Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
Vet Parasitol ; 331: 110296, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39217762

RESUMEN

Coccidiosis is an important parasitic disease that has serious adverse effects on the global poultry industry. The mechanism by which the pathogenic factors of Eimeria tenella damage host cells is unknown. Some kinases from the rhoptry compartment can regulate apoptosis of host cells. This study focused on revealing the role and critical nodes of E. tenella rhoptry protein (EtROP) 38 in controlling the apoptosis of host cells via the P38 mitogen-activated protein kinase (MAPK) signaling pathway. The cells were treated with EtROP38 protein, siRNA p38MAPK, or both. The rate of infection, apoptosis, and the dynamic changes in the expression and activation of key factor genes of the P38MAPK signaling pathway in host cells infected with E. tenella were measured. The results showed that the addition of EtROP38 and/or knockdown of the host cells p38 gene reduced the apoptosis rate of cecal epithelial cells (CECS), decreased the mRNA expressions of p38, p53, c-myc, c-fos, and c-jun and increased the expression of p65, decreased the protein expressions of c-myc, c-fos, and c-jun, decreased the p38 protein phosphorylation level, and increased the p65 protein phosphorylation level in CECS. When E. tenella was inoculated for 4-96 h, the addition of Et ROP38 and/or host cell p38 knockdown both increased the infection rate of host cells, and this effect was more pronounced with the addition of EtROP38 with the host cell p38 knockdown. These observations indicate that E. tenella can inhibits the activation of the p38MAPK signaling pathway in host cells via EtROP38, which suppresses apoptosis in host cells.


Asunto(s)
Apoptosis , Pollos , Eimeria tenella , Proteínas Quinasas p38 Activadas por Mitógenos , Eimeria tenella/fisiología , Animales , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Enfermedades de las Aves de Corral/parasitología , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Coccidiosis/parasitología , Coccidiosis/veterinaria , Sistema de Señalización de MAP Quinasas , Células Epiteliales/parasitología , Ciego/parasitología , Transducción de Señal
2.
Sci China Life Sci ; 67(9): 1867-1880, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38951428

RESUMEN

Cancer stem cells (CSCs) play an important role in metastasis development, tumor recurrence, and treatment resistance, and are essential for the eradication of cancer. Currently, therapies fail to eradicate CSCs due to their therapeutic stress-induced cellular escape, which leads to enhanced aggressive behaviors compared with CSCs that have never been treated. However, the underlying mechanisms regulating the therapeutic escape remain unknown. To this end, we established a model to isolate the therapeutic escaped CSCs (TSCSCs) from breast CSCs and performed the transcription profile to reveal the mechanism. Mechanistically, we demonstrated that the behavior of therapeutic escape was regulated through the p38/MAPK signaling pathway, resulting in TSCSCs exhibiting enhanced motility and metastasis. Notably, blocking the p38/MAPK signaling pathway effectively reduced motility and metastasis ability both in vitro and in vivo, which were further supported by downregulated motility-related genes and epithelial-mesenchymal transition (EMT)-related proteins vimentin and N-cadherin. The obtained findings reveal the p38/MAPK pathway as a potential therapeutic target for TSCSCs and would provide profound implications for cancer therapy.


Asunto(s)
Neoplasias de la Mama , Movimiento Celular , Transición Epitelial-Mesenquimal , Sistema de Señalización de MAP Quinasas , Células Madre Neoplásicas , Proteínas Quinasas p38 Activadas por Mitógenos , Animales , Femenino , Humanos , Ratones , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Ratones Endogámicos BALB C
3.
Biomed Pharmacother ; 177: 117037, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38959602

RESUMEN

The inhibition of autophagy is a potential therapeutic strategy to improve the chemosensitivity of triple-negative breast cancer (TNBC). In this study, we demonstrated that a natural terpenoid tanshinone I (TAN) enhanced the effectiveness of paclitaxel (PTX), at least in part, through an autophagy-dependent mechanism against TNBC. In vitro validation demonstrated that the combined therapy resulted in a synergistic decrease in the growth of TNBC cells. The chemosensitizing impact of TAN might be attributed to its inhibition of PTX-induced autophagy in the late phase by obstructing the fusion of autophagosomes and lysosomes, rather than by inhibiting lysosomal function. The findings from KEGG pathway analysis and molecular docking suggested that TAN might impact breast cancer chemoresistance primarily through the PI3K-Akt and MAPK signaling pathways. The non-canonical AKT/p38 MAPK signaling was further validated as the primary mechanism responsible for the inhibition of autophagy by TAN. In vivo study showed that the combined administration of TAN and PTX demonstrated a more significant suppression of tumor growth and autophagic activity compared to PTX monotherapy in the MDA-MB-231 xenograft nude mouse model. The safety evaluation of TAN in a zebrafish model, along with in vitro and in vivo validation, provided experimental and pre-clinical data supporting its potential as a natural adjunctive therapy in TNBC. Overall, this study suggests that the combination of TAN with PTX could provide an effective treatment option for advanced breast cancer, and targeting the AKT/p38 MAPK/late-autophagy signaling axis may be a promising approach for developing therapeutic interventions against TNBC.


Asunto(s)
Abietanos , Autofagia , Ratones Desnudos , Paclitaxel , Proteínas Proto-Oncogénicas c-akt , Neoplasias de la Mama Triple Negativas , Pez Cebra , Proteínas Quinasas p38 Activadas por Mitógenos , Autofagia/efectos de los fármacos , Animales , Abietanos/farmacología , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Línea Celular Tumoral , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Femenino , Paclitaxel/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Ratones Endogámicos BALB C , Resistencia a Antineoplásicos/efectos de los fármacos , Sinergismo Farmacológico
4.
J Inflamm Res ; 17: 4129-4149, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952564

RESUMEN

Purpose: Capillary leak syndrome (CLS) is an intermediary phase between severe acute pancreatitis (SAP) and multiple organ failure. As a result, CLS is of clinical importance for enhancing the prognosis of SAP. Plakophilin2 (PKP2), an essential constituent of desmosomes, plays a critical role in promoting connections between epithelial cells. However, the function and mechanism of PKP2 in CLS in SAP are not clear at present. Methods: We detected the expression of PKP2 in mice pancreatic tissue by transcriptome sequencing and bioinformatics analysis. PKP2 was overexpressed and knocked down to assess its influence on cell permeability, the cytoskeleton, tight junction molecules, cell adhesion junction molecules, and associated pathways. Results: PKP2 expression was increased in the pancreatic tissues of SAP mice and human umbilical vein endothelial cells (HUVECs) after lipopolysaccharide (LPS) stimulation. PKP2 overexpression not only reduced endothelial cell permeability but also improved cytoskeleton relaxation in response to acute inflammatory stimulation. PKP2 overexpression increased levels of ZO-1, occludin, claudin1, ß-catenin, and connexin43. The overexpression of PKP2 in LPS-induced HUVECs counteracted the inhibitory effect of SB203580 (a p38/MAPK signaling pathway inhibitor) on the p38/MAPK signaling pathway, thereby restoring the levels of ZO-1, ß-catenin, and claudin1. Additionally, PKP2 suppression eliminated the enhanced levels of ZO-1, ß-catenin, occludin, and claudin1 induced by dehydrocorydaline. We predicted that the upstream transcription factor PPARγregulates PKP2 expression, and our findings demonstrate that the PPARγactivator rosiglitazone significantly upregulates PKP2, whereas its antagonist GW9662 down-regulates PKP2. Administration of rosiglitazone significantly reduced the increase in HUVECs permeability stimulated by LPS. Conversely, PKP2 overexpression counteracted the GW9662-induced reduction in ZO-1, phosphorylated p38/p38, and claudin1. Conclusion: The activation of the p38/MAPK signaling pathway by PKP2 mitigates CLS in SAP. PPARγactivator rosiglitazone can up-regulate PKP2. Overall, directing efforts toward PKP2 could prove to be a feasible treatment approach for effectively managing CLS in SAP.

5.
Biomed Pharmacother ; 178: 117214, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39079264

RESUMEN

Apoptosis signal-regulated kinase 1 (ASK1) is a member of the mitogen-activated protein kinase kinase (MAP3K) family, whose activation and regulation are intricately associated with apoptosis. ASK1 is activated in response to oxidative stress, among other stimuli, subsequently triggering downstream JNK, p38 MAPK, and mitochondria-dependent apoptotic signaling, which participate in the initiation of tumor cell apoptosis induced by various stimuli. Research has shown that ASK1 plays a crucial role in the apoptosis of lung cancer, breast cancer, and liver cancer cells. Currently, the investigation of effective ASK1 activators is a hot topic in research on tumor cell apoptosis. Synthetic compounds such as human ß-defensin, triazolothiazide derivatives and heat shock protein 27 inhibitors; natural compounds such as quercetin, Laminarina japonica polysaccharide-1 peptide and theabrownin; and nanomedicines such as cerium oxide nanoparticles, magnetite FeO nanoparticles and silver nanoparticles can activate ASK1 and induce apoptosis in various tumor cells. This review extensively investigates the roles and activation mechanisms of ASK1, explores its impact on a variety of apoptotic signaling pathways, and discusses the potential therapeutic applications of various ASK1 activators in cancer treatment. In addition, this paper provides an in-depth discussion of the future development of this field and proposes a promising method for further research and clinical progress.


Asunto(s)
Antineoplásicos , MAP Quinasa Quinasa Quinasa 5 , Neoplasias , Humanos , MAP Quinasa Quinasa Quinasa 5/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
6.
Sci Rep ; 14(1): 11219, 2024 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755221

RESUMEN

Breast cancer patients often have a poor prognosis largely due to lack of effective targeted therapy. It is now well established that monosaccharide enhances growth retardation and chemotherapy sensitivity in tumor cells. We investigated whether D-arabinose has capability to restrict the proliferation of tumor cells and its mechanism. Here, we report that D-arabinose induced cytotoxicity is modulated by autophagy and p38 MAPK signaling pathway in breast cancer cell lines. The proliferation of cells was evaluated by CCK-8 and Colony formation assay. The distribution of cells in cell cycle phases was analyzed by flow cytometry. Cell cycle, autophagy and MAPK signaling related proteins were detected by western blotting. Mouse xenograft model was used to evaluate the efficacy of D-arabinose in vivo. The proliferation of cells was dramatically inhibited by D-arabinose exposure in a dose-dependent manner, which was relevant to cell cycle arrest, as demonstrated by G2/M cell cycle restriction and ectopic expression of cell cycle related proteins. Mechanistically, we further identified that D-arabinose is positively associated with autophagy and the activation of the p38 MAPK signaling in breast cancer. In contrast, 3-Ma or SB203580, the inhibitor of autophagy or p38 MAPK, reversed the efficacy of D-arabinose. Additionally, D-arabinose in vivo treatment could significantly inhibit xenograft growth of breast cancer cells. Our findings were the first to reveal that D-arabinose triggered cell cycle arrest by inducing autophagy through the activation of p38 MAPK signaling pathway in breast cancer cells.


Asunto(s)
Arabinosa , Autofagia , Neoplasias de la Mama , Puntos de Control del Ciclo Celular , Proliferación Celular , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas p38 Activadas por Mitógenos , Autofagia/efectos de los fármacos , Humanos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Animales , Femenino , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Ratones , Arabinosa/farmacología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones Desnudos , Ratones Endogámicos BALB C
7.
Aging (Albany NY) ; 16(9): 8142-8154, 2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38728253

RESUMEN

The specific mechanism of 4-hydroxysesamin (4-HS), a modification of Sesamin, on right ventricular failure due to pulmonary hypertension (PH) is ominous. By creating a rat model of PH in vivo and a model of pulmonary artery smooth muscle cell (PASMC) hypoxia and inflammation in vitro, the current work aimed to investigate in depth the molecular mechanism of the protective effect of 4-HS. In an in vitro model of hypoxia PASMC, changes in cell proliferation and inflammatory factors were detected after treatment with 4-HS, followed by changes in the JNK/p38 MAPK signaling pathway as detected by Western blot signaling pathway. The findings demonstrated that 4-HS was able to minimize PASMC cell death, block the JNK/p38 MAPK signaling pathway, and resist the promoting effect of hypoxia on PASMC cell proliferation. Following that, we found that 4-HS could both mitigate the right ventricular damage brought on by MCT and had a protective impact on rats Monocrotaline (MCT)-induced PH in in vivo investigations. The key finding of this study is that 4-HS may protect against PH by inhibiting the JNK/p38 MAPK signaling pathway.


Asunto(s)
Proliferación Celular , Hipertensión Pulmonar , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas p38 Activadas por Mitógenos , Animales , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/tratamiento farmacológico , Ratas , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Proliferación Celular/efectos de los fármacos , Disfunción Ventricular Derecha/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Lignanos/farmacología , Lignanos/uso terapéutico , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/patología , Arteria Pulmonar/metabolismo , Insuficiencia Cardíaca/metabolismo , Ratas Sprague-Dawley , Monocrotalina , Modelos Animales de Enfermedad
8.
Connect Tissue Res ; 65(3): 253-264, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38753365

RESUMEN

OBJECTIVE: Osteoporosis, a skeletal ailment marked by bone metabolism imbalance and disruption of bone microarchitecture, Neferine, a bisbenzylisoquinoline alkaloid with diverse pharmacological activities, has received limited attention in the context of osteoporosis treatment. METHODS: We employed a bilateral ovariectomy (OVX) rat model to induce osteoporosis and subsequently administered Neferine treatment for four weeks following successful model establishment. Throughout the modeling and treatment phases, we closely monitored rat body weights. We assessed alterations in bone tissue microstructure through micro-CT, HE staining, and safranin O-fast green staining. Levels of bone formation and resorption markers in serum were evaluated using ELISA assay. Western blot analysis was employed to determine the expression levels of p38MAPK, p-p38MAPK, and bone formation-related genes in bone tissue. We isolated and cultured OVX rat BMSCs (OVX-BMSCs) and induced osteogenic differentiation while simultaneously introducing Neferine and the p38MAPK inhibitor SB203580 for intervention. RESULTS: Neferine treatment effectively curbed the rapid weight gain in OVX rats, ameliorated bone loss, and decreased serum levels of TRAP, CTX-I, PINP, and BALP. Most notably, Neferine promoted the expression of bone formation-related factors in bone tissue of OVX rats, while concurrently activating the p38MAPK signaling pathway. In in vitro experiments, Neferine facilitated the expression of bone formation-related factors in OVX-BMSCs, increased the osteogenic differentiation potential of OVX-BMSCs, and activated the p38MAPK signaling pathway. Nevertheless, SB203580 partially reversed Neferine's promotive effect. CONCLUSION: Neferine can boost the osteoblastic differentiation of BMSCs and alleviate OVX-induced osteoporosis in rats by activating the p38MAPK signaling pathway.


Asunto(s)
Bencilisoquinolinas , Diferenciación Celular , Sistema de Señalización de MAP Quinasas , Células Madre Mesenquimatosas , Osteogénesis , Osteoporosis , Ovariectomía , Ratas Sprague-Dawley , Proteínas Quinasas p38 Activadas por Mitógenos , Animales , Bencilisoquinolinas/farmacología , Osteogénesis/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Femenino , Diferenciación Celular/efectos de los fármacos , Osteoporosis/patología , Osteoporosis/tratamiento farmacológico , Osteoporosis/metabolismo , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratas
9.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1000-1006, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38621907

RESUMEN

This study aims to investigate the effect and mechanism of Maxingshigan Decoction on inflammation in the rat model of cough variant asthma(CVA). The SPF-grade SD rats of 6-8 weeks were randomized into normal, model, Montelukast sodium, and low-, medium-, and high-dose Maxing Shigan Decoction groups, with 8 rats in each group. The CVA rat model was induced by ovalbumin(OVA) and aluminum hydroxide sensitization and ovalbumin stimulation. The normal group and model group were administrated with equal volume of normal saline by gavage, and other groups with corresponding drugs by gavage. After the experiment, the number of white blood cells in blood and the levels of interleukin-6(IL-6), interleukin-10(IL-10), and tumor necrosis factor-α(TNF-α) in the serum were measured. The lung tissue was stained with hematoxylin-eosin(HE). Western blot was employed to determine the protein levels of nuclear factor-κB(NF-κB), Toll-like receptor 4(TLR4), myeloid differentiation protein(MyD88), and mitogen-activated protein kinase(MAPK) in the lung tissue. Real-time PCR was carried out to measure the mRNA levels of TLR4 and MyD88 in the lung tissue. Compared with the normal group, the model group showed increased white blood cells, elevated IL-6 and TNF-α levels(P<0.01), lowered IL-10 level(P<0.01), up-regulated protein levels of TLR4, MyD88, p-p65/NF-κB p65, and p-p38 MAPK/p38 MAPK(P<0.01) and mRNA levels of TLR4 and MyD88(P<0.01) in the lung tissue. HE staining showed obvious infiltration of inflammatory cells around the airway and cell disarrangement in the model group. Compared with the model group, Montelukast sodium and high-dose Maxing Shigan Decoction reduced the white blood cells, lowered the IL-6 and TNF-α levels(P<0.01), and elevated the IL-10 level(P<0.01). Moreover, they down-regulated the protein levels of TLR4, MyD88, p-p65/NF-κB p65, p-p38 MAPK/p38 MAPK in the lung tissue(P<0.01) and the mRNA levels of TLR4 and MyD88 in the lung tissue(P<0.01). HE staining showed that Montelukast sodium and high-dose Maxing Shigan Decoction reduced inflammatory cell infiltration and cell disarrangement. The number of white blood cells, the levels of IL-10 and TNF-α in the serum, the protein levels of TLR4, MyD88, p-p65/NF-κB p65, and p-p38 MAPK/p38 MAPK, and the mRNA levels of TLR4 and MyD88 in the lung tissue showed no significant differences between the Montelukast sodium group and high-dose Maxing Shigan Decoction group. Maxing Shigan Decoction can inhibit airway inflammation in CVA rats by inhibiting the activation of TLR4/MyD88/NF-κB and p38 MAPK signaling pathways.


Asunto(s)
Acetatos , Asma Variante con Tos , Ciclopropanos , FN-kappa B , Quinolinas , Sulfuros , Ratas , Animales , FN-kappa B/genética , FN-kappa B/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Interleucina-10/genética , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Ratas Sprague-Dawley , Ovalbúmina , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Inflamación , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , ARN Mensajero
10.
Int J Biol Macromol ; 268(Pt 2): 131839, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38663699

RESUMEN

Streptococcus suis (S. suis) is a significant zoonotic microorganism that causes a severe illness in both pigs and humans and is characterized by severe meningitis and septicemia. Suilysin (SLY), which is secreted by S. suis, plays a crucial role as a virulence factor in the disease. To date, the interaction between SLY and host cells is not fully understood. In this study, we identified the interacting proteins between SLY and human brain microvascular endothelial cells (HBMECs) using the TurboID-mediated proximity labeling method. 251 unique proteins were identified in TurboID-SLY treated group, of which six plasma membrane proteins including ARF6, GRK6, EPB41L5, DSC1, TJP2, and PNN were identified. We found that the proteins capable of interacting with SLY are ARF6 and PNN. Subsequent investigations revealed that ARF6 substantially increased the invasive ability of S. suis in HBMECs. Furthermore, ARF6 promoted SLY-induced the activation of p38 MAPK signaling pathway in HBMECs. Moreover, ARF6 promoted the apoptosis in HBMECs through the activation of p38 MAPK signaling pathway induced by SLY. Finally, we confirmed that ARF6 could increase the virulence of SLY in C57BL/6 mice. These findings offer valuable insights that contribute to a deeper understanding of the pathogenic mechanism of SLY.


Asunto(s)
Factor 6 de Ribosilación del ADP , Factores de Ribosilacion-ADP , Apoptosis , Células Endoteliales , Proteínas Hemolisinas , Streptococcus suis , Streptococcus suis/patogenicidad , Streptococcus suis/metabolismo , Humanos , Animales , Apoptosis/efectos de los fármacos , Ratones , Factores de Ribosilacion-ADP/metabolismo , Factores de Ribosilacion-ADP/genética , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/microbiología , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Infecciones Estreptocócicas/microbiología , Infecciones Estreptocócicas/metabolismo , Virulencia , Encéfalo/metabolismo
11.
Int J Mol Sci ; 25(5)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38473927

RESUMEN

Mouse embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs) are derived from pre- and post-implantation embryos, representing the initial "naïve" and final "primed" states of pluripotency, respectively. In this study, novel reprogrammed pluripotent stem cells (rPSCs) were induced from mouse EpiSCs using a chemically defined medium containing mouse LIF, BMP4, CHIR99021, XAV939, and SB203580. The rPSCs exhibited domed clones and expressed key pluripotency genes, with both X chromosomes active in female cells. Furthermore, rPSCs differentiated into cells of all three germ layers in vivo through teratoma formation. Regarding epigenetic modifications, the DNA methylation of Oct4, Sox2, and Nanog promoter regions and the mRNA levels of Dnmt3a, Dnmt3b, and Dnmt1 were reduced in rPSCs compared with EpiSCs. However, the miR-290 family was significantly upregulated in rPSCs. After removing SB203580, an inhibitor of the p38 MAPK pathway, the cell colonies changed from domed to flat, with a significant decrease in the expression of pluripotency genes and the miR-290 family. Conversely, overexpression of pri-miR-290 reversed these changes. In addition, Map2k6 was identified as a direct target gene of miR-291b-3p, indicating that the miR-290 family maintains pluripotency and self-renewal in rPSCs by regulating the MAPK signaling pathway.


Asunto(s)
MicroARNs , Células Madre Pluripotentes , Animales , Ratones , Femenino , Células Madre Pluripotentes/metabolismo , Diferenciación Celular/genética , Transducción de Señal , Sistema de Señalización de MAP Quinasas , MicroARNs/metabolismo , Estratos Germinativos/metabolismo , MAP Quinasa Quinasa 6
12.
EMBO J ; 43(4): 507-532, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38191811

RESUMEN

Metabolic syndrome combines major risk factors for cardiovascular disease, making deeper insight into its pathogenesis important. We here explore the mechanistic basis of metabolic syndrome by recruiting an essential patient cohort and performing extensive gene expression profiling. The mitochondrial fatty acid metabolism enzyme acyl-CoA synthetase medium-chain family member 3 (ACSM3) was identified to be significantly lower expressed in the peripheral blood of metabolic syndrome patients. In line, hepatic ACSM3 expression was decreased in mice with metabolic syndrome. Furthermore, Acsm3 knockout mice showed glucose and lipid metabolic abnormalities, and hepatic accumulation of the ACSM3 fatty acid substrate lauric acid. Acsm3 depletion markedly decreased mitochondrial function and stimulated signaling via the p38 MAPK pathway cascade. Consistently, Acsm3 knockout mouse exhibited abnormal mitochondrial morphology, decreased ATP contents, and enhanced ROS levels in their livers. Mechanistically, Acsm3 deficiency, and lauric acid accumulation activated nuclear receptor Hnf4α-p38 MAPK signaling. In line, the p38 inhibitor Adezmapimod effectively rescued the Acsm3 depletion phenotype. Together, these findings show that disease-associated loss of ACSM3 facilitates mitochondrial dysfunction via a lauric acid-HNF4a-p38 MAPK axis, suggesting a novel therapeutic vulnerability in systemic metabolic dysfunction.


Asunto(s)
Ácidos Láuricos , Síndrome Metabólico , Humanos , Ratones , Animales , Síndrome Metabólico/genética , Síndrome Metabólico/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Hígado/metabolismo , Ácidos Grasos/metabolismo , Coenzima A Ligasas/genética , Coenzima A Ligasas/metabolismo , Coenzima A Ligasas/farmacología
13.
Naunyn Schmiedebergs Arch Pharmacol ; 397(1): 437-449, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37462718

RESUMEN

Hemionitis albofusca (Baker) Christenh is a plant that grows in various regions of China. Although it is not recognized as a traditional medicine, it is often mistakenly labelled and used as Aleuritopteris argentea (S. G. Gmél.) Fée to alleviate menstruation-related issues. Recently, several diterpenoids such as ent-16-oxo-17-norkauran-19-oic acid (Compound A), 14-oxy-7ß,20-dihydroxycyath-12,18-diene (Compound B), ent-8(14),15-pimaradiene-2ß,19-diol (Compound C), ent-kaurane-16-ene-2ß,18α-diol (Compound D), ent-kaurane-2ß,16α,18α-triol (Compound E), and onychiol B have been extracted from H. albofusca. In this study, we investigated the anti-inflammatory activity of these diterpenes. We confirmed that compounds A ~ D suppressed the amount of cellular NO production by inhibiting the expression and transcription of iNOS protein. They also significantly inhibited the expression and transcription of inflammatory factors TNF-α and IL-6. Additionally, Compounds A and C suppressed the activation of the NF-κB signaling pathway and inhibited the phosphorylation level of p38, ultimately down-regulating inflammation. Compound B suppressed the activation of the NF-κB signaling pathway, while Compound D inhibited the phosphorylation level of p38 and down-regulated the activation of the p38 MAPK signaling pathway. In a word, our investigation supports the potential application of natural diterpenes as lead compounds for developing anti-inflammatory agents.


Asunto(s)
Diterpenos de Tipo Kaurano , Diterpenos , Humanos , FN-kappa B/metabolismo , Diterpenos/farmacología , Antiinflamatorios/farmacología , Inflamación , Lipopolisacáridos/farmacología
14.
Chin J Traumatol ; 27(1): 42-52, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37953130

RESUMEN

PURPOSE: Mannitol is one of the first-line drugs for reducing cerebral edema through increasing the extracellular osmotic pressure. However, long-term administration of mannitol in the treatment of cerebral edema triggers damage to neurons and astrocytes. Given that neural stem cell (NSC) is a subpopulation of main regenerative cells in the central nervous system after injury, the effect of mannitol on NSC is still elusive. The present study aims to elucidate the role of mannitol in NSC proliferation. METHODS: C57 mice were derived from the animal house of Zunyi Medical University. A total of 15 pregnant mice were employed for the purpose of isolating NSCs in this investigation. Initially, mouse primary NSCs were isolated from the embryonic cortex of mice and subsequently identified through immunofluorescence staining. In order to investigate the impact of mannitol on NSC proliferation, both cell counting kit-8 assays and neurospheres formation assays were conducted. The in vitro effects of mannitol were examined at various doses and time points. In order to elucidate the role of Aquaporin 4 (AQP4) in the suppressive effect of mannitol on NSC proliferation, various assays including reverse transcription polymerase chain reaction, western blotting, and immunocytochemistry were conducted on control and mannitol-treated groups. Additionally, the phosphorylated p38 (p-p38) was examined to explore the potential mechanism underlying the inhibitory effect of mannitol on NSC proliferation. Finally, to further confirm the involvement of the p38 mitogen-activated protein kinase-dependent (MAPK) signaling pathway in the observed inhibition of NSC proliferation by mannitol, SB203580 was employed. All data were analyzed using SPSS 20.0 software (SPSS, Inc., Chicago, IL). The statistical analysis among multiple comparisons was performed using one-way analysis of variance (ANOVA), followed by Turkey's post hoc test in case of the data following a normal distribution using a Shapiro-Wilk normality test. Comparisons between 2 groups were determined using Student's t-test, if the data exhibited a normal distribution using a Shapiro-Wilk normality test. Meanwhile, data were shown as median and interquartile range and analyzed using the Mann-Whitney U test, if the data failed the normality test. A p < 0.05 was considered as significant difference. RESULTS: Primary NSC were isolated from the mice, and the characteristics were identified using immunostaining analysis. Thereafter, the results indicated that mannitol held the capability of inhibiting NSC proliferation in a dose-dependent and time-dependent manner using cell counting kit-8, neurospheres formation, and immunostaining of Nestin and Ki67 assays. During the process of mannitol suppressing NSC proliferation, the expression of AQP4 mRNA and protein was downregulated, while the gene expression of p-p38 was elevated by reverse transcription polymerase chain reaction, immunostaining, and western blotting assays. Subsequently, the administration of SB203580, one of the p38 MAPK signaling pathway inhibitors, partially abrogated this inhibitory effect resulting from mannitol, supporting the fact that the p38 MAPK signaling pathway participated in curbing NSC proliferation induced by mannitol. CONCLUSIONS: Mannitol inhibits NSC proliferation through downregulating AQP4, while upregulating the expression of p-p38 MAPK.


Asunto(s)
Edema Encefálico , Células-Madre Neurales , Humanos , Animales , Manitol/farmacología , Células-Madre Neurales/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/farmacología , Proliferación Celular
15.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1019635

RESUMEN

Objective:To study the regulatory mechanism of p38 MAPK signaling pathway participate in hyperalge-sia reaction in Parkinson's disease(PD)rats model induced by 6-hydroxy dopamine(6-OHDA).Methods:Forty male Sprague Dawley(SD)rats were randomly divided into four groups:Sham group(Sham),model group(6-OHDA),p38 MAPK inhibitor SB203580 treatment group(6-OHDA+SB203580)and p38 MAPK activator anisomycin(ANS)treatment group(6-OHDA+ANS).PD model was established by intra-striatal injection of 6-OHDA stereotactically.6-OHDA+SB203580 and 6-OHDA+ANS groups was injected with 6-OHDA to establish PD model,and treated with inhibitor SB203580 or activator ANS respectively.The von Frey hairs were applied to measure the mechanical paw with-draw threshold(PWT)of rats.Enzyme linked immunosorbent assay(ELISA)was used to detect the content of IL-6,IL-1β,and TNF-α in rat dorsal root ganglion(DRG).The mRNA levels of genes IL-6,IL-1β,TNF-α,and p38 MAPK in rat DRG was detected by real time RT-PCR.Results:In the DRG of 6-OHDA included PD rats,the expres-sion levels of IL-6,IL-1β,TNF-α,and p38 MAPK were significantly increased(P<0.05),and the PWT of rats were significantly decreased(P<0.05).The application of activator ANS further increased the expression levels of IL-6,IL-1β,TNF-α,and p38 MAPK,and the PWT of rats were decreased.After application of inhibitor SB203580,the ex-pression levels of IL-6,IL-1β,TNF-α and p38 MAPK were significantly decreased in the DRG of rats(P<0.05),and the PWT were significantly increased in rats(P<0.05).Conclusion:6-OHDA induces mechanical hyperalgesia reaction in rats,and the molecular mechanism is related to activation of the p38 MAPK signalling pathway.

16.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1023879

RESUMEN

AIM:To observe the effect of folic acid(FA)on C2C12 myoblast proliferation and differentia-tion,and to explore its mechanism.METHODS:During the proliferation stage,C2C12 myoblasts were treated with vari-ous concentrations of FA(0,2.5,5,10 and 20 μmol/L).The cell status was observed under a microscope,cell viability was detected using the MTT method,and cell proliferation was assessed using the EdU method.In the differentiation stage,C2C12 cells were divided into control(Ctrl)group(0 μmol/L FA)and FA group(10 μmol/L FA).On day 2 or 4 of differentiation,immunofluorescence staining and Western blot were employed to detect the expression of myoblast differen-tiation-related proteins,myoblast determination protein 1(MyoD),myogenin(MyoG)and myosin heavy chain(MyHC).The myotubule formation in each group was analyzed.On day 4 of differentiation,C2C12 cells were treated with FA for 0,1,3 and 6 h,and the protein levels of p-JNK,JNK,p-p38 MAPK and p38 MAPK at each time point were detected by Western blot.Additionally,C2C12 cells after 4-day differentiation were divided into Ctrl group,FA group,FA+ SP600125(specific inhibitor of JNK)group,and FA+SB203580(specific inhibitor of p38)group.The cells in FA+ SP600125 and FA+SB203580 groups were treated with 10 μmol/L SP600125 or SB203580 for 1 h,followed by treatment with 10 μmol/L FA for 24 h.The cells in FA group were treated with 10 μmol/L FA for 24 h,while the cells in Ctrl group were left untreated.The protein levels of p-JNK,JNK,p-p38 MAPK,p38 MAPK and MyHC were detected by Western blot.RESULTS:(1)Compared with 0 μmol/L FA group,the number of the cells in other concentration groups in-creased,cell viability was raised(P<0.05 or P<0.01),and the rate of EdU positive cells increased(P<0.05).(2)Com-pared with Ctrl group,the expression levels of MyoD,MyoG and MyHC in FA group were increased(P<0.05),and the myotube fusion index was raised(P<0.05 or P<0.01).(3)Compared with 0 h group,the ratios of p-JNK/JNK and p-p38 MAPK/p38 MAPK were elevated after FA treatment for 1,3 and 6 h(P<0.05 or P<0.01),and showed a trend of gradual increase with the extension of treatment time.(4)After FA treatment,the ratios of p-JNK/JNK and p-p38 MAPK/p38 MAPK,and the expression of MyHC were elevated(P<0.01).Treatment with SP600125 decreased the ratio of p-JNK/JNK and the expression of MyHC(P<0.05),while SB203580 intervention cut down the ratio of p-p38 MAPK/p38 MAPK and the expression of MyHC(P<0.05 or P<0.01).CONCLUSION:Folic acid can promote the differentiation of C2C12 myoblasts by activating the JNK/p38 MAPK signaling pathway.

17.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-1009505

RESUMEN

PURPOSE@#Mannitol is one of the first-line drugs for reducing cerebral edema through increasing the extracellular osmotic pressure. However, long-term administration of mannitol in the treatment of cerebral edema triggers damage to neurons and astrocytes. Given that neural stem cell (NSC) is a subpopulation of main regenerative cells in the central nervous system after injury, the effect of mannitol on NSC is still elusive. The present study aims to elucidate the role of mannitol in NSC proliferation.@*METHODS@#C57 mice were derived from the animal house of Zunyi Medical University. A total of 15 pregnant mice were employed for the purpose of isolating NSCs in this investigation. Initially, mouse primary NSCs were isolated from the embryonic cortex of mice and subsequently identified through immunofluorescence staining. In order to investigate the impact of mannitol on NSC proliferation, both cell counting kit-8 assays and neurospheres formation assays were conducted. The in vitro effects of mannitol were examined at various doses and time points. In order to elucidate the role of Aquaporin 4 (AQP4) in the suppressive effect of mannitol on NSC proliferation, various assays including reverse transcription polymerase chain reaction, western blotting, and immunocytochemistry were conducted on control and mannitol-treated groups. Additionally, the phosphorylated p38 (p-p38) was examined to explore the potential mechanism underlying the inhibitory effect of mannitol on NSC proliferation. Finally, to further confirm the involvement of the p38 mitogen-activated protein kinase-dependent (MAPK) signaling pathway in the observed inhibition of NSC proliferation by mannitol, SB203580 was employed. All data were analyzed using SPSS 20.0 software (SPSS, Inc., Chicago, IL). The statistical analysis among multiple comparisons was performed using one-way analysis of variance (ANOVA), followed by Turkey's post hoc test in case of the data following a normal distribution using a Shapiro-Wilk normality test. Comparisons between 2 groups were determined using Student's t-test, if the data exhibited a normal distribution using a Shapiro-Wilk normality test. Meanwhile, data were shown as median and interquartile range and analyzed using the Mann-Whitney U test, if the data failed the normality test. A p < 0.05 was considered as significant difference.@*RESULTS@#Primary NSC were isolated from the mice, and the characteristics were identified using immunostaining analysis. Thereafter, the results indicated that mannitol held the capability of inhibiting NSC proliferation in a dose-dependent and time-dependent manner using cell counting kit-8, neurospheres formation, and immunostaining of Nestin and Ki67 assays. During the process of mannitol suppressing NSC proliferation, the expression of AQP4 mRNA and protein was downregulated, while the gene expression of p-p38 was elevated by reverse transcription polymerase chain reaction, immunostaining, and western blotting assays. Subsequently, the administration of SB203580, one of the p38 MAPK signaling pathway inhibitors, partially abrogated this inhibitory effect resulting from mannitol, supporting the fact that the p38 MAPK signaling pathway participated in curbing NSC proliferation induced by mannitol.@*CONCLUSIONS@#Mannitol inhibits NSC proliferation through downregulating AQP4, while upregulating the expression of p-p38 MAPK.


Asunto(s)
Humanos , Animales , Manitol/farmacología , Edema Encefálico , Células-Madre Neurales/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas p38 Activadas por Mitógenos/farmacología , Proliferación Celular
18.
J Ethnopharmacol ; 319(Pt 3): 117323, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37852337

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The Qi-Qin-Hu-Chang Formula (QQHCF) is a traditional Chinese medicine prescription that is clinically used at the Affiliated Hospital of Nanjing University of Chinese Medicine for the treatment of colitis-associated colorectal cancer (CAC). AIM OF THE STUDY: To evaluate the potential therapeutic effects of QQHCF on a CAC mouse model and investigate its underlying mechanisms using network pharmacology and experimental validation. MATERIALS AND METHODS: The active components and potential targets of QQHCF were obtained from Traditional Chinese Medicine Systems Pharmacology (TCMSP) and herb-ingredient-targets gene network were constructed by Cytoscape 3.9.2. Target genes of CAC were obtained from GeneCards, Online Mendelian Inheritance in Man, and DrugBank database. The drug disease target protein-protein interaction (PPI) network was constructed and the core targets were visualized and identified using Cytoscape. The Metascape database was used for GO and KEGG enrichment analysis. UHPLC-MS/MS was used to further identify the active compounds in QQHCF. Subsequently, the therapeutic effects and potential mechanism of QQHCF against CAC were investigated in AOM/DSS-induced CAC mouse in vivo, and HT-29 and HCT116 cells in vitro. Finally, interactions between JNK, p38, and active ingredients were assessed by molecular docking. RESULTS: A total of 176 active compounds, 273 potential therapeutic targets, and 2460 CAC-related target genes were obtained. The number of common targets between QQHCF and CAC were 165. KEGG pathway analysis indicated that the MAPK signaling pathway was closely associated with CAC, which may be the potential mechanism of QQHCF against CAC. Network pharmacology and UHPLC-MS/MS analyses showed that the active compounds of QQHCF included quercetin, kaempferol, luteolin, wogonin, oxymatrine, lupanine, and baicalin. Animal experiments demonstrated that QQHCF reduced tumor load, number, and size in AOM/DSS-treated mice, and induced apoptosis in colon tissue. In vitro experiments further showed that QQHCF induced apoptosis and inhibited cell viability, migration, and invasion in HCT116 and HT-29 cells. Notably, QQHCF activated the JNK/p38 MAPK signaling pathway both in vivo and in vitro. Molecular docking analysis revealed an ability for the main components of QQHCF and JNK/p38 to bind. CONCLUSION: The present study demonstrated that QQHCF could ameliorate AOM/DSS-induced CAC in mice by activating the JNK/p38 MAPK signaling pathway. These results have important implications for the development of effective treatment strategies for CAC.


Asunto(s)
Neoplasias Asociadas a Colitis , Medicamentos Herbarios Chinos , Humanos , Animales , Ratones , Qi , Farmacología en Red , Simulación del Acoplamiento Molecular , Espectrometría de Masas en Tándem , Transducción de Señal , Apoptosis , Bases de Datos Genéticas , Proteínas Quinasas p38 Activadas por Mitógenos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
19.
J Orthop Surg Res ; 18(1): 837, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37932780

RESUMEN

OBJECTIVE: To explore the mechanism of the p38MAPK signaling pathway in repairing articular cartilage defects with biological collagen membranes. METHODS: Thirty-two healthy adult male rabbits were randomly divided into a control group (n = 8), model group (n = 8), treatment group (n = 8) and positive drug group (n = 8). The control group was fed normally, and the models of bilateral knee joint femoral cartilage defects were established in the other three groups. The knee cartilage defects in the model group were not treated, the biological collagen membrane was implanted in the treatment group, and glucosamine hydrochloride was intragastrically administered in the positive drug group. Twelve weeks after the operation, the repair of cartilage defects was evaluated by histological observation (HE staining and Masson staining), the degree of cartilage repair was quantitatively evaluated by the Mankin scoring system, the mRNA expression levels of p38MAPK, MMP1 and MMP13 were detected by real-time fluorescence quantitative PCR (qRT-PCR), and the protein expression levels of p38MAPK, p-p38MAPK, MMP1 and MMP13 were detected by Western blotting. The results after the construction of cartilage defects, histological staining showed that the articular cartilage wound was covered by a large capillary network, the cartilage tissue defect was serious, and a small amount of collagen fibers were formed around the wound, indicating the formation of a small amount of new bone tissue. In the treatment group and the positive drug group, the staining of cartilage matrix was uneven, the cytoplasmic staining was lighter, the chondrocytes became hypertrophic as a whole, the chondrocytes cloned and proliferated, some areas were nest-shaped, the cells were arranged disorderly, the density was uneven, and the nucleus was stained deeply. The Mankin score of the model group was significantly higher than that of the control group, while the Mankin scores of the treatment group and positive drug group were significantly lower than that of the model group. The results of qRT-PCR detection showed that compared with the control group, the expression level of the p38MAPK gene in the model group did not increase significantly, but the gene expression levels of MMP1 and MMP13 in the model group increased significantly, while the gene expression levels of MMP1 and MMP13 decreased significantly in the treatment group and positive drug group compared with the model group. The results of Western blot detection showed that compared with the control group, the expression level of p38MAPK protein in the model group was not significantly increased, but the phosphorylation level of p38MAPK protein and the protein expression levels of MMP1 and MMP13 were significantly increased in the model group, while the phosphorylation level of p38MAPK protein and the protein expression levels of MMP1 and MMP13 in the treatment group and positive drug group were significantly lower than those in the model group. CONCLUSION: The biological collagen membrane can regulate the expression of MMP1 and MMP13 and repair the activity of chondrocytes by reducing the phosphorylation level of p38MAPK and inhibiting the activation of the p38MAPK signaling pathway, thus improving the repair effect of articular cartilage defects in rabbits. The P38MAPK signaling pathway is expected to become an important molecular target for the clinical treatment of cartilage defects in the future.


Asunto(s)
Cartílago Articular , Ingeniería de Tejidos , Animales , Masculino , Conejos , Ingeniería de Tejidos/métodos , Metaloproteinasa 1 de la Matriz/metabolismo , Metaloproteinasa 13 de la Matriz/metabolismo , Colágeno/metabolismo , Cartílago Articular/cirugía , Condrocitos/metabolismo , Transducción de Señal
20.
J Orthop Surg Res ; 18(1): 761, 2023 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-37807073

RESUMEN

OBJECTIVE: The aim of this study was to investigate whether Osteonectin/Secreted protein acidic and rich in cysteine (ON/SPARC) had a two-way dose-dependent regulatory effect on osteoblast mineralization and its molecular mechanism. METHODS: Initially, different concentrations of ON were added in osteoblasts, and the gene of bone sialoprotein (BSP), osteocalcin (OCN), osteopontin (OPN) and alkaline phosphatase (ALP) were detected using reverse-transcription quantitative polymerase chain reaction (RT-PCR). Secondly, based on the above results, the Optima and inhibitory concentration of ON for osteoblast mineralization were determined and regrouped, the Control group was also set up, and the gene detections of Collagen 1 (Col 1), Discoidin domain receptor 2 (DDR2) and p38 mitogen­activated protein kinase were added using RT-PCR. In the third stage of the experiment, osteoblasts were pretreated with 0.4Mm ethyl-3,4-dihydroxybenzoate (DHB) (a specific inhibitor of collagen synthesis) for 3 h before adding the optima SPARC, the gene and protein expressions of OCN, OPN, BSP, ALP, DDR2, ALP, Col 1, DDR2 and P38 were detected by RT­qPCR and western blot analysis, and the mineralized nodules were observed by alizarin red staining. RESULTS: The results showed that the expression of OCN, OPN, BSP, ALP, DDR2, ALP, Col 1, DDR2 and P38 genes and proteins in osteoblasts were significantly enhanced by 1 ug/ml ON, 100 ug/ml ON or 1 ug/ml ON added with 3,4 DHB significantly inhibited the expressions of DDR2, P38 and the above-mentioned mineralization indexes, and significantly reduced the formation of mineralized nodules. CONCLUSION: This study suggested that ON had a bidirectional dose-dependent regulatory effect on osteoblast mineralization, and the activation of P38 pathway by collagen binding to DDR2 was also an important molecular mechanism.


Asunto(s)
Calcinosis , Osteonectina , Humanos , Osteonectina/genética , Osteocalcina/genética , Osteocalcina/metabolismo , Sialoproteína de Unión a Integrina , Colágeno/metabolismo , Osteoblastos/metabolismo , Diferenciación Celular , Osteogénesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA