat detail is uniquely facilitated in "oxidative" folding scenarios. We review this step using bovine pancreatic Ribonuclease A as a model while recognizing the impact that this step has in subcellular trafficking and protein aggregation.


Asunto(s)
Retículo Endoplásmico/metabolismo , Pliegue de Proteína , Ribonucleasa Pancreática/metabolismo , Animales , Bovinos , Modelos Moleculares , Oxidación-Reducción , Agregado de Proteínas , Estructura Terciaria de Proteína , Transporte de Proteínas , Ribonucleasa Pancreática/química , Relación Estructura-Actividad
18.
Curr Pharm Des ; 23(29): 4422-4425, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-28671058

RESUMEN

Pin1 is a unique peptidyl-prolyl cis/trans isomerase (PPIase) that catalyzes the cis/trans isomerization of peptidyl-prolyl peptide bonds of its substrate proteins by binding to their specific phosphorylated Ser/Thr-Pro (pSer/Thr-Pro) motifs. This alters the conformation of target proteins and consequently affects their stability, intracellular localization, and/or biological functions. The abnormal overexpression of Pin1 is observed in some malignancies, which is associated with cancer cell proliferation, migration and invasion. However, a role for Pin1 as a putative tumor suppressor has recently been suggested. Systematic dissection of pro-oncogenic vs. tumor suppressive functions of Pin1 will be necessary.


Asunto(s)
Antineoplásicos/uso terapéutico , Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo , Neoplasias/tratamiento farmacológico , Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Humanos , Terapia Molecular Dirigida , Peptidilprolil Isomerasa de Interacción con NIMA/antagonistas & inhibidores
19.
Cell Stress Chaperones ; 22(4): 639-651, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28547731

RESUMEN

In mammals, small heat-shock proteins (sHSPs) typically assemble into interconverting, polydisperse oligomers. The dynamic exchange of sHSP oligomers is regulated, at least in part, by molecular interactions between the α-crystallin domain and the C-terminal region (CTR). Here we report solution-state nuclear magnetic resonance (NMR) spectroscopy investigations of the conformation and dynamics of the disordered and flexible CTR of human HSP27, a systemically expressed sHSP. We observed multiple NMR signals for residues in the vicinity of proline 194, and we determined that, while all observed forms are highly disordered, the extra resonances arise from cis-trans peptidyl-prolyl isomerization about the G193-P194 peptide bond. The cis-P194 state is populated to near 15% at physiological temperatures, and, although both cis- and trans-P194 forms of the CTR are flexible and dynamic, both states show a residual but differing tendency to adopt ß-strand conformations. In NMR spectra of an isolated CTR peptide, we observed similar evidence for isomerization involving proline 182, found within the IPI/V motif. Collectively, these data indicate a potential role for cis-trans proline isomerization in regulating the oligomerization of sHSPs.


Asunto(s)
Proteínas de Choque Térmico HSP27/química , Prolina/química , Secuencia de Aminoácidos , Proteínas de Choque Térmico , Humanos , Isomerismo , Modelos Moleculares , Chaperonas Moleculares , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Multimerización de Proteína
20.
Mol Cell ; 66(4): 447-457.e7, 2017 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-28506462

RESUMEN

The C-terminal transactivation domain (TAD) of BMAL1 (brain and muscle ARNT-like 1) is a regulatory hub for transcriptional coactivators and repressors that compete for binding and, consequently, contributes to period determination of the mammalian circadian clock. Here, we report the discovery of two distinct conformational states that slowly exchange within the dynamic TAD to control timing. This binary switch results from cis/trans isomerization about a highly conserved Trp-Pro imide bond in a region of the TAD that is required for normal circadian timekeeping. Both cis and trans isomers interact with transcriptional regulators, suggesting that isomerization could serve a role in assembling regulatory complexes in vivo. Toward this end, we show that locking the switch into the trans isomer leads to shortened circadian periods. Furthermore, isomerization is regulated by the cyclophilin family of peptidyl-prolyl isomerases, highlighting the potential for regulation of BMAL1 protein dynamics in period determination.


Asunto(s)
Factores de Transcripción ARNTL/metabolismo , Relojes Circadianos , Ritmo Circadiano , Factores de Transcripción ARNTL/química , Factores de Transcripción ARNTL/genética , Animales , Línea Celular Tumoral , Ciclofilinas/genética , Ciclofilinas/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Humanos , Isomerismo , Ratones , Mutación , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Filogenia , Prolina , Dominios Proteicos , Transducción de Señal , Relación Estructura-Actividad , Factores de Tiempo , Transfección , Triptófano
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA