Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bioengineering (Basel) ; 11(8)2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39199762

RESUMEN

Skin wounds often form scar tissue during healing. Early intervention with tissue-engineered materials and cell therapies may promote scar-free healing. Exosomes and extracellular vesicles (EV) secreted by mesenchymal stromal cells (MSC) are believed to have high regenerative capacity. EV bioactivity is preserved after lyophilization and storage to enable use in remote and typically resource-constrained environments. We developed a bioprinted bandage containing reconstituted EVs that can be fabricated at the point-of-need. An alginate/carboxymethyl cellulose (CMC) biomaterial ink was prepared, and printability and mechanical properties were assessed with rheology and compression testing. Three-dimensional printed constructs were evaluated for Young's modulus relative to infill density and crosslinking to yield material with stiffness suitable for use as a wound dressing. We purified EVs from human MSC-conditioned media and characterized them with nanoparticle tracking analysis and mass spectroscopy, which gave a peak size of 118 nm and identification of known EV proteins. Fluorescently labeled EVs were mixed to form bio-ink and bioprinted to characterize EV release. EV bandages were bioprinted on both a commercial laboratory bioprinter and a custom ruggedized 3D printer with bioprinting capabilities, and lyophilized EVs, biomaterial ink, and thermoplastic filament were deployed to an austere Arctic environment and bioprinted. This work demonstrates that EVs can be bioprinted with an alginate/CMC hydrogel and released over time when in contact with a skin-like substitute. The technology is suitable for operational medical applications, notably in resource-limited locations, including large-scale natural disasters, humanitarian crises, and combat zones.

2.
Bioengineering (Basel) ; 11(3)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38534507

RESUMEN

Medical response to military conflicts, natural disasters, and humanitarian crises are challenged by operational logistics with unreliable supply chains, delayed medical evacuation, and compatibility of the disparate medical equipment and consumables. In these environments, stocks of supplies will become more quickly depleted and the need for equipment parts increases secondary to their higher likelihood for failure from overuse. Additive Manufacturing (AM), or 3D printing, at or closer to the point-of-need provides potential solutions to mitigate these logistics challenges. AM's ability to tailor the resultant product through computer design enables real-time modification of a product to meet a specific situation. In this study, we deployed two different 3D printers to an arctic locale to demonstrate the utility of 3D printing and bioprinting in austere environments. Deployment of AM solutions in austere environments will likely impact medical care following natural disasters and conflicts with contested logistics. The work presented here furthers the readiness status of AM for use in austere environments to manufacture medical equipment parts and demonstrates its potential use for tissue engineering and advanced medical treatments in remote environments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA