Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 244
Filtrar
1.
BMC Plant Biol ; 24(1): 853, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39261760

RESUMEN

BACKGROUND: Microspore embryogenesis is a process that produces doubled haploids in tissue culture environments and is widely used in cereal plants. The efficient production of green regenerants requires stresses that could be sensed at the level of glycolysis, followed by the Krebs cycle and electron transfer chain. The latter can be affected by Cu(II) ion concentration in the induction media acting as cofactors of biochemical reactions, indirectly influencing the production of glutathione (GSH) and S-adenosyl-L-methionine (SAM) and thereby affecting epigenetic mechanisms involving DNA methylation (demethylation-DM, de novo methylation-DNM). The conclusions mentioned were acquired from research on triticale regenerants, but there is no similar research on barley. In this way, the study looks at how DNM, DM, Cu(II), SAM, GSH, and ß-glucan affect the ability of green plant regeneration efficiency (GPRE). RESULTS: The experiment involved spring barley regenerants obtained through anther culture. Nine variants (trials) of induction media were created by adding copper (CuSO4: 0.1; 5; 10 µM) and silver salts (AgNO3: 0; 10; 60 µM), with varying incubation times for the anthers (21, 28, and 35 days). Changes in DNA methylation were estimated using the DArTseqMet molecular marker method, which also detects cytosine methylation. Phenotype variability in ß-glucans, SAM and GSH induced by the nutrient treatments was assessed using tentative assignments based on the Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy. The effectiveness of green plant regeneration ranged from 0.1 to 2.91 plants per 100 plated anthers. The level of demethylation ranged from 7.61 to 32.29, while de novo methylation reached values ranging from 6.83 to 32.27. The paper demonstrates that the samples from specific in vitro conditions (trials) formed tight groups linked to the factors contributing to the two main components responsible for 55.05% of the variance (to the first component DNM, DM, to the second component GSH, ß-glucans, Cu(II), GPRE). CONCLUSIONS: We can conclude that in vitro tissue culture conditions affect biochemical levels, DNA methylation changes, and GPRE. Increasing Cu(II) concentration in the IM impacts the metabolism and DNA methylation, elevating GPRE. Thus, changing Cu(II) concentration in the IM is fair to expect to boost GPRE.


Asunto(s)
Metilación de ADN , Glutatión , Hordeum , S-Adenosilmetionina , Técnicas de Cultivo de Tejidos , beta-Glucanos , Hordeum/genética , Hordeum/metabolismo , Hordeum/crecimiento & desarrollo , Hordeum/efectos de los fármacos , Metilación de ADN/efectos de los fármacos , Glutatión/metabolismo , Técnicas de Cultivo de Tejidos/métodos , beta-Glucanos/metabolismo , S-Adenosilmetionina/metabolismo , Flores/genética , Flores/crecimiento & desarrollo , Regeneración/efectos de los fármacos
2.
Genes (Basel) ; 15(8)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39202437

RESUMEN

Somatic embryogenesis (SE) is a biotechnological tool used to generate new individuals and is the preferred method for rapid plant regeneration. However, the molecular basis underlying somatic cell regeneration through SE is not yet fully understood, particularly regarding interactions between the proteome and post-translational modifications. Here, we performed association analysis of high-throughput proteomics and phosphoproteomics in three representative samples (non-embryogenic calli, NEC; primary embryogenic calli, PEC; globular embryos, GE) during the initiation of plant regeneration in cotton, a pioneer crop for genetic biotechnology applications. Our results showed that protein accumulation is positively regulated by phosphorylation during SE, as revealed by correlation analyses. Of the 1418 proteins that were differentially accumulated in the proteome and the 1106 phosphoproteins that were differentially regulated in the phosphoproteome, 115 proteins with 229 phosphorylation sites overlapped (co-differential). Furthermore, seven dynamic trajectory patterns of differentially accumulated proteins (DAPs) and the correlated differentially regulated phosphoproteins (DRPPs) pairs with enrichment features were observed. During the initiation of plant regeneration, functional enrichment analysis revealed that the overlapping proteins (DAPs-DRPPs) were considerably enriched in cellular nitrogen metabolism, spliceosome formation, and reproductive structure development. Moreover, 198 DRPPs (387 phosphorylation sites) were specifically regulated at the phosphorylation level and showed four patterns of stage-enriched phosphorylation susceptibility. Furthermore, enrichment annotation analysis revealed that these phosphoproteins were significantly enriched in endosomal transport and nucleus organization processes. During embryogenic differentiation, we identified five DAPs-DRPPs with significantly enriched characteristic patterns. These proteins may play essential roles in transcriptional regulation and signaling events that initiate plant regeneration through protein accumulation and/or phosphorylation modification. This study enriched the understanding of key proteins and their correlated phosphorylation patterns during plant regeneration, and also provided a reference for improving plant regeneration efficiency.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Gossypium , Fosfoproteínas , Proteínas de Plantas , Proteómica , Regeneración , Gossypium/metabolismo , Gossypium/genética , Gossypium/crecimiento & desarrollo , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteómica/métodos , Regeneración/genética , Regeneración/fisiología , Fosforilación , Proteoma/metabolismo , Técnicas de Embriogénesis Somática de Plantas/métodos , Procesamiento Proteico-Postraduccional
3.
Heliyon ; 10(12): e32612, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39183879

RESUMEN

Seed dispersal is an important ecological process and has important implications for plant population expansion and regeneration. Seed dispersal not only reduces the probability of death due to seed density but also facilitates seedling establishment. Many studies have focused on the effect of one or two factors on seed dispersal. However, little is known about studies on the effect of multiple factors and their interactions on seed dispersal. Here, we conducted a field experiment to explore how seed size, soil burial, and seed peeling affect the dispersal and hoarding of seeds of Quercus liaotungensis in dispersal animals. We found that large seeds were preferentially selected by animals, and the predation after dispersal, hoarding after dispersal, predation distance after dispersal, and hoarding distance after dispersal of large seeds were significantly greater than small seeds, which is more beneficial to the plant expansion and regeneration. Soil burial increased the time of seed intact in situ, significantly increased predation in situ, and reduced predation after dispersal, predation distance after dispersal, and hoarding distance after dispersal, which is not beneficial to the plant population expansion and regeneration. Seed peeling reduced the time of seed intact in situ, and the predation after dispersal was significantly greater than that of unpeeled seeds, which is not beneficial to the plant population. We did not find the interactions between seed size, soil burial, and seed peeling on dispersal. The effects of a single factor may be more than their interactions between seed size, soil burial and seed peeling on dispersal. These results implied that seed size, soil burial and seed peeling may affect plant population expansion and regeneration by affecting the dispersal and hoarding of animals.

4.
Methods Mol Biol ; 2827: 189-196, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38985271

RESUMEN

The aquatic monocot, Aponogeton ulvaceus Baker, is endemic to Madagascar and is a commercially valuable ornamental aquarium plant. Members of the genus Aponogeton contain a spectrum of phytochemicals associated with a broad range of biological activities. However, much remains to be known about this genus, and the A. ulvaceus population is declining due to anthropogenic activities and climate change. To address these challenges, adopting plant tissue culture technology will be a viable solution for the sustainable production of pest- and pathogen-free plants to meet the demands of the ornamental aquatic plant trade, for conservation and research purposes. A simple micropropagation protocol for A. ulvaceus is described here, starting with seeds to establish sterile stock plants, from which immature tubers were acquired as explants for indirect organogenesis.


Asunto(s)
Tubérculos de la Planta , Técnicas de Cultivo de Tejidos , Tubérculos de la Planta/crecimiento & desarrollo , Técnicas de Cultivo de Tejidos/métodos , Semillas/crecimiento & desarrollo , Aclimatación
5.
Plant J ; 119(3): 1494-1507, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38879817

RESUMEN

Citrus is a model plant for studying adventitious embryos, a form of asexual reproduction controlled by a single dominant gene, RWP. This gene has been identified as the causal gene for nucellar embryogenesis, but its function has not yet been fully understood. In this study, we used the fast-growing Fortunella hindsii as a system to explore chromatin accessibility during the nucellar embryony initiation, emphasizing elevated chromatin accessibility in polyembryonic (PO) genotypes compared to monoembryonic ones (MO). Notably, a higher level of accessible chromatin was observed in one allele of the promoter region of FhRWP, consistent with increased expression of the allele carrying the causal structural variant. By independently performing RNAi and gene editing experiments on PO genotypes, we found the downregulation of FhRWP expression could reduce the number of nucellar embryos, while its knockout resulted in abnormal axillary bud development. In overexpression experiments, FhRWP was identified as having the unique capability of inducing the embryogenic callus formation in MO stem segments, possibly through the regulation of the WUS-CLV signaling network and the ABA and cytokinin pathway, marking the inaugural demonstration of FhRWP's potential to reignite somatic cells' embryogenic fate. This study reveals the pleiotropic function of RWP in citrus and constructs a regulatory network during adventitious embryo formation, providing a new tool for bioengineering applications in plant regeneration.


Asunto(s)
Citrus , Regulación de la Expresión Génica de las Plantas , Fenotipo , Proteínas de Plantas , Citrus/genética , Citrus/fisiología , Citrus/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Semillas/genética , Semillas/crecimiento & desarrollo , Edición Génica , Genes de Plantas/genética , Genotipo
6.
Bio Protoc ; 14(11): e5012, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38873013

RESUMEN

Gene editing technologies have revolutionized plant molecular biology, providing powerful tools for precise gene manipulation for understanding function and enhancing or modifying agronomically relevant traits. Among these technologies, the CRISPR-Cas9 system has emerged as a versatile and widely accepted strategy for targeted gene manipulation. This protocol provides detailed, step-by-step instructions for implementing CRISPR-Cas9 genome editing in tomato plants, with a specific focus in generating knockout lines for a target gene. For that, the guide RNA should preferentially be designed within the first exon downstream and closer to the start codon. The edited plants obtained are free of transgene cassette for expression of the CRISPR-Cas9 machinery. Key features • Two sgRNAs employed. • Takes 6-12 months to have an edited transgene-free plant. • Setup in tomato.

7.
Plant Sci ; 346: 112133, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38795752

RESUMEN

In tissue culture, a high concentration of auxin in the callus induction medium (CIM) stimulates cell division and subsequent callus formation, which acquires root primordium-like characteristics necessary for cell pluripotency. In Arabidopsis, WUSCHEL-RELATED HOMEOBOX5 (WOX5) and its closest homolog WOX7, which are abundant in the middle cell layer of mature callus, play a crucial role in maintaining pluripotency by promoting auxin accumulation and enhancing cytokinin sensitivity. However, the mechanism by which WOX5/7 regulate callus formation remains unclear. In this study, we found that mutations in WOX5/7 resulted in a significant down-regulation of genes involved in the G2M and S phases during callus induction. Loss-of-function mutants of WOX5/7 exhibited reduced callus formation, which was correlated with decreased expression of CYCB1;1 compared to the wild-type. Furthermore, we provided evidence that WOX5 physically interacts with PHYTOCHROME A SIGNAL TRANSDUCTION1 (PAT1), which spatio-temporally co-expresses with WOX5 in early-induced callus, and up-regulates a subset of cycle-regulating genes targeted by PAT1. Collectively, our findings suggest a critical role for the WOX5-PAT1 protein complex in regulating cell cycle progression, thereby promoting the continuous growth capacity of pluripotent callus.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , División Celular , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , División Celular/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Ácidos Indolacéticos/metabolismo
8.
Plants (Basel) ; 13(9)2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38732487

RESUMEN

Establishing plant regeneration systems and efficient genetic transformation techniques plays a crucial role in plant functional genomics research and the development of new crop varieties. The inefficient methods of transformation and regeneration of recalcitrant species and the genetic dependence of the transformation process remain major obstacles. With the advancement of plant meristematic tissues and somatic embryogenesis research, several key regulatory genes, collectively known as developmental regulators, have been identified. In the field of plant genetic transformation, the application of developmental regulators has recently garnered significant interest. These regulators play important roles in plant growth and development, and when applied in plant genetic transformation, they can effectively enhance the induction and regeneration capabilities of plant meristematic tissues, thus providing important opportunities for improving genetic transformation efficiency. This review focuses on the introduction of several commonly used developmental regulators. By gaining an in-depth understanding of and applying these developmental regulators, it is possible to further enhance the efficiency and success rate of plant genetic transformation, providing strong support for plant breeding and genetic engineering research.

9.
Plants (Basel) ; 13(5)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38475410

RESUMEN

The octoploid-cultivated strawberry variety Benihope (Fragaria × ananassa Duch cv. Benihope) is an important commercial plant. It is highly susceptible to different diseases, which ultimately leads to a reduction in yield. Gene-editing methods, such as CRISPR/Cas9, demonstrate potential for improving disease resistance in the strawberry cv. Benihope. Establishing a plant regeneration system suitable for CRISPR/Cas9 gene editing is crucial for obtaining transgenic plants on a large scale. This research established a callus induction and plant regeneration system for Agrobacterium-mediated CRISPR/Cas9 gene editing in strawberry cv. Benihope by evaluating multiple types of explants and various plant growth regulators throughout the entire tissue culture process. The results showed that the efficiency of callus induction is strongly influenced by the type of explant and is highly sensitive to the combination of plant growth regulators. Among the different plant growth regulators employed, thidiazuron (TDZ), in combination with 2,4-dichlorophenoxyacetic acid (2,4-D), effectively induced callus formation and plant regeneration from explants derived from nutrient tissues such as runner tips and crowns. In addition, the regeneration experiment demonstrated that the addition of polyvinylpyrrolidone (PVPP) to the shoot regeneration medium could inhibit tissue browning. The gene-edited plants in which some or all of the Fvb7-1, Fvb7-2, Fvb7-3, and Fvb7-4 genes in the MLO (Mildew resistance Locus O) gene family were knocked out by CRISPR/Cas9 system were obtained by applying the plant regeneration system developed in this study.

10.
Methods Mol Biol ; 2791: 1-14, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38532087

RESUMEN

This section describes a set of methods for callus induction followed by the successful regeneration of whole plants and obtaining a culture of transgenic hairy roots from buckwheat plants (Fagopyrum esculentum Moench.). Callus induction and regeneration are key steps for many biotechnological, genetic, and breeding approaches, such as genetic modification, production of biologically active compounds, and propagation of valuable germplasm. Induction of hairy roots using Agrobacterium rhizogenes is also an important tool for functional gene research and plant genome modification. While many efforts were invested into the development of the corresponding protocols, they are not equally efficient for different cultivars. Here, we have tested and optimized the protocols of callus induction, regeneration, and transformation using A. rhizogenes for a set of cultivars of F. esculentum, including wild ancestor of cultivated buckwheat F. esculentum ssp. ancestrale and a self-pollinated accession KK8. The optimal medium for callus induction is Murashige-Skoog basal medium with 3% sucrose which includes hormones 2,4-dichlorophenoxyacetic acid 2 mg/L and kinetin 2 mg/L; for shoot initiation 6-benzylaminopurine 2 mg/L, kinetin 0.2 mg/L, and indole-3-acetic acid 0.2 mg/L; for shoot multiplication 6-benzylaminopurine 3 mg/L and indole-3-acetic acid 0.2 mg/L; and for root initiation half-strength Murashige-Skoog medium with 1.5% sucrose and indole-3-butyric acid 1 mg/L. A. rhizogenes R1000 strain proved to be the most efficient in inducing hairy roots in buckwheat and T-DNA transfer from binary vectors. Seedling explants cut at the root area and immersed in agrobacterium suspension, as well as prickling the cotyledonary area with agrobacteria dipped syringe needle, are the most labor-effective methods of infection, allowing to initiate hairy root growth in 100% of explants.


Asunto(s)
Compuestos de Bencilo , Fagopyrum , Purinas , Cinetina , Raíces de Plantas/genética , Fitomejoramiento , Sacarosa
11.
New Phytol ; 242(3): 1172-1188, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38501463

RESUMEN

Somatic cell totipotency in plant regeneration represents the forefront of the compelling scientific puzzles and one of the most challenging problems in biology. How somatic embryogenic competence is achieved in regeneration remains elusive. Here, we discover uncharacterized organelle-based embryogenic differentiation processes of intracellular acquisition and intercellular transformation, and demonstrate the underlying regulatory system of somatic embryogenesis-associated lipid transfer protein (SELTP) and its interactor calmodulin1 (CAM1) in cotton as the pioneer crop for biotechnology application. The synergistic CAM1 and SELTP exhibit consistent dynamical amyloplast-plasmodesmata (PD) localization patterns but show opposite functional effects. CAM1 inhibits the effect of SELTP to regulate embryogenic differentiation for plant regeneration. It is noteworthy that callus grafting assay reflects intercellular trafficking of CAM1 through PD for embryogenic transformation. This work originally provides insight into the mechanisms responsible for embryogenic competence acquisition and transformation mediated by the Ca2+/CAM1-SELTP regulatory pathway, suggesting a principle for plant regeneration and cell/genetic engineering.


Asunto(s)
Proteínas Portadoras , Plantas , Orgánulos
13.
Plant Methods ; 20(1): 29, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38368430

RESUMEN

BACKGROUND: Hairy roots constitute a valuable tissue culture system for species that are difficult to propagate through conventional seed-based methods. Moreover, the generation of transgenic plants derived from hairy roots can be facilitated by employing carefully designed hormone-containing media. RESULTS: We initiated hairy root formation in the rare crucifer species Asperuginoides axillaris via an injection-based protocol using the Agrobacterium strain C58C1 harboring a hairy root-inducing (Ri) plasmid and successfully regenerated plants from established hairy root lines. Our study confirms the genetic stability of both hairy roots and their derived regenerants and highlights their utility as a permanent source of mitotic chromosomes for cytogenetic investigations. Additionally, we have developed an effective embryo rescue protocol to circumvent seed dormancy issues in A. axillaris seeds. By using inflorescence primary stems of Arabidopsis thaliana and Cardamine hirsuta as starting material, we also established hairy root lines that were subsequently used for regeneration studies. CONCLUSION: We developed efficient hairy root transformation and regeneration protocols for various crucifers, namely A. axillaris, A. thaliana, and C. hirsuta. Hairy roots and derived regenerants can serve as a continuous source of plant material for molecular and cytogenetic analyses.

14.
Mol Plant ; 17(3): 395-408, 2024 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-38297841

RESUMEN

Plants are aerobic organisms that rely on molecular oxygen for respiratory energy production. Hypoxic conditions, with oxygen levels ranging between 1% and 5%, usually limit aerobic respiration and affect plant growth and development. Here, we demonstrate that the hypoxic microenvironment induced by active cell proliferation during the two-step plant regeneration process intrinsically represses the regeneration competence of the callus in Arabidopsis thaliana. We showed that hypoxia-repressed plant regeneration is mediated by the RELATED TO APETALA 2.12 (RAP2.12) protein, a member of the Ethylene Response Factor VII (ERF-VII) family. We found that the hypoxia-activated RAP2.12 protein promotes salicylic acid (SA) biosynthesis and defense responses, thereby inhibiting pluripotency acquisition and de novo shoot regeneration in calli. Molecular and genetic analyses revealed that RAP2.12 could bind directly to the SALICYLIC ACID INDUCTION DEFICIENT 2 (SID2) gene promoter and activate SA biosynthesis, repressing plant regeneration possibly via a PLETHORA (PLT)-dependent pathway. Consistently, the rap2.12 mutant calli exhibits enhanced shoot regeneration, which is impaired by SA treatment. Taken together, these findings uncover that the cell proliferation-dependent hypoxic microenvironment reduces cellular pluripotency and plant regeneration through the RAP2.12-SID2 module.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Oxígeno/metabolismo , Hipoxia , Proliferación Celular , Ácido Salicílico/metabolismo , Regulación de la Expresión Génica de las Plantas
15.
Biosci Biotechnol Biochem ; 88(4): 412-419, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38412471

RESUMEN

The regeneration of shoots from endosperm tissue is a highly effective method to obtain triploid plants. In this study, we elucidated the establishment of an in vitro regeneration system from endosperm culture for the production of Passiflora edulis "Mantianxing." The highest callus induction rate (83.33%) was obtained on the media supplemented with 1.0 mg/L TDZ. Meanwhile, the MS medium containing 1.0 mg/L 6-BA and 0.4 mg/L IBA gave the optimum 75% shoot bud induction. Chromosome analysis revealed that the chromosomal count of P. edulis "Mantianxing" regenerated from endosperm tissues was 27 (2n = 3x = 27), which indicated that shoots regenerated from endosperm tissues were triploids. Triploid P. edulis had more drought resistance than diploid plants. Our study provided a method for breeding of passion fruit by means of a stable and reproducible regeneration system from endosperm culture, leading to the generation of triploid plants.


Asunto(s)
Passiflora , Triploidía , Brotes de la Planta , Endospermo , Fitomejoramiento , Regeneración/genética
16.
New Phytol ; 242(3): 1068-1083, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38406998

RESUMEN

Chromatin configuration is critical for establishing tissue identity and changes substantially during tissue identity transitions. The crucial scientific and agricultural technology of in vitro tissue culture exploits callus formation from diverse tissue explants and tissue regeneration via de novo organogenesis. We investigated the dynamic changes in H3ac and H3K4me3 histone modifications during leaf-to-callus transition in Arabidopsis thaliana. We analyzed changes in the global distribution of H3ac and H3K4me3 during the leaf-to-callus transition, focusing on transcriptionally active regions in calli relative to leaf explants, defined by increased accumulation of both H3ac and H3K4me3. Peptide signaling was particularly activated during callus formation; the peptide hormones RGF3, RGF8, PIP1 and PIPL3 were upregulated, promoting callus proliferation and conferring competence for de novo shoot organogenesis. The corresponding peptide receptors were also implicated in peptide-regulated callus proliferation and regeneration capacity. The effect of peptide hormones in plant regeneration is likely at least partly conserved in crop plants. Our results indicate that chromatin-dependent regulation of peptide hormone production not only stimulates callus proliferation but also establishes pluripotency, improving the overall efficiency of two-step regeneration in plant systems.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Hormonas Peptídicas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Código de Histonas , Cromatina , Hojas de la Planta/fisiología , Regulación de la Expresión Génica de las Plantas
17.
BMC Plant Biol ; 24(1): 43, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38200422

RESUMEN

BACKGROUND: The development of the plant in vitro techniques has brought about the variation identified in regenerants known as somaclonal or tissue culture-induced variation (TCIV). S-adenosyl-L-methionine (SAM), glutathione (GSH), low methylated pectins (LMP), and Cu(II) ions may be implicated in green plant regeneration efficiency (GPRE) and TCIV, according to studies in barley (Hordeum vulgare L.) and partially in triticale (× Triticosecale spp. Wittmack ex A. Camus 1927). Using structural equation models (SEM), these metabolites have been connected to the metabolic pathways (Krebs and Yang cycles, glycolysis, transsulfuration), but not for triticale. Using metabolomic and (epi)genetic data, the study sought to develop a triticale regeneration efficiency statistical model. The culture's induction medium was supplemented with various quantities of Cu(II) and Ag(I) ions for regeneration. The period of plant regeneration has also changed. The donor plant, anther-derived regenerants, and metAFLP were utilized to analyze TCIV concerning DNA in symmetric (CG, CHG) and asymmetric (CHH) sequence contexts. Attenuated Total Reflectance-Fourier Transfer Infrared (ATR-FTIR) spectroscopy was used to gather the metabolomic information on LMP, SAM, and GSH. To frame the data, a structural equation model was employed. RESULTS: According to metAFLP analysis, the average sequence change in the CHH context was 8.65%, and 0.58% was de novo methylation. Absorbances of FTIR spectra in regions specific for LMP, SAM, and GSH were used as variables values introduced to the SEM model. The average number of green regenerants per 100 plated anthers was 2.55. CONCLUSIONS: The amounts of pectin demethylation, SAM, de novo methylation, and GSH are connected in the model to explain GPRE. By altering the concentration of Cu(II) ions in the medium, which influences the amount of pectin, triticale's GPRE can be increased.


Asunto(s)
Hordeum , Triticale , Suplementos Dietéticos , Glutatión , Hordeum/genética , Pectinas , Iones
18.
Plant Commun ; 5(5): 100823, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38243597

RESUMEN

The inducible CRISPR activation (CRISPR-a) system offers unparalleled precision and versatility for regulating endogenous genes, making it highly sought after in plant research. In this study, we developed a chemically inducible CRISPR-a tool for plants called ER-Tag by combining the LexA-VP16-ER inducible system with the SunTag CRISPR-a system. We systematically compared different induction strategies and achieved high efficiency in target gene activation. We demonstrated that guide RNAs can be multiplexed and pooled for large-scale screening of effective morphogenic genes and gene pairs involved in plant regeneration. Further experiments showed that induced activation of these morphogenic genes can accelerate regeneration and improve regeneration efficiency in both eudicot and monocot plants, including alfalfa, woodland strawberry, and sheepgrass. Our study expands the CRISPR toolset in plants and provides a powerful new strategy for studying gene function when constitutive expression is not feasible or ideal.


Asunto(s)
Regeneración , Regeneración/genética , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Plantas Modificadas Genéticamente/genética , Regulación de la Expresión Génica de las Plantas
20.
J Appl Genet ; 65(1): 13-30, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37962803

RESUMEN

Genotype-limited plant regeneration is one of the main obstacles to the broader use of genetic transformation in barley breeding. Thus, developing new approaches that might improve responses of in vitro recalcitrant genotypes remains at the center of barley biotechnology. Here, we analyzed different barley genotypes, including "Golden Promise," a genotype commonly used in the genetic transformation, and four malting barley cultivars of poor regenerative potential. The expression of hormone-related transcription factor (TF) genes with documented roles in plant regeneration was analyzed in genotypes with various plant-regenerating capacities. The results indicated differential expression of auxin-related TF genes between the barley genotypes in both the explants and the derived cultures. In support of the role of auxin in barley regeneration, distinct differences in the accumulation of free and oxidized auxin were observed in explants and explant-derived callus cultures of barley genotypes. Following the assumption that modifying gene expression might improve plant regeneration in barley, we treated the barley explants with trichostatin A (TSA), which affects histone acetylation. The effects of TSA were genotype-dependent as TSA treatment improved plant regeneration in two barley cultivars. TSA-induced changes in plant regeneration were associated with the increased expression of auxin biosynthesis-involved TFs. The study demonstrated that explant treatment with chromatin modifiers such as TSA might provide a new and effective epigenetic approach to improving plant regeneration in recalcitrant barley genotypes.


Asunto(s)
Histonas , Hordeum , Ácidos Hidroxámicos , Histonas/genética , Histonas/metabolismo , Hordeum/genética , Acetilación , Fitomejoramiento , Ácidos Indolacéticos/farmacología , Regeneración/genética , Epigénesis Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA