Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
BMC Cardiovasc Disord ; 24(1): 484, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261826

RESUMEN

OBJECTIVES: The purpose of this study was to demonstrate the discriminating predictive indicators in peripheral blood and left atrium blood for predicting the risk of left atrial spontaneous echo contrast (LASEC) in atrial fibrillation patients underwent catheter ablation. METHODS: A total of 108 consecutive AF patients treated with radiofrequency ablation between July 2022 and July 2023 were enrolled and divided into two groups based on preprocedural transesophageal echocardiography: the non LASEC group (n = 71) and the LASEC group (n = 37). Circulating platelet and endothelial- derived MPs (PMPs and EMPs) in peripheral blood and left atrial blood were detected. Plasma soluble P-selectin (sP-selectin) and von Willebrand factor (vWF) were observed. Diagnostic efficiency was measured using receiver operating characteristic (ROC) curve. RESULTS: Peripheral sP-selectin, vWF and EMPs expressions elevated in all subjects when compared to those in left atrium blood. Levels of sP-selectin and vWF were significantly higher in peripheral blood of LASEC group than those of non LASEC group (p = 0.0018,p = 0.0271). Significant accumulations of peripheral PMPs and EMPs were documented in LASEC group by comparison with non LASEC group (p = 0.0395,p = 0.018). The area under curve(AUC) of combined PMPs and sP-selectin in predicting LASEC was 0.769 (95%CI: 0.678-0.845, sensitivity: 86.49%, specificity: 59.15%), significantly larger than PMPs or sP-selectin alone. CONCLUSIONS: Expressions of PMPs, sP-selectin, EMPs and vWF Increased in NVAF patients with LASEC and that might be potential biomarkers for LASEC prediction.


Asunto(s)
Fibrilación Atrial , Biomarcadores , Ablación por Catéter , Ecocardiografía Transesofágica , Atrios Cardíacos , Selectina-P , Valor Predictivo de las Pruebas , Factor de von Willebrand , Humanos , Fibrilación Atrial/sangre , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/diagnóstico por imagen , Fibrilación Atrial/cirugía , Masculino , Femenino , Persona de Mediana Edad , Atrios Cardíacos/diagnóstico por imagen , Selectina-P/sangre , Factor de von Willebrand/metabolismo , Factor de von Willebrand/análisis , Biomarcadores/sangre , Anciano , Resultado del Tratamiento , Función del Atrio Izquierdo , Factores de Riesgo , Medición de Riesgo
2.
Cureus ; 16(5): e59547, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38826955

RESUMEN

Background Platelets are thin disc-shaped blood cells that play a major role in hemostasis, maintenance of vascular integrity, and blood coagulation. Large platelets are more reactive and seen in patients with cardiovascular disease. This study aims to analyze the changes in platelet size of ex vivo activated platelets which phenotypically simulates that of a patient at risk of cardiovascular disease and elucidate the calcium signaling pathway responsible for this change. Methodology Platelets were isolated from adult human blood by differential centrifugation. Calcium was mobilized into platelets by treatment with calcium ionophore A23187 in the presence of Ca2+. Platelet size distribution was analyzed using Coulter Counter Multisizer 4. The following signaling parameters were studied: intracellular Ca2+ measurement (using Fura-2/AM by fluorescence spectrophotometry), Ca2+-dependent thiol protease calpain assay (using fluorogenic substrate t-butoxycarbonyl-Leu-metchloromethylcoumarin in fluorescence microplate reader), platelet-derived microparticles (using FACS Calibur flow cytometry), and cytoskeletal protein talin expression (by western immunoblotting). Results When adult platelets were treated with A23187 and Ca2+, two subcellular populations (<2 µm and between 2-4 µm) were noted. The mean size of the second cell population was significantly higher than that of resting platelets (2.94 ± 0.13 µm vs. 2.82 ± 0.15 µm, t = 4.605, p = 0.00). A23187 treatment led to elevated intracellular Ca2+, release of platelet-derived microparticles, increase in calpain activity, and cytoskeletal talin degradation. These events were inhibited by calpeptin (a specific calpain inhibitor). Conclusions Elevated calcium caused talin degradation by calpain activity. Breakdown of this cytoskeletal protein leads to relative swelling of cells reflected by the increase in platelet size.

3.
Mol Biol Rep ; 51(1): 676, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796661

RESUMEN

BACKGROUND: The current understanding emphasizes the intricate interplay between the Leukemic cell and its environment. Platelet-derived microparticles play a crucial role in facilitating intercellular communication and contribute to the complex landscape of cancer pathology. This study aimed to investigate the influence of platelet-derived microparticles on cell proliferation, apoptosis, and the expression of key genes, including P53, P21, Cyclin D1, Bax, and Bcl-2, within the context of a chronic myeloid leukemia cell line (K562). METHODS AND RESULTS: Platelet-derived microparticles were obtained through centrifugation at various speeds, and their concentration was quantified using the BCA assay. To determine the size and immunophenotypic characteristics of the PMPs, both the DLS technique and flow cytometry were employed. Cell proliferation was assessed using the MTT assay and hemocytometer, and cell cycle analysis was conducted through DNA content evaluation. Real-time PCR was utilized for gene expression analysis of Bax, Bcl-2, Cyclin D1, P53, and P21. Flow cytometry was employed to examine cell apoptosis. The findings revealed that platelet-derived microparticles have the ability to decrease proliferation of the K562 cell line, while not exerting an impact on apoptosis and cell cycle progression. Analysis through real-time PCR indicated an upregulation in the gene expression of P53, P21, and Bcl-2, accompanied by a downregulation in Bax and Cyclin D1. CONCLUSION: This investigation sheds light on the intricate relationship between chronic myeloid leukemia and its microenvironment, particularly the involvement of platelet-derived microparticles. The study underscores the potential of platelet-derived microparticles to influence cell behavior and gene expression, providing a deeper understanding of their role in CML and its therapeutic implications.


Asunto(s)
Apoptosis , Plaquetas , Proliferación Celular , Micropartículas Derivadas de Células , Leucemia Mielógena Crónica BCR-ABL Positiva , Humanos , Micropartículas Derivadas de Células/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Plaquetas/metabolismo , Células K562 , Proliferación Celular/genética , Apoptosis/genética , Ciclo Celular/genética , Proteína X Asociada a bcl-2/metabolismo , Proteína X Asociada a bcl-2/genética , Ciclina D1/metabolismo , Ciclina D1/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Regulación Leucémica de la Expresión Génica
4.
Mol Biotechnol ; 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38466505

RESUMEN

Acute myocardial infarction (AMI) is one of the critical health conditions often caused by the rupture of unstable coronary artery plaque, triggering a series of events, such as platelet activation, thrombus formation, coronary artery blockage, lasted severe ischemia, and hypoxia in cardiomyocytes, and culminating in cell death. Platelet-derived microvesicles (PMVs) act as intermediates for cellular communication. Nevertheless, the role of PMVs in myocardial infarction remains unclear. Initially, AMI-related messenger ribose nucleic acid (mRNA) and micro RNA (miRNA) datasets from the Gene Expression Omnibus (GEO) database were analyzed, specifically focusing on the expressed genes associated with Ferroptosis. Further, a miRNA-mRNA regulatory network specific to AMI was constructed. Then, the effect of PMVs on cardiomyocyte survival was further confirmed through in vitro experiments. High ACSL1 expression was observed in the platelets of AMI patients. The gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that ACSL1, located in the mitochondria, played a key role in the PPAR signaling pathway. The elevated ACSL1 expression in a co-culture model of PMVs and AC16 cardiomyocytes significantly increased the AC16 cell Ferroptosis. Further, we validated that the platelet ACSL1 expression could be regulated by hsa-miR-449a. Together, these findings suggested that platelet ACSL1 could trigger myocardial cell death via PMV transport. In addition, this research provided a theoretical framework for attenuating myocardial cell Ferroptosis in patients with acute myocardial infarction.

5.
Transfusion ; 64(2): 367-379, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38174435

RESUMEN

BACKGROUND: Platelet concentrates (PCs) could be prepared using either whole-blood processes or apheresis instruments. During collection, processing and storage, some biochemical and functional changes occur, which may result in quality reduction. Quality evaluation of PCs may be helpful for the precise control of platelet (PLT) inventory to reduce the risk of refractoriness and adverse effects caused by platelet transfusion. STUDY DESIGN AND METHODS: The study was aimed to evaluate the quality of PCs which were produced by five processes: apheresis (AP) procedures (using three different cell separators: Amicus, Trima Accel and MCS+ instruments), platelet rich plasma (PRP), and buffy coat (BC). A total of 100 PCs (20 of each group) were assessed in respect of routine quality control, morphology, size distribution, destroyed and activated platelets, and production of platelet-derived microparticles (PMPs). RESULTS: All PCs have satisfied the recommended quality of volume, platelet count, residual WBC count, residual RBC count, pH, and sterility according to the Chinese Technical Manual. There was no difference among the 5 groups in morphology and size of PLT and PMPs. Dynamic light scattering test showed that apheresis PCs showed peaks around 10-20 nm, but not whole blood-derived PCs. PCs prepared by Amicus had the relatively high percentage of destroyed platelet, activated platelets and PMPs than other groups. DISCUSSION: The data suggested high heterogeneity of PMPs, destroyed and activated platelets in PCs produced by different processes, which might be helpful to manage the platelet inventory for targeted use.


Asunto(s)
Eliminación de Componentes Sanguíneos , Micropartículas Derivadas de Células , Plasma Rico en Plaquetas , Humanos , Eliminación de Componentes Sanguíneos/métodos , Plaquetas , Recuento de Plaquetas , Conservación de la Sangre/métodos
6.
Oncoimmunology ; 13(1): 2304963, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38235317

RESUMEN

Approximately two-thirds of hepatocellular carcinoma (HCC) is considered a "cold tumor" characterized by few tumor-infiltrating T cells and an abundance of immunosuppressive cells. Cilengitide, an integrin αvß3 inhibitor, has failed in clinical trials as a potential anticancer drug. This failure implies that integrin αvß3 may play an important role in immune cells. However, the expression and potential role of integrin αvß3 in T cells of HCC patients remain unknown. Here, we established two HCC models and found that cilengitide had a dual effect on the HCC microenvironment by exerting both antitumor effect and immunosuppressive effect on T cells. This may partly explain the failure of cilengitide in clinical trials. In clinical specimens, HCC-infiltrating T cells exhibited deficient expression and activation of integrin ß3, which was associated with poor T-cell infiltration into tumors. Additionally, integrin ß3 functioned as a positive immunomodulatory molecule to facilitate T-cell infiltration and T helper 1-type immune response in vitro. Furthermore, T cells and platelet-derived microparticles (PMPs) co-culture assay revealed that PMPs adoptively transferred integrin ß3 to T cells and positively regulated T cell immune response. This process was mediated by clathrin-dependent endocytosis and macropinocytosis. Our data demonstrate that integrin ß3 deficiency on HCC-infiltrating T cells may be involved in shaping the immunosuppressive tumor microenvironment. PMPs transfer integrin ß3 to T cells and positively regulate T cell immune response, which may provide a new insight into immune therapy of HCC.


Asunto(s)
Carcinoma Hepatocelular , Micropartículas Derivadas de Células , Neoplasias Hepáticas , Humanos , Integrina beta3/metabolismo , Integrina beta3/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Integrina alfaVbeta3/uso terapéutico , Neoplasias Hepáticas/tratamiento farmacológico , Micropartículas Derivadas de Células/metabolismo , Micropartículas Derivadas de Células/patología , Linfocitos T , Microambiente Tumoral
7.
Int J Mol Sci ; 24(12)2023 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-37373420

RESUMEN

Extracellular microparticles provide a means of cell-to-cell communication and can promote information exchanges between adjacent or distant cells. Platelets are cell fragments that are derived from megakaryocytes. Their main functions are to stop bleeding, regulate inflammation, and maintain the integrity of blood vessels. When platelets are activated, they can perform related tasks by secreting platelet-derived microparticles that contain lipids, proteins, nucleic acids, and even organelles. There are differences in the circulating platelet levels in many autoimmune diseases, including rheumatoid arthritis, systemic lupus erythematosus, antiphospholipid antibody syndrome, and Sjogren's syndrome. In this paper, the latest findings in the research field of platelet-derived microparticles are reviewed, including the potential pathogenesis of platelet-derived microparticles in various types of immune diseases, their potential as related markers, and for monitoring the progress and prognosis of disease treatment are expounded.


Asunto(s)
Artritis Reumatoide , Enfermedades Autoinmunes , Micropartículas Derivadas de Células , Lupus Eritematoso Sistémico , Humanos , Micropartículas Derivadas de Células/metabolismo , Enfermedades Autoinmunes/metabolismo , Plaquetas/metabolismo , Artritis Reumatoide/metabolismo , Megacariocitos/patología
8.
Int J Mol Sci ; 24(8)2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37108551

RESUMEN

Implantable Cardiovascular Therapeutic Devices (CTD), while lifesaving, impart supraphysiologic shear stress to platelets, resulting in thrombotic and bleeding coagulopathy. We previously demonstrated that shear-mediated platelet dysfunction is associated with downregulation of platelet GPIb-IX-V and αIIbß3 receptors via generation of Platelet-Derived MicroParticles (PDMPs). Here, we test the hypothesis that sheared PDMPs manifest phenotypical heterogeneity of morphology and receptor surface expression and modulate platelet hemostatic function. Human gel-filtered platelets were exposed to continuous shear stress. Alterations of platelet morphology were visualized using transmission electron microscopy. Surface expression of platelet receptors and PDMP generation were quantified by flow cytometry. Thrombin generation was quantified spectrophotometrically, and platelet aggregation was measured by optical aggregometry. Shear stress promotes notable alterations in platelet morphology and ejection of distinctive types of PDMPs. Shear-mediated microvesiculation is associated with the remodeling of platelet receptors, with PDMPs expressing significantly higher levels of adhesion receptors (αIIbß3, GPIX, PECAM-1, P-selectin, and PSGL-1) and agonist receptors (P2Y12 and PAR1). Sheared PDMPs promote thrombin generation and inhibit platelet aggregation induced by collagen and ADP. Sheared PDMPs demonstrate phenotypic heterogeneity as to morphology and defined patterns of surface receptors and impose a bidirectional effect on platelet hemostatic function. PDMP heterogeneity suggests that a range of mechanisms are operative in the microvesiculation process, contributing to CTD coagulopathy and posing opportunities for therapeutic manipulation.


Asunto(s)
Micropartículas Derivadas de Células , Hemostáticos , Humanos , Trombina/metabolismo , Micropartículas Derivadas de Células/metabolismo , Plaquetas/metabolismo , Agregación Plaquetaria , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Hemostáticos/metabolismo , Activación Plaquetaria , Estrés Mecánico
9.
Cell Commun Signal ; 21(1): 51, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36882818

RESUMEN

BACKGROUND: Metastasis is the main cause of death in patients with colorectal cancer (CRC). Apart from platelets, platelet-derived microparticles (PMPs) are also considered important factors that can modify the activity of cancer cells. PMPs are incorporated by cancer cells and can also serve as intracellular signalling vesicles. PMPs are believed to affect cancer cells by upregulating their invasiveness. To date, there is no evidence that such a mechanism occurs in colorectal cancer. It has been shown that platelets can stimulate metalloproteases (MMPs) expression and activity via the p38MAPK pathway in CRC cells, leading to their elevated migratory potential. This study aimed to investigate the impact of PMPs on the invasive potential of CRC cells of various phenotypes via the MMP-2, MMP-9 and p38MAPK axis. METHODS: We used various CRC cell lines, including the epithelial-like HT29 and the mesenchymal-like SW480 and SW620. Confocal imaging was applied to study PMP incorporation into CRC cells. The presence of surface receptors on CRC cells after PMP uptake was evaluated by flow cytometry. Transwell and scratch wound-healing assays were used to evaluate cell migration. The level of C-X-C chemokine receptor type 4 (CXCR4), MMP-2, and MMP-9 and the phosphorylation of ERK1/2 and p38MAPK were measured by western blot. MMP activity was determined using gelatine-degradation assays, while MMP release was evaluated by ELISA. RESULTS: We found that CRC cells could incorporate PMPs in a time-dependent manner. Moreover, PMPs could transfer platelet-specific integrins and stimulate the expression of integrins already present on tested cell lines. While mesenchymal-like cells expressed less CXCR4 than epithelial-like CRC cells, PMP uptake did not increase its intensity. No significant changes in CXCR4 level either on the surface or inside CRC cells were noticed. Levels of cellular and released MMP-2 and MMP-9 were elevated in all tested CRC cell lines after PMP uptake. PMPs increased the phosphorylation of p38MAPK but not that of ERK1/2. Inhibition of p38MAPK phosphorylation reduced the PMP-induced elevated level and release of MMP-2 and MMP-9 as well as MMP-dependent cell migration in all cell lines. CONCLUSIONS: We conclude that PMPs can fuse into both epithelial-like and mesenchymal-like CRC cells and increase their invasive potential by inducing the expression and release of MMP-2 and MMP-9 via the p38MAPK pathway, whereas CXCR4-related cell motility or the ERK1/2 pathway appears to not be affected by PMPs. Video Abstract.


Asunto(s)
Micropartículas Derivadas de Células , Neoplasias Colorrectales , Humanos , Metaloproteinasa 2 de la Matriz , Metaloproteinasa 9 de la Matriz , Transducción de Señal , Invasividad Neoplásica
10.
Front Immunol ; 14: 1084283, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36761728

RESUMEN

Citrullinated neoepitopes have emerged as key triggers of autoantibodies anti-citrullinated protein antibodies (ACPA) synthesis in rheumatoid arthritis (RA) patients. Apart from their critical role in homeostasis and thrombosis, platelets have a significant contribution to inflammation as well. Although anuclear in nature, platelets have an intricate post-translational modification machinery. Till now, citrullination in platelets and its contribution to trigger autoantibodies ACPA production in RA is an unexplored research direction. Herein, we investigated the expression of peptidylarginine deiminase (PAD) enzymes and citrullinated proteins/peptides in the human platelets and platelet derived microparticles (PDP). Both PAD4 mRNA and protein, but not the other PAD isoforms, are detectable in the human platelets. With a strict filtering criterion,108 citrullination sites present on 76 proteins were identified in the human platelets, and 55 citrullinated modifications present on 37 different proteins were detected in the PDPs. Among them, some are well-known citrullinated autoantigens associated with RA. Citrullinated forms of thrombospondin-1, ß-actin, and platelet factor-4 (also known as CXCL4) are highly immunogenic and bound by autoantibodies ACPA. Furthermore, ACPA from RA sera and synovial fluids recognized citrullinated proteins from platelets and significantly activated them as evidenced by P-selectin upregulation and sCD40 L secretion. These results clearly demonstrate the presence of citrullinated autoantigens in platelets and PDPs, thus could serve as potential targets of ACPA in RA.


Asunto(s)
Artritis Reumatoide , Micropartículas Derivadas de Células , Humanos , Autoanticuerpos , Micropartículas Derivadas de Células/metabolismo , Citrulina/metabolismo , Desiminasas de la Arginina Proteica , Autoantígenos
11.
Platelets ; 34(1): 2156492, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36550078

RESUMEN

Platelet microparticles (PMPs) are vesicles that are released by platelets into the extracellular space and play a role in antiphospholipid antibody syndromes. PMPs have recently been recognized as a new and viable cell. There is growing evidence that the anti-ß2 glycoprotein (GPI)/ß2GPI complex is associated with aberrant activation of PMPs. Although studies suggest that aberrant activation of PMPs may lead to inflammatory necrosis of endothelial cells, the underlying mechanisms remain unclear. We found that although the difference in the number of PMPs was not statistically significant, NLR family pyrin domain containing 3 (NLRP3) within PMPs was increased during stimulation of anti-ß2GPI/ß2GPI complexes. Furthermore, we demonstrated that anti-ß2GPI/ß2GPI complex-induced PMPs effectively stimulated endothelial cell pyroptosis via the NLRP3/nuclear factor (NF)-κB/gasdermin D (GSDMD) signaling pathway as well as the NLRP3/Caspase-1 signaling pathway. Additionally, inhibition of NLRP3 expression in PMPs effectively reduced the inflammatory response and pyroptosis in endothelial cells. Our data suggest that PMPs aberrantly activated by anti-ß2GPI/ß2GPI complexes play a vital role in endothelial cell pyroptosis, and these studies provide major insights into the mechanisms of thrombosis during the treatment of antiphospholipid antibody syndrome.


What is the context? Antiphospholipid syndrome (APS), an acquired autoimmune disease of unknown etiology. Clinical manifestations include arteriovenous thrombosis, recurrent miscarriages and thrombocytopenia. Endothelial cell damage is common in APSAnti-ß2 glycoprotein I antibody, one of the most common APS antibodies, is the main target antigen of anti-ß2GPI. Studies have shown that the anti-ß2GPI/ß2GPI complex accelerates inflammatory cell necrosis.Pyroptosis, also known as inflammatory cell necrosis, is a new form of cell death. Pyroptosis is caused by the activation of the NLRP3 inflammasome, which manifests itself as swelling, lysis and perforation of the cell membrane.Platelet micro-particles (PMPs) are vesicular components that are released extracellularly by platelet activation and are the most abundant and common type of circulating particles in the blood, causing an inflammatory response in the endothelium. There is limited evidence that anti-ß2GPI/ß2GPI complexes can accelerate endothelial cell pyroptosis by mediating platelet activation to produce PMPs. However, more research is needed to investigate the specific mechanisms by which PMPs cause endothelial cell pyroptosis.What is new? This is the first study on the role of NLRP3 in PMPs. NLRP3 expression in PMPs was increased by stimulation of anti-ß2GPI/ß2GPI complexes.NLRP3 in PMPs is closely associated with GSDMD-N, a protein involved in endothelial pyroptosis.Anti-ß2GPI/ß2GPI stimulated PNPs induce pyroptosis via NLRP3/NF-κB/GSDMD and NLRP3/Caspase-1/IL-1ß axis.What is the impact? The aim of this study was to investigate the specific mechanism of endothelial cell pyroptosis induced by platelet-released PMPs activated by anti-ß2GPI/ß2GPI complexes. This finding provides new ideas on the mechanism of endothelial cell scorching in APS and provides a new drug target for the clinical treatment of APS.


Asunto(s)
Síndrome Antifosfolípido , Micropartículas Derivadas de Células , Humanos , Células Endoteliales/metabolismo , Piroptosis , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Micropartículas Derivadas de Células/metabolismo , Glicoproteínas/metabolismo , FN-kappa B/metabolismo
12.
Int Urol Nephrol ; 55(2): 355-366, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35931920

RESUMEN

BACKGROUND: Diabetic nephropathy (DN) is the leading cause of end-stage renal disease in the developed world. Podocyte injury is a critical cellular event involved in the progression of DN. Our previous studies demonstrated that platelet-derived microparticles (PMPs) mediated endothelial injury in diabetic rats. This study aimed to investigate whether PMPs are deposited in podocytes and to assess their potential effects on podocyte injury in DN. METHODS: The deposition of PMPs in podocytes was assessed by immunofluorescent staining and electron microscopy. The changes in renal pathology and ultra-microstructure were assessed by periodic acid-Schiff staining and electron microscopy, respectively. The expression of inflammatory cytokines and extracellular matrix proteins was measured by immuno-histochemical staining and western blot. RESULTS: PMPs were widely deposited in podocytes of glomeruli in diabetic patients and animal models and closely associated with DN progression. Interestingly, aspirin treatment significantly inhibited the accumulation of PMPs in the glomeruli of diabetic rats, alleviated mesangial matrix expansion and fusion of foot processes, and decreased the protein expression of inflammatory cytokines and extracellular matrix secretion. An in vitro study further confirmed the deposition of PMPs in podocytes. Moreover, PMP stimulation induced the phenotypic transition of podocytes through decreased podocin protein expression and increased protein expression of α-SMA and fibronectin, which was correlated with increased production of inflammatory cytokines. CONCLUSION: Our findings demonstrated for the first time that the deposition of PMPs in podocytes contributed to the development of DN.


Asunto(s)
Micropartículas Derivadas de Células , Diabetes Mellitus Experimental , Nefropatías Diabéticas , Podocitos , Ratas , Animales , Nefropatías Diabéticas/complicaciones , Podocitos/metabolismo , Diabetes Mellitus Experimental/metabolismo , Micropartículas Derivadas de Células/metabolismo , Micropartículas Derivadas de Células/patología , Citocinas/metabolismo
13.
J Nanobiotechnology ; 20(1): 396, 2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36045427

RESUMEN

The abnormal expression of long non-coding RNAs (LncRNAs) in platelet-derived microparticles (PMPs) is closely related to immune disorders and may lead to antiphospholipid antibody syndrome and recurrent miscarriage. To understand the association between the LncRNAs in PMPs and RM/APS, the differences in the expression of LncRNAs in RM/APS patients and healthy controls were analyzed. Microarray analysis and RT-qPCR detection proved that RM/APS patient exhibited high levels of LncNR_040117 expression. The lentiviral silent expression transfection of HTR-8/SVneo cells indicated that LncNR_040117 downregulation decreased the activity of HTR-8/SVneo cells and inhibited the MAPK signaling pathway, further confirming the biomarker proficiency of LncNR_040117 for RM/APS. After that, we proposed a ß-In2S3@g-C3N4 nanoheterojunction-based photoelectrochemical (PEC) biosensor to achieve the ultrasensitive detection of LncNR_040117. The nanoheterojunction aids in the effective separation of photogenerated carriers and significantly improve the photocurrent response of the biosensor. The conjugation of LncNR_040117 onto the PEC biosensing platform increased the steric hindrance between electrolyte and electrode, subsequently decreasing the photocurrent signal. The PEC biosensor showed a wide detection range of 0.1-106 fM and a low limit of detection of 0.025 fM. For clinical sample testing, the results of the PEC and RT-qPCR were highly consistent. Overall, LncNR_040117 in PMPs was identified as an effective biomarker for RM/APS and could be accurately detected by the proposed PEC biosensor, which is expected to provide a reliable diagnostic platform for RM/APS.


Asunto(s)
Aborto Habitual , Síndrome Antifosfolípido , Técnicas Biosensibles , Micropartículas Derivadas de Células , ARN Largo no Codificante , Aborto Habitual/diagnóstico , Síndrome Antifosfolípido/diagnóstico , Biomarcadores , Técnicas Biosensibles/métodos , Femenino , Humanos , Límite de Detección
14.
Curr Rheumatol Rep ; 24(7): 227-237, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35680774

RESUMEN

PURPOSE OF REVIEW: Although rare, idiopathic inflammatory myopathies (IIM) comprise a heterogeneous group of autoimmune conditions in adults and children. Increasingly, vasculopathy is recognised to be key in the underlying pathophysiology and plays a crucial role in some of the more challenging complications including calcinosis, gastrointestinal involvement and interstitial lung disease. The exciting prospect of development of biomarkers of vasculopathy would enable earlier detection and monitoring of these complications and possible prevention of their potentially devastating consequences. The purpose was to review the current literature on biomarkers of vasculopathy in IIM and offer insight as to the biomarkers most likely to have an impact on clinical care. RECENT FINDINGS: Multiple candidate biomarkers have been studied including circulating endothelial cells (CEC), microparticles (MP), soluble adhesion markers (ICAM-1, ICAM-3, VCAM-1), selectin proteins (E-, L-, P-selectin), coagulation factors, angiogenic factors, cytokines (including (IL-6, IL-10, TNF-α, IL-18) and interferon (IFN)-related biomarkers (including IFNα, IFN-ß, IFNγ, galectin-9, interferon signature and interferon-related chemokines (MCP-1, IP-10 and MIG). There is a growing body of evidence of the potential role of biomarkers in detecting and monitoring the vasculopathy in IIM, detecting disease activity and predicting disease flares and overall prognosis. Exciting progress has been made in the search for biomarkers of vasculopathy of IIM; however, none of the studies are validated and further research is required.


Asunto(s)
Células Endoteliales , Miositis , Adulto , Biomarcadores , Niño , Citocinas , Humanos , Interferones/uso terapéutico
15.
Curr Mol Med ; 22(6): 524-539, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34602037

RESUMEN

Today, Platelets and platelet-derived nanoparticles and microparticles have found many applications in nanomedical technology. The results of our review study show that no article has been published in this field to review the current status of applications of these platelet derivatives so far. Therefore, in the present study, our goal is to compare the applications of platelet derivatives and review their latest status between 2010 and 2020 to present the latest findings to researchers. A very interesting point about the role of platelet derivatives is the presence of molecules on their surface, which makes them capable of hiding from the immune system, reaching different target cells, and specifically attaching to different cell types. According to the results of this study, most of their applications include drug delivery, diagnosis of various diseases, and tissue engineering. However, their application in drug delivery is limited due to heterogeneity, large size, and the possibility of interference with cellular pathways in microparticles derived from other cells. On the other hand, platelet nanoparticles are more controllable and have been widely used for drug delivery in the treatment of cancer, atherosclerosis, thrombosis, infectious diseases, repair of damaged tissue, and photothermal therapy. The results of this study show that platelet nanoparticles are more controllable than platelet microparticles and have a higher potential for use in medicine.


Asunto(s)
Aterosclerosis , Micropartículas Derivadas de Células , Nanopartículas , Trombosis , Aterosclerosis/metabolismo , Plaquetas/metabolismo , Micropartículas Derivadas de Células/metabolismo , Humanos , Nanopartículas/uso terapéutico , Trombosis/tratamiento farmacológico , Trombosis/metabolismo
16.
BMC Cancer ; 21(1): 939, 2021 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-34416874

RESUMEN

BACKGROUND: Microparticles (MPs) are extracellular vesicles that are associated with cancer development and progression. Advanced non-small cell lung cancer (NSCLC) still shows disease progression after multiple lines of treatment. Therefore, the objective of this study was to explore the correlation between circulating MPs and disease progression in advanced NSCLC, and to find a new method for concise and rapid determination of disease progression. METHODS: Patients with advanced NSCLC admitted to hospital between October 2019 and October 2020 were included and divided into objective remission (OR) and progressive disease (PD) groups. The morphology of MPs was observed using transmission electron microscopy. The circulating total MPs, neutrophil MPs (NMPs), and platelet MPs (PMPs) before and after treatment were detected by flow cytometry, and a predictive model for disease progression in advanced NSCLC was developed. RESULTS: Eighty-six patients were included; 60 in the OR group and 26 in the PD group. There was no significant difference in total MPs, NMPs, or PMPs at baseline between the two groups. After treatment, total MPs, NMPs, and PMPs were significantly higher in the PD than those in the OR group. Multivariate regression analysis showed that post-treatment NMPs≥160 events/µL(OR,3.748;95%CI,1.147-12.253,p = 0.029), PMPs≥80 events/µL(OR,10.968;95%CI,2.973-40.462,p < 0.0001) and neutrophil/lymphocyte ratio (NLR) ≥3.3 (OR,4.929;95%CI,1.483-16.375,p = 0.009) were independently associated with progression of advanced NSCLC. Post-treatment NMPs and PMPs combined with NLR were used to build a predictive model for progression of advanced NSCLC. The area under the curve was 0.825 (95%CI,0.715-0.934, p < 0.0001), optimal cut-off value was 16, sensitivity was 80.8%, and specificity was 88.3%. CONCLUSION: NMPs and PMPs are associated with progression of advanced NSCLC. The predictive model for progression of advanced NSCLC, established combining NMPs, PMPs, and NLR, can screen out 80.8% of patients with PD. This is helpful for real-time accurate, concise and rapid assessment of disease progression and timely adjustment of drug therapy. TRIAL REGISTRATION: Chinese Clinical Trial Registry, ChiCTR1800020223 . Registered 20 December 2018, http://www.chictr.org.cn/index.aspx .


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Biomarcadores de Tumor/análisis , Plaquetas/patología , Carcinoma de Pulmón de Células no Pequeñas/patología , Micropartículas Derivadas de Células/patología , Neoplasias Pulmonares/patología , Neutrófilos/patología , Carcinoma de Pulmón de Células no Pequeñas/sangre , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Progresión de la Enfermedad , Femenino , Estudios de Seguimiento , Humanos , Neoplasias Pulmonares/sangre , Neoplasias Pulmonares/tratamiento farmacológico , Linfocitos/patología , Masculino , Persona de Mediana Edad , Pronóstico , Factores de Riesgo , Tasa de Supervivencia
17.
Biomed Pharmacother ; 141: 111867, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34229245

RESUMEN

Platelets exert an essential role in vascular inflammation and thrombosis. Flavonoids are natural compounds employed for the clinical management of vascular disorders preventing capillary permeability, working as phlebotonics and improving the blood rheology, although their mechanism of action remains partially unknown. The effects of quercetin, rutin, diosmetin and diosmin were investigated in platelet activation utilizing blood from healthy and non-treated volunteers. The arrangement of the different activation states of platelets and GPIIb/IIIa receptor occupation was computed by flow cytometry working with calcium ionophore as pro-aggregant to provoke platelet activation and aggregation. The flavonoids studied demonstrated relevant antiplatelet activity through the blocked of GPIIb/IIIa receptors, the suppression of the platelet activation, as well as the pro-aggregate effect of calcium ionophore. Therefore, whichever of the active ingredients examined could be beneficious in the prevention of cardiovascular disease and this article also contributes to elucidate a new mechanism of action for these drugs.


Asunto(s)
Flavonoides/metabolismo , Flavonoides/farmacología , Inhibidores de Agregación Plaquetaria/farmacología , Plaquetas/efectos de los fármacos , Ionóforos de Calcio/farmacología , Diosmina/farmacología , Femenino , Voluntarios Sanos , Humanos , Técnicas In Vitro , Masculino , Activación Plaquetaria/efectos de los fármacos , Agregación Plaquetaria , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/efectos de los fármacos , Quercetina/farmacología , Rutina/farmacología , Adulto Joven
18.
Clin Appl Thromb Hemost ; 27: 10760296211019465, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34032122

RESUMEN

It is known that atrial fibrillation (AF) is associated with the procoagulant state. Several studies have reported an increase of circulating microparticles in AF, which may be linked to a hypercoagulable state, atrial thrombosis and thromboembolism. We evaluated in our study alterations in both platelet (PMP, CD42b) and endothelial-derived (EMP, CD144) microparticle levels on anticoagulant therapy with rivaroxaban in nonvalvular AF. After administration of rivaroxaban, PMP levels were increased (median, [IQR] 35.7 [28.8-47.3] vs. 48.4 [30.9-82.8] cells/µL; P = 0.012), along with an increase in EMP levels (14.6 [10.0-18.6] vs. 18.3 [12.9-37.1] cells/µL, P < 0.001). In the multivariable regression analysis, the independent predictor of post-dose change in PMPs was statin therapy (HR -0.43; 95% CI -0.75,-0.10, P = 0.011). The post-dose change in EMPs was also predicted by statin therapy (HR -0.34; 95% CI -0.69, -0.01, P = 0.046). This study showed an increase in both EMPs and PMPs at the peak plasma concentration of rivaroxaban. Statins have promising potential in the prevention of rivaroxaban-related PMP and EMP release. The pro-thrombotic role of PMPs and EMPs during rivaroxaban therapy requires further study.


Asunto(s)
Fibrilación Atrial/tratamiento farmacológico , Plaquetas/metabolismo , Micropartículas Derivadas de Células/metabolismo , Células Endoteliales/metabolismo , Rivaroxabán/uso terapéutico , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Factores de Riesgo , Rivaroxabán/farmacología
19.
Technol Cancer Res Treat ; 20: 1533033821997817, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33612078

RESUMEN

BACKGROUND: There are limited methods to predict the therapeutic effect of immune checkpoint inhibitors (ICIs). The purpose of this study was to explore the value of circulating microparticles (MPs) in predicting thetherapeutic effects of immunotherapy. METHODS: A prospective study was conducted at the cancer center of PLA general hospital, including all patients with advanced non-small cell lung cancer (NSCLC) who were treated with pembrolizumab or nivolumab from December 2018 to December 2019. The patients were divided into an immune-related objective response (iOR) group and an immune-related disease progression (iPD) group.The numbers of total MPs, platelet-derived microparticles (PMPs) and T-lymphocyte-derived microparticles (T-LyMPs) at baseline and after immunotherapy were detected using a flow cytometer. Univariate analysis and multivariate logistic regression analysis were used to determine the independent influencing factors. RESULTS: We identified 32 patients in the iOR group and 18 patients in the iPD group. No significant difference were found intotal MPs, PMPs and T-LyMPs at the baseline between the 2 groups. While total MPs, PMPs and T-LyMPs in the iPD group were significantly higher than those in the iOR group after immunotherapy(P < 0.05). In the multivariate logistic regression analysis, PMPs ≥80 events/µL after immunotherapy(OR, 7.270; 95% CI, 1.092-48.404, P = 0.04) were associated with disease progression in advanced NSCLC and could independently predict the therapeutic effect of immunotherapy. CONCLUSIONS: PMPs after immunotherapy independently predicted the therapeutic effects of ICIs, making it possible to monitor the therapeutic effect in real time and rapidly adjust treatment regimens. In addition, this study found for the first time that elevated circulating T-LyMPs were associated with disease progression in advanced NSCLC.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Plaquetas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/sangre , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Micropartículas Derivadas de Células/metabolismo , Neoplasias Pulmonares/sangre , Neoplasias Pulmonares/tratamiento farmacológico , Anciano , Anticuerpos Monoclonales Humanizados/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Biomarcadores , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Comorbilidad , Progresión de la Enfermedad , Femenino , Citometría de Flujo , Humanos , Inhibidores de Puntos de Control Inmunológico/administración & dosificación , Neoplasias Pulmonares/diagnóstico , Masculino , Persona de Mediana Edad , Terapia Molecular Dirigida , Nivolumab/administración & dosificación , Pronóstico , Curva ROC , Resultado del Tratamiento
20.
Scand J Trauma Resusc Emerg Med ; 29(1): 38, 2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33622398

RESUMEN

BACKGROUND: Aggressive fluid management and other external factors may lead to hypothermia, acidosis and hemodilution (defined as Lethal Triad, LT) contributing to a trauma-induced coagulopathy (TIC) that worsens patients' outcomes. Procoagulant microparticles (MP) are crucial players at the interface of cellular and plasmatic coagulation. However, their functions remain largely unexplored. This study aimed to characterize effects of MP subtypes and concentrations on functional coagulation under in vitro simulated conditions. METHODS: Blood from eleven volunteers were collected to simulate in vitro conditions of hemodilution (HD) and LT, respectively. HD was induced by replacing a blood volume of 33% by crystalloids and for LT, samples were further processed by reducing the temperature to 32 °C and lowering the pH to 6.8. MP were obtained either from platelet concentrates (platelet-derived MP, PDMP) or from cell culture (ECV304 cells for endothelial-derived MP, EDMP) by targeted stimulation. After introducing MP to in vitro conditions, we measured their concentration-dependent effects (1.000, 10.000 and 15.000 MP/µl blood) on coagulation compared to whole blood (WB). For each condition, coagulation was characterized by flow cytometric platelet activation and by quantification of fibrin clot propagation using Thrombodynamics® technology. RESULTS: MP originated from platelets and endothelial cells affected blood coagulation in a concentration-dependent manner. Particularly, high PDMP quantities (10.000 and 15.000 PDMP/µl blood) significantly induced platelet activation and fibrin clot growth and size in HD conditions. In LT conditions as well, only high PDMP concentration induced platelet activation, clot growth and size. In contrast, EDMP did not induce platelet activation, but resulted in enhanced formation of spontaneous clots, irrespective of simulated condition. With increasing EDMP concentration, the time until the onset of spontaneous clotting decreased in both HD and LT conditions. DISCUSSION: The study demonstrates an essential role of MP within the coagulation process under simulated coagulopathic conditions. PDMP affected platelets promoting clot formation likely by providing a surface enlargement. EDMP presumably affected clotting factors of the plasmatic coagulation resulting in an increased formation of spontaneous clots. CONCLUSION: Under simulated conditions of a dilutional coagulopathy, MP from different cellular origin indicate a divergent but both procoagulant mechanism within the coagulation process.


Asunto(s)
Coagulación Sanguínea/fisiología , Plaquetas , Micropartículas Derivadas de Células/fisiología , Células Endoteliales , Hemodilución , Acidosis/fisiopatología , Trastornos de la Coagulación Sanguínea/etiología , Pruebas de Coagulación Sanguínea , Femenino , Citometría de Flujo , Humanos , Hipotermia/fisiopatología , Técnicas In Vitro , Masculino , Plasma , Heridas y Lesiones/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA