Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 10(5): e2204443, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36596691

RESUMEN

Pseudomonas aeruginosa (PA) is an opportunistic human pathogen, which is involved in a wide range of dangerous infections. It develops alarming resistances toward antibiotic treatment. Therefore, alternative strategies, which suppress pathogenicity or synergize with antibiotic treatments are in great need to combat these infections more effectively. One promising approach is to disarm the bacteria by interfering with their quorum sensing (QS) system, which regulates the release of various virulence factors as well as biofilm formation. Herein, this work reports the rational design, optimization, and in-depth profiling of a new class of Pseudomonas quinolone signaling receptor (PqsR) inverse agonists. The resulting frontrunner compound features a pyrimidine-based scaffold, high in vitro and in vivo efficacy, favorable pharmacokinetics as well as clean safety pharmacology characteristics, which provide the basis for potential pulmonary as well as systemic routes of administration. An X-ray crystal structure in complex with PqsR facilitated further structure-guided lead optimization. The compound demonstrates potent pyocyanin suppression, synergizes with aminoglycoside antibiotic tobramycin against PA biofilms, and is active against a panel of clinical isolates from bronchiectasis patients. Importantly, this in vitro effect translated into in vivo efficacy in a neutropenic thigh infection model in mice providing a proof-of-principle for adjunctive treatment scenarios.


Asunto(s)
Agonismo Inverso de Drogas , Quinolonas , Humanos , Animales , Ratones , Proteínas Bacterianas , Biopelículas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antibacterianos/química , Pseudomonas aeruginosa
2.
Angew Chem Int Ed Engl ; 62(7): e202215535, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36398566

RESUMEN

Bacterial adhesion, biofilm formation and host cell invasion of the ESKAPE pathogen Pseudomonas aeruginosa require the tetravalent lectins LecA and LecB, which are therefore drug targets to fight these infections. Recently, we have reported highly potent divalent galactosides as specific LecA inhibitors. However, they suffered from very low solubility and an intrinsic chemical instability due to two acylhydrazone motifs, which precluded further biological evaluation. Here, we isosterically substituted the acylhydrazones and systematically varied linker identity and length between the two galactosides necessary for LecA binding. The optimized divalent LecA ligands showed improved stability and were up to 1000-fold more soluble. Importantly, these properties now enabled their biological characterization. The lead compound L2 potently inhibited LecA binding to lung epithelial cells, restored wound closure in a scratch assay and reduced the invasiveness of P. aeruginosa into host cells.


Asunto(s)
Adhesinas Bacterianas , Pseudomonas aeruginosa , Humanos , Adhesinas Bacterianas/química , Pseudomonas aeruginosa/metabolismo , Factores de Virulencia/metabolismo , Galactósidos/química , Galactósidos/metabolismo , Galactósidos/farmacología , Adhesión Bacteriana
3.
Adv Ther (Weinh) ; 5(3): 2100222, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35310821

RESUMEN

Despite the progress in surgical techniques and antibiotic prophylaxis, opportunistic wound infections with Bacillus cereus remain a public health problem. Secreted toxins are one of the main factors contributing to B. cereus pathogenicity. A promising strategy to treat such infections is to target these toxins and not the bacteria. Although the exoenzymes produced by B. cereus are thoroughly investigated, little is known about the role of B. cereus collagenases in wound infections. In this report, the collagenolytic activity of secreted collagenases (Col) is characterized in the B. cereus culture supernatant (csn) and its isolated recombinantly produced ColQ1 is characterized. The data reveals that ColQ1 causes damage on dermal collagen (COL). This results in gaps in the tissue, which might facilitate the spread of bacteria. The importance of B. cereus collagenases is also demonstrated in disease promotion using two inhibitors. Compound 2 shows high efficacy in peptidolytic, gelatinolytic, and COL degradation assays. It also preserves the fibrillar COLs in skin tissue challenged with ColQ1, as well as the viability of skin cells treated with B. cereus csn. A Galleria mellonella model highlights the significance of collagenase inhibition in vivo.

4.
Front Cell Infect Microbiol ; 12: 1065561, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36704108

RESUMEN

Infections caused by Gram-negative pathogens pose a major health burden. Both respiratory and gastrointestinal infections are commonly associated with these pathogens. With the increase in antimicrobial resistance (AMR) over the last decades, bacterial infections may soon become the threat they have been before the discovery of antibiotics. Many Gram-negative pathogens encode virulence-associated Type III and Type IV secretion systems, which they use to inject bacterial effector proteins across bacterial and host cell membranes into the host cell cytosol, where they subvert host cell functions in favor of bacterial replication and survival. These secretion systems are essential for the pathogens to cause disease, and secretion system mutants are commonly avirulent in infection models. Hence, these structures present attractive targets for anti-virulence therapies. Here, we review previously and recently identified inhibitors of virulence-associated bacterial secretions systems and discuss their potential as therapeutics.


Asunto(s)
Bacterias , Sistemas de Secreción Tipo IV , Virulencia , Bacterias/genética , Bacterias/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos , Sistemas de Secreción Tipo III/metabolismo
5.
Eur J Med Chem ; 226: 113797, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34520957

RESUMEN

A short and divergent route towards new derivatives of 2-(trifluoromethyl)pyridines as potent inverse agonists of the bacterial target PqsR against Pseudomonas aeruginosa (PA) infections is described. This Gram-negative pathogen causes severe nosocomial infections and common antibiotic treatment options are rendered ineffective due to resistance issues. Based on an earlier identified optimized hit, we conducted derivatization and rigidification attempts employing two central building blocks. The western part of the molecule is built up via a 2-(trifluoromethyl)pyridine head group equipped with a terminal alkyne. The eastern section is then introduced through aryliode motifs exploiting Sonogashira as well as Suzuki-type chemistry. Subsequent modification provided quick access to an array of compounds, allowed for deep SAR insights, and enabled to optimize the hit scaffold into a lead structure of nanomolar potency combined with favorable in vitro ADME/T features.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/agonistas , Pseudomonas aeruginosa/efectos de los fármacos , Piridinas/farmacología , Transactivadores/agonistas , Antibacterianos/síntesis química , Antibacterianos/química , Relación Dosis-Respuesta a Droga , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Piridinas/síntesis química , Piridinas/química , Relación Estructura-Actividad
6.
ChemMedChem ; 15(2): 188-194, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31709767

RESUMEN

Hit-to-lead optimization is a critical phase in drug discovery. Herein, we report on the fragment-based discovery and optimization of 2-aminopyridine derivatives as a novel lead-like structure for the treatment of the dangerous opportunistic pathogen Pseudomonas aeruginosa. We pursue an innovative treatment strategy by interfering with the Pseudomonas quinolone signal (PQS) quorum sensing (QS) system leading to an abolishment of bacterial pathogenicity. Our compounds act on the PQS receptor (PqsR), a key transcription factor controlling the expression of various pathogenicity determinants. In this target-driven approach, we made use of biophysical screening via surface plasmon resonance (SPR) followed by isothermal titration calorimetry (ITC)-enabled enthalpic efficiency (EE) evaluation. Hit optimization then involved growth vector identification and exploitation. Astonishingly, the latter was successfully achieved by introducing flexible linkers rather than rigid motifs leading to a boost in activity on the target receptor and anti-virulence potency.


Asunto(s)
Aminopiridinas/farmacología , Antibacterianos/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Aminopiridinas/síntesis química , Aminopiridinas/química , Antibacterianos/síntesis química , Antibacterianos/química , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Pseudomonas aeruginosa/patogenicidad , Percepción de Quorum/efectos de los fármacos , Relación Estructura-Actividad , Virulencia/efectos de los fármacos
7.
Beilstein J Org Chem ; 15: 2544-2551, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31728168

RESUMEN

Eight new sulfide-based cyclic peptidomimetic analogues of solonamides A and B have been synthesized via solid-phase peptide synthesis and SN2' reaction on a Morita-Baylis-Hillman (MBH) residue introduced at the N-terminal of a tetrapeptide. This last step takes advantage of the electrophilic feature of the MBH residue and represents a new cyclization strategy occurring. The analogues were prepared in moderate overall yields and did not show toxic effects on Staphylococcus aureus growth and were not toxic to human fibroblasts. Two of them inhibited the hemolytic activity of S. aureus, suggesting an interfering action in the bacterial quorum sensing similar to the one already reported for solonamides.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA