Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros











Intervalo de año de publicación
1.
Ecol Evol ; 14(6): e11554, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38863722

RESUMEN

Dissertations are a foundational scientific product; they are the formative product that early-career scientists create and share original knowledge. The methodological approaches used in dissertations vary with the research field. In plant ecology, these approaches include observations, experiments (field or controlled environment), literature reviews, theoretical approaches, or analyses of existing data (including "big data"). Recently, concerns have been raised about the rise of "big data" studies and the loss of observational and field-based studies in ecology, but such trends have not been formally quantified. Therefore, we examined how the emphasis on each of these categories has changed over time and whether male and female authors differ in the methods employed. We found remarkable temporal consistency, with observational studies being dominant over the entire time span examined. There was an increase in the number of approaches employed per dissertation, with increases in analyses of databases and theoretical studies adding to rather than replacing traditional methodologies (like observations and field experiments). The representation of women increased over time. There were some differences in the approaches taken by men and women, which requires further investigation.

2.
Planta ; 260(1): 15, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38829528

RESUMEN

MAIN CONCLUSION: One of seven Solanum taxa studied displayed associations between pollen presence and floral scent composition and volume, suggesting buzz-pollinated plants rarely use scent as an honest cue for foraging pollinators. Floral scent influences the recruitment, learning, and behaviour of floral visitors. Variation in floral scent can provide information on the amount of reward available or whether a flower has been visited recently and may be particularly important in species with visually concealed rewards. In many buzz-pollinated flowers, tubular anthers opening via small apical pores (poricidal anthers) visually conceal pollen and appear similar regardless of pollen quantity within the anther. We investigated whether pollen removal changes floral scent composition and emission rate in seven taxa of buzz-pollinated Solanum (Solanaceae). We found that pollen removal reduced both the overall emission of floral scent and the emission of specific compounds (linalool and farnesol) in S. lumholtzianum. Our findings suggest that in six out of seven buzz-pollinated taxa studied here, floral scent could not be used as a signal by visitors as it does not contain information on pollen availability.


Asunto(s)
Flores , Odorantes , Polen , Polinización , Solanum , Solanum/fisiología , Solanum/química , Polinización/fisiología , Flores/fisiología , Flores/química , Polen/fisiología , Polen/química , Odorantes/análisis , Animales , Abejas/fisiología
3.
iScience ; 27(6): 110056, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38883816

RESUMEN

Replanting is an important tool for ecological recovery. Management strategies, such as planting areas with monocultures or species mixtures, have implications for restoration success. We used 16S and ITS rRNA gene amplicon sequencing and shotgun metagenomics to assess how the diversity of neighboring tree species impacted soil bacterial and fungal communities, and their functional potential, within the root zone of manuka (Leptospermum scoparium) trees. We compared data from monoculture and mixed tree species plots and confirmed that soil microbial taxonomic and functional community profiles significantly differed (p < 0.001). Compared to the diversity of neighboring tree species within the plot, soil environmental conditions and geographic distance was more important for structuring the microbial communities. The bacterial communities appeared more impacted by soil conditions, while the fungal communities displayed stronger spatial structuring, possibly due to wider bacterial dispersal. The different mechanisms structuring bacterial and fungal communities could have implications for ecological restoration outcomes.

4.
Int J Phytoremediation ; 26(9): 1439-1452, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38494751

RESUMEN

Heavy metal pollution threatens food security by accumulating in crops and soils, posing a significant challenge to modern agriculture due to its high toxicity. Urgent action is needed to restore affected agricultural fields. An efficient way to remove toxins is by bioremediation, which uses microorganisms. With the purpose of restoring soil in agriculture, this research attempts to assemble a consortium of microorganisms isolated from techno-genic soil. A number of promising strains, including Pseudomonas putida, Pantoea sp., Pseudomonas aeruginosa, Klebsiella oxytoca, and Agrobacterium tumefaciens were chosen based on their capacity to eliminate heavy metals from tests. Heavy metal removal (Cd, Hg, As, Pb, and Ni) and phytohormone production have been shown to be effective using consortiums (Pseudomonas aeruginosa, Klebsiella oxytoca, and Agrobacterium tumefaciens in a 1:1:2). In instances with mixed heavy-metal contamination, aeruginosa demonstrated efficacy because of its notable ability to absorb substantial quantities of heavy metals. The capacity of the cooperation to improve phytoremediation was investigated, with an emphasis on soil cleanup in agricultural areas. When combined with Sorghum bicolor L., it was able to remove roughly 16% As, 14% Hg, 32% Ni, 26% Cd, and 33% Pb from the soil.


Revolutionizing soil restoration, harnessing microbial consortia for effective heavy metal remediation, consortium D's remarkable capacity to combat mixed heavy metal contamination, and elevating phytoremediation potential by 16% As, 14% Hg, 32% Ni, 26% Cd, and 33% Pb removal are promising steps toward sustainable agriculture and enhanced food security.


Asunto(s)
Biodegradación Ambiental , Metales Pesados , Microbiología del Suelo , Contaminantes del Suelo , Metales Pesados/metabolismo , Contaminantes del Suelo/metabolismo , Sorghum , Suelo/química , Productos Agrícolas
5.
New Phytol ; 242(1): 93-106, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38375897

RESUMEN

Serotiny is an adaptive trait that allows certain woody plants to persist in stand-replacing fire regimes. However, the mechanisms by which serotinous cones avoid seed necrosis and nonserotinous species persist in landscapes with short fire cycles and serotinous competitors remain poorly understood. To investigate whether ovulate cone traits that enhance seed survival differ between serotinous and nonserotinous species, we examined cone traits in 24 species within Pinaceae and Cupressaceae based on physical measurements and cone heating simulations using a computational fluid dynamics model. Fire-relevant cone traits were largely similar between cone types; those that differed (e.g. density and moisture) conferred little seed survival advantage under simulated fire. The most important traits influencing seed survival were cone size and seed depth within the cone, which was found to be an allometric function of cone mass for both cone types. Thus, nonserotinous cones should not suffer significantly greater seed necrosis than serotinous cones of equal size. Closed nonserotinous cones containing mature seeds may achieve substantial regeneration after fire if they are sufficiently large relative to fire duration and temperature. To our knowledge, this is the most comprehensive study of the effects of fire-relevant cone traits on conifer regeneration supported by physics-based fire simulation.


Asunto(s)
Incendios , Tracheophyta , Semillas , Fenotipo , Necrosis
6.
New Phytol ; 241(5): 2275-2286, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38327027

RESUMEN

Plant-derived volatiles mediate interactions among plants, pathogenic viruses, and viral vectors. These volatile-dependent mechanisms have not been previously demonstrated belowground, despite their likely significant role in soil ecology and agricultural pest impacts. We investigated how the plant virus, tobacco rattle virus (TRV), attracts soil nematode vectors to infected plants. We infected Nicotiana benthamiana with TRV and compared root growth relative to that of uninfected plants. We tested whether TRV-infected N. benthamiana was more attractive to nematodes 7 d post infection and identified a compound critical to attraction. We also infected N. benthamiana with mutated TRV strains to identify virus genes involved in vector nematode attraction. Virus titre and associated impacts on root morphology were greatest 7 d post infection. Tobacco rattle virus infection enhanced 2-ethyl-1-hexanol production. Nematode chemotaxis and 2-ethyl-1-hexanol production correlated strongly with viral load. Uninfected plants were more attractive to nematodes after the addition of 2-ethyl-1-hexanol than were untreated plants. Mutation of TRV RNA2-encoded genes reduced the production of 2-ethyl-1-hexanol and nematode attraction. For the first time, this demonstrates that virus-driven alterations in root volatile emissions lead to increased chemotaxis of the virus's nematode vector, a finding with implications for sustainable management of both nematodes and viral pathogens in agricultural systems.


Asunto(s)
Hexanoles , Nematodos , Virus de Plantas , Animales , Suelo , Virus de Plantas/genética
7.
iScience ; 27(3): 109036, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38361612

RESUMEN

Among the most important impacts of biological invasions on biodiversity is biotic homogenization, which may further compromise key ecosystem processes. However, the extent to which they homogenize functional diversity and shift dominant ecological strategies of invaded communities remains uncertain. Here, we investigated changes in plant communities in a northern North American forest in response to invasive earthworms, by examining the taxonomic and functional diversity of the plant community and soil ecosystem functions. We found that although plant taxonomic diversity did not change in response to invasive earthworms, they modified the dominance structure of plant functional groups. Invasive earthworms promoted the dominance of fast-growing plants at the expense of slow-growing ones. Moreover, earthworms decreased plant functional diversity, which coincided with changes in abiotic and biotic soil properties. Our study reveals that invasive earthworms erode multiple biodiversity facets of invaded forests, with potential cascading effects on ecosystem functioning.

8.
Ecol Evol ; 14(2): e11053, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38405407

RESUMEN

Plants have always represented a key element in landscape delineation. Indeed, plant diversity, whose distribution is influenced by geographic/climatic variability, has affected both environmental and human ecology. The present contribution represents a multi-proxy study focused on the detection of starch, pollen and non-pollen palynomorphs in ancient dental calculus collected from pre-historical individuals buried at La Sassa and Pila archaeological sites (Central Italy). The collected record suggested the potential use of plant taxa by the people living in Central Italy during the Copper-Middle Bronze Age and expanded the body of evidence reported by previous palynological and palaeoecological studies. The application of a microscopic approach provided information about domesticated crops and/or gathered wild plants and inferred considerations on ancient environments, water sources, and past health and diseases. Moreover, the research supplied data to define the natural resources (e.g., C4-plant intake) and the social use of the space during that period. Another important aspect was the finding of plant clues referable to woody habitats, characterised by broad-leaved deciduous taxa and generally indicative of a warm-temperate climate and grassy vegetation. Other unusual records (e.g., diatoms, brachysclereids) participated in defining the prehistoric ecological framework. Thus, this work provides an overview on the potential of the human dental calculus analysis to delineate some features of the ancient plant ecology and biodiversity.

9.
Plants (Basel) ; 13(3)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38337950

RESUMEN

Volatile organic compounds (VOCs) with a large chemical diversity are emitted by plant flowers. These compounds play an important role in the ecology of plants. This review presents the different ecological roles of VOCs present in the odor plumes of plant flowers, such as pollination, defense, adaptation to their environment, and communication with other organisms. The production and accumulation sites of VOCs in plants with their spatial and temporal variations, including environmental issues, are also summarized. To evaluate the qualitative and quantitative chemical composition of VOCs, several methods of extraction and analysis were used. Headspace (HS) sampling coupled with solid phase microextraction (SPME) is now well-developed for the extraction process. Parameters are known, and several fibers are now available to optimize this extraction. Most of the time, SPME is coupled with gas chromatography-mass spectrometry (GC-MS) to determine the structural identification of the VOCs, paying attention to the use of several complementary methods for identification like the use of databases, retention indices, and, when available, comparison with authentic standards analyses. The development of the knowledge on VOCs emitted by flowers is of great importance for plant ecology in the context of environmental and climate changes.

10.
Plants (Basel) ; 12(22)2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-38005732

RESUMEN

Smoke is one of the fire-related cues that can alter vegetation communities' compositions, by promoting or excluding different plant species. For over 30 years, smoke-derived compounds have been a hot topic in plant and crop physiology. Research in this field was initiated in fire-prone areas in Australia, South Africa and some countries of both Americas, mostly with Mediterranean-type climates. Then, research extended to regions with moderate climates, like Central European countries; this was sometimes determined by the fact that in those regions, extensive prescribed or illegal burning (swailing) occurs. Hence, this review updates information about the effects of smoke compounds on plant kingdoms in different regions. It also focuses on research advances in the field of the physiological effects of smoke chemicals, mostly karrikins, and attempts to gather and summarize the current state of research and opinions on the roles of such compounds in plants' lives. We finish our review by discussing major research gaps, which include issues such as why plants that occur in non-fire-prone areas respond to smoke chemicals. Have recent climate change and human activities increased the risk of wildfires, and how may these affect local plant communities through physiologically active smoke compounds? Is the response of seeds to smoke and smoke compounds an evolutionarily driven trait that allows plants to adapt to the environment? What can we learn by examining post-fire smoke on a large scale?

11.
iScience ; 26(11): 108202, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38026156

RESUMEN

Microrefugia are often located within topographically complex regions where stable environmental conditions prevail. Most of the studies concerning the distributions of climate change-sensitive species have emphasized the dominance of cold air pooling over other environmental factors, such as resource availability. There is a shortage of information on the relationships among topography-related microsite diversity, microclimate, resource availability, and species composition in microrefugia. To fill this knowledge gap, we studied the effects of microclimatic conditions and soil resources on plant species occurrence within and adjacent to 30 large topographic depressions (i.e., dolines) in two distant karst regions. Our results showed that both microclimate and soil resource availability may play a key role in maintaining climate change-sensitive species and biodiversity in dolines; therefore, they may simultaneously act as climate and resource microrefugia. Establishing climate-smart conservation priorities and strategies is required to maintain or increase the refugial capacity of such safe havens.

12.
Mar Environ Res ; 191: 106146, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37639940

RESUMEN

Multi-specific seagrass meadow assemblages dominate most tropical intertidal regions but the relative role of environmental stress in determining distribution patterns is still uncertain. Here we combine observational and experimental approaches to examine aerial exposure as a factor driving species occurrence patterns in intertidal meadows of the Andaman archipelago, where up to 6 seagrass species co-occur. In the studied meadow, patterns of exposure did not map onto distance from the coast, instead creating a patchy matrix of exposure, based on fine-scale bathymetric differences. Distributional surveys showed that seagrass species were similarly patchy, often tracking the degree of aerial exposure during low tide. While some species (Halophila ovalis, Halophila minor, and Thalassia hemprichii) frequently occurred in submerged or subtidal areas and were rarely found in completely exposed areas, other species (Cymodocea rotundata, Halophila beccarii, and Halodule uninervis) also occupied areas that were subject to partial or complete aerial exposure during low tide. To confirm this pattern, we used field-based transplant experiments, employing a natural gradient of tidal exposure to subject six seagrass species to different desiccation exposure times. After a month, H. beccarii and H. uninervis transplants survived in areas that sustained more than 3 h of aerial tidal exposure without significant mortality, compared with other species (H. ovalis, H. minor, T. hemprichii, C. rotundata) that showed dramatic shoot mortality at the same exposure regimes. For all species, 4 h represented the upper limit of exposure, in both experimental and distributional studies. However, despite their wider tolerance of exposure to air, H. beccarii and H. uninervis did not dominate the entire meadow. This could be a result either of their poor tolerance to other environmental factors or their lower competitive abilities among other mechanisms. This suggests that in tropical multi-specific meadows, strong environmental filters could override clear intertidal zonation to create patchy matrices based on species tolerances.


Asunto(s)
Alismatales , Estrés Fisiológico , Ecosistema
13.
iScience ; 26(7): 107093, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37426347

RESUMEN

Plants advertise their presence by displaying attractive flowers, which pollinators use to locate a floral reward. Understanding how floral traits scale with reward status lies at the heart of pollination biology, because it connects the different interests of plants and pollinators. Studies on plant phenotype-reward associations often use different terms and concepts, which limits developing a broader synthesis. Here, we present a framework with definitions of the key aspects of plant phenotype-reward associations and provide measures to quantify them across different species and studies. We first distinguish between cues and signals, which are often used interchangeably, but have different meanings and are subject to different selective pressures. We then define honesty, reliability, and information content of floral cues/signals and provide ways to quantify them. Finally, we discuss the ecological and evolutionary factors that determine flower phenotype-reward associations, how context-dependent and temporally variable they are, and highlight promising research directions.

14.
iScience ; 26(6): 106972, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37324529

RESUMEN

Temperature and precipitation changes are among the vital climatic driving forces of global vegetation change. However, the strategy to separate the relative contributions of these two critical climatic factors is still lacking. Here, we propose an index CRTP (contribution ratio of temperature and precipitation) to quantify their impacts on vegetation and then construct the CRTP classification prediction models based on climatic, geographic, and environmental factors using the Random Forest classifier. We find that precipitation predominates more than 70% of the significant vegetation change, mainly located in the low and middle latitudes during 2000-2021. Precipitation will remain the dominant climatic factor affecting global vegetation change in the coming six decades, whereas areas with temperature-dominated vegetation change will expand under higher radiative forcings. Hopefully, the promising index CRTP will be applied in the research about climatic attribution for regional vegetation degradation, monitoring drought-type conversion, and alarming the potential ecological risk.

15.
Proc Natl Acad Sci U S A ; 120(24): e2215533120, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37276404

RESUMEN

Biogeographic history can set initial conditions for vegetation community assemblages that determine their climate responses at broad extents that land surface models attempt to forecast. Numerous studies have indicated that evolutionarily conserved biochemical, structural, and other functional attributes of plant species are captured in visible-to-short wavelength infrared, 400 to 2,500 nm, reflectance properties of vegetation. Here, we present a remotely sensed phylogenetic clustering and an evolutionary framework to accommodate spectra, distributions, and traits. Spectral properties evolutionarily conserved in plants provide the opportunity to spatially aggregate species into lineages (interpreted as "lineage functional types" or LFT) with improved classification accuracy. In this study, we use Airborne Visible/Infrared Imaging Spectrometer data from the 2013 Hyperspectral Infrared Imager campaign over the southern Sierra Nevada, California flight box, to investigate the potential for incorporating evolutionary thinking into landcover classification. We link the airborne hyperspectral data with vegetation plot data from 1372 surveys and a phylogeny representing 1,572 species. Despite temporal and spatial differences in our training data, we classified plant lineages with moderate reliability (Kappa = 0.76) and overall classification accuracy of 80.9%. We present an assessment of classification error and detail study limitations to facilitate future LFT development. This work demonstrates that lineage-based methods may be a promising way to leverage the new-generation high-resolution and high return-interval hyperspectral data planned for the forthcoming satellite missions with sparsely sampled existing ground-based ecological data.


Asunto(s)
Biodiversidad , Plantas , Filogenia , Reproducibilidad de los Resultados , Plantas/genética , Evolución Biológica
16.
iScience ; 26(5): 106632, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37168575

RESUMEN

Arbuscular mycorrhizal fungi (AMF) have evolved associations with roots of 60% plant species, but the net benefit for plants vary broadly from mutualism to parasitism. Yet, we lack a general understanding of the evolutionary and ecological forces driving such variation. To this end, we conducted a comparative phylogenetic experiment with 24 species of Plantago, encompassing worldwide distribution, to address the effect of evolutionary history and environment on plant growth and chemical defenses in response to AMF colonization. We demonstrate that different species within one plant genus vary greatly in their ability to associate with AMF, and that AMF arbuscule colonization intensity decreases monotonically with increasing phylogenetic branch length, but not with concomitant changes in pedological and climatic conditions across species. Moreover, we demonstrate that species with the highest colonization levels are also those that change their defensive chemistry the least. We propose that the costs imposed by high AMF colonization in terms of reduced changes in secondary chemistry might drive the observed macroevolutionary decline in mycorrhization.

17.
Int J Biometeorol ; 67(6): 1125-1139, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37154946

RESUMEN

High-altitude environments are highly susceptible to the effects of climate change. Thus, it is crucial to examine and understand the behaviour of specific plant traits along altitudinal gradients, which offer a real-life laboratory for analysing future impacts of climate change. The available information on how pollen production varies at different altitudes in mountainous areas is limited. In this study, we investigated pollen production of 17 birch (Betula pubescens Ehrh.) individuals along an altitudinal gradient in the European Alps. We sampled catkins at nine locations in the years 2020-2021 and monitored air temperatures. We investigated how birch pollen, flowers and inflorescences are produced in relation to thermal factors at various elevations. We found that mean pollen production of Betula pubescens Ehrh. varied between 0.4 and 8.3 million pollen grains per catkin. We did not observe any significant relationships between the studied reproductive metrics and altitude. However, minimum temperature of the previous summer was found to be significantly correlated to pollen (rs = 0.504, p = 0.039), flower (rs = 0.613, p = 0.009) and catkin (rs = 0.642, p = 0.005) production per volume unit of crown. Therefore, we suggest that temperature variability even at such small scales is very important for studying the response related to pollen production.


Asunto(s)
Betula , Polen , Humanos , Betula/fisiología , Alérgenos , Ambiente
18.
Environ Pollut ; 327: 121526, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37001600

RESUMEN

Viruses are frequently a microbial biocontaminant of healthy plants. The occurrence of the infection can be also due to environmental stress, like urbanisation, air pollution and increased air temperature, especially under the ongoing climate change. The aim of the present study was to investigate the hypothesis that worsened air quality and fewer green areas may favour the higher frequency of common viral infections, particularly in a common tree in temperate and continental climates, Betula pendula ROTH. We examined 18 trees, during the years 2015-2017, the same always for each year, in the region of Augsburg, Germany. By specific PCR, the frequency of two viruses, Cherry leaf roll virus (CLRV, genus Nepovirus, family Secoviridae), which is frequent in birch trees, and a novel virus tentatively named birch idaeovirus (BIV), which has been only recently described, were determined in pollen samples. The occurrence of the viruses was examined against the variables of urban index, air pollution (O3 and NO2), air temperature, and tree morphometrics (trunk perimeter, tree height, crown height and diameter). Generalized Non-linear models (binomial logit with backward stepwise removal of independent variables) were employed. During the study period, both CLRV and BIV were distributed widely throughout the investigated birch individuals. CLRV seemed to be rather cosmopolitan and was present independent of any abiotic factor. BIV's occurrence was mostly determined by higher values of the urban index and of NO2. Urban birch trees, located next to high-traffic roads with higher NO2 levels, are more likely to be infected by BIV. Increased environmental stress may lead to more plant viral infections. Here we suggest that this is particularly true for urban spaces, near high-traffic roads, where plants may be more stressed, and we recommend taking mitigation measures for controlling negative human interventions.


Asunto(s)
Nepovirus , Árboles , Humanos , Betula , Urbanización , Dióxido de Nitrógeno , Plantas
19.
iScience ; 26(3): 106116, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36994192

RESUMEN

We used a green fluorescent protein marker gene for paternity analysis to determine if virus infection affected male reproductive success of tomato in bumblebee-mediated cross-pollination under glasshouse conditions. We found that bumblebees that visited flowers of infected plants showed a strong preference to subsequently visit flowers of non-infected plants. The behavior of the bumblebees to move toward non-infected plants after pollinating virus-infected plants appears to explain the paternity data, which demonstrate a statistically significant ∼10-fold bias for fertilization of non-infected plants with pollen from infected parents. Thus, in the presence of bumblebee pollinators, CMV-infected plants exhibit enhanced male reproductive success.

20.
Plant J ; 114(5): 1164-1177, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36891808

RESUMEN

Non-volatile metabolites constitute the bulk of plant biomass. From the perspective of plant-insect interactions, these structurally diverse compounds include nutritious core metabolites and defensive specialized metabolites. In this review, we synthesize the current literature on multiple scales of plant-insect interactions mediated by non-volatile metabolites. At the molecular level, functional genetics studies have revealed a large collection of receptors targeting plant non-volatile metabolites in model insect species and agricultural pests. By contrast, examples of plant receptors of insect-derived molecules remain sparse. For insect herbivores, plant non-volatile metabolites function beyond the dichotomy of core metabolites, classed as nutrients, and specialized metabolites, classed as defensive compounds. Insect feeding tends to elicit evolutionarily conserved changes in plant specialized metabolism, whereas its effect on plant core metabolism varies widely based the interacting species. Finally, several recent studies have demonstrated that non-volatile metabolites can mediate tripartite communication on the community scale, facilitated by physical connections established through direct root-to-root communication, parasitic plants, arbuscular mycorrhizae and the rhizosphere microbiome. Recent advances in both plant and insect molecular biology will facilitate further research on the role of non-volatile metabolites in mediating plant-insect interactions.


Asunto(s)
Herbivoria , Micorrizas , Animales , Herbivoria/fisiología , Insectos/fisiología , Plantas/metabolismo , Rizosfera
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA