Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros











Intervalo de año de publicación
1.
Materials (Basel) ; 17(16)2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39203124

RESUMEN

Aeolian sand is distributed worldwide, exhibiting poor grading, low cohesion, and loose structure. Infrastructure construction in desert areas sometimes requires stabilization of the sand, with cement as the primary curing agent. This study first employed orthogonal experiments to evaluate critical factors, e.g., curing time, cement dosage, and water dosage, affecting the unconfined compressive strength (UCS) of the aeolian sand stabilized with cement (ASC). Each of the aforementioned factors were set at five levels, namely curing time (7, 14, 28, 60, and 90 days), cement dosage (3%, 5%, 7%, 9%, and 11%), and water dosage (3%, 6%, 9%, 12%, and 15%), respectively. The water and cement dosages were percentages of the mass of the natural aeolian sand. The results indicated that the sensitivity of the influencing factors on the UCS of ASC was cement dosage, curing time, and water dosage in descending order. The UCS of ASC positively correlated with curing time and cement dosage, while it first increased and then decreased with the water dosage increase. The optimal conditions were 90 days' curing time, 11% cement dosage, and 9% water dosage. The microscopic analyses of ASC using optical microscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD) revealed that hydration products enhanced strength by bonding loose particles and filling pores, thereby improving compaction. The quantity and compactness of hydration products in the aeolian-cement reaction system increased with the increases in cement dosage and curing time, and low water dosage inhibited the hydration reaction. This study can provide insights into the stabilization mechanism of aeolian sand, aiding infrastructure development in desert regions.

2.
Molecules ; 29(12)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38930851

RESUMEN

Bletilla striata is the dried tuber of B. striata (Thund.) Reichb.f., which has antibacterial, anti-inflammatory, anti-tumor, antioxidant and wound healing effects. Traditionally, it has been used for hemostasis therapy, as well as to treat sores, swelling and chapped skin. In this study, we used the ultraviolet (UV) absorbance rate of B. striata extracts as the index, and the extraction was varied with respect to the solid-liquid ratio, ethanol concentration, ultrasonic time and temperature in order to optimize the extraction process for its sunscreen components. The main compounds in the sunscreen ingredients of Baiji (B. striata) were analyzed using ultra-high-performance liquid chromatography combined with quadrupole time-of-flight tandem mass spectrometry. The sunscreen properties were subsequently evaluated in vitro using the 3M tape method. The results show that the optimal extraction conditions for the sunscreen components of B. striata were a solid-liquid ratio of 1:40 (g/mL), an ethanol concentration of 50%, an ultrasonic time of 50 min and a temperature of 60 °C. A power of 100 W and an ultrasonic frequency of 40 Hz were used throughout the experiments. Under these optimized conditions, the UV absorption rate of the isolated sunscreen components in the UVB region reached 84.38%, and the RSD was 0.11%. Eighteen compounds were identified, including eleven 2-isobutyl malic acid glucose oxybenzyl esters, four phenanthrenes, two bibenzyl and one α-isobutylmalic acid. An evaluation of the sunscreen properties showed that the average UVB absorption values for the sunscreen samples from different batches of B. striata ranged from 0.727 to 1.201. The sunscreen ingredients of the extracts from B. striata had a good UV absorption capacity in the UVB area, and they were effective in their sunscreen effects under medium-intensity sunlight. Therefore, this study will be an experimental reference for the extraction of sunscreen ingredients from the B. striata plant, and it provides evidence for the future development of B. striata as a candidate cosmetic raw material with UVB protection properties.


Asunto(s)
Orchidaceae , Extractos Vegetales , Protectores Solares , Protectores Solares/química , Protectores Solares/farmacología , Protectores Solares/aislamiento & purificación , Orchidaceae/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/aislamiento & purificación , Cromatografía Líquida de Alta Presión , Ondas Ultrasónicas , Espectrometría de Masas en Tándem , Humanos , Rayos Ultravioleta
3.
Sci Total Environ ; 926: 171797, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38513870

RESUMEN

The impact of different operational parameters on the composting efficiency and compost quality during pilot-scale membrane-covered composting (MCC) of food waste (FW) was evaluated. Four factors were assessed in an orthogonal experiment at three different levels: initial mixture moisture (IMM, 55 %, 60 %, and 65 %), aeration time (AT, 6, 9, and 12 h/d), aeration rate (AR, 0.2, 0.4, and 0.6 m3/h) and mature compost addition ratio (MC, 2 %, 4 %, and 6 %). Results indicated that 55 % IMM, 6 h/d AT, 0.4 m3/h AR, and 4 % MC addition ratio simultaneously provided the compost with the maximum cumulative temperature and the minimum moisture. It was shown that the IMM was the driving factor of this optimum composting process. On contrary, the optimal parameters for reducing carbon and nitrogen loss were 65 % IMM, 6 h/d AT, 0.4 m3/h AR, and 2 % MC addition ratio. The AR had the most influence on reducing carbon and nitrogen losses compared to all other factors. The optimal conditions for compost maturity were 55 % IMM, 9 h/d AT, 0.2 m3/h AR, and 6 % MC addition ratio. The primary element influencing the pH and electrical conductivity values was the AR, while the germination index was influenced by IMM. Protein was the main organic matter limiting the composting efficiency. The results of this study will provide guidance for the promotion and application of food waste MCC technology, and contribute to a better understanding of the mechanisms involved in MCC for organic solid waste treatment.


Asunto(s)
Compostaje , Eliminación de Residuos , Eliminación de Residuos/métodos , Alimento Perdido y Desperdiciado , Alimentos , Carbono/análisis , Nitrógeno/análisis , Suelo
4.
Metabolites ; 14(2)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38392991

RESUMEN

A novel ceramide compound, named Aspercerebroside A (AcA), was successfully isolated from the ethyl acetate layer of the marine symbiotic fungus Aspergillus sp. AcA exhibited notable anti-inflammatory activity by effectively inhibiting the production of nitric oxide (NO) in RAW 264.7 cells at concentrations of 30 µg/mL and 40 µg/mL, offering a promising avenue for the treatment of inflammatory diseases. To optimize the yield of glycosylceramide (AcA), a series of techniques, including single-factor experiments, orthogonal experiments, and response surface optimization, were systematically employed to fine-tune the composition of the fermentation medium. Initially, the optimal carbon source (sucrose), nitrogen source (yeast extract powder), and the most suitable medium salinity (14 ppt) were identified through single-factor experiments. Subsequently, orthogonal experiments, employing an orthogonal table for planning and analyzing multifactor experiments, were conducted. Finally, a mathematical model, established using a Box-Behnken design, comprehensively analyzed the interactions between the various factors to determine the optimal composition of the fermentation medium. According to the model's prediction, when the sucrose concentration was set at 37.47 g/L, yeast extract powder concentration at 19.66 g/L, and medium salinity at 13.31 ppt, the predicted concentration of glycosylceramide was 171.084 µg/mL. The experimental results confirmed the model's accuracy, with the actual average concentration of glycosylceramide under these conditions measured at 171.670 µg/mL, aligning closely with the predicted value.

5.
Glob Chall ; 7(10): 2300189, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37829679

RESUMEN

The construction and coal industries generate substantial industrial waste, including coal gangue and construction and demolition (C&D) waste, leading to environmental pollution and high disposal costs. Integrating recycled aggregates (RAs) and coal gangue powder (CGP) into concrete is an effective approach for waste management. However, CGP can affect the performance of traditional recycled concrete. This study primarily aims to optimize the utilization of RAs and CGP while maintaining concrete performance. They utilized orthogonal experimental designs and microscopic characterization techniques, including scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). Orthogonal experimental analysis indicated that with a water-cement ratio (WCR) of 0.5 and replacement rates of 10% for CGP and 60% for RA, compressive and splitting tensile strengths reached 73.6% and 77.4% of ordinary C30 concrete, respectively. This mix proportion minimizes strength decline in coal gangue powder-recycled aggregate concrete (CGP-RAC) while maximizing recycled material replacement. Microscopic analysis revealed that CGP increased the Ca/Si ratio in cement paste, impeding hydration reactions, resulting in a looser internal structure and reduced concrete strength. These findings are anticipated to provide fresh theoretical insights for solid waste recycling and utilization.

6.
Polymers (Basel) ; 15(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37447543

RESUMEN

Cement-matrix composite are typical multi-scale composite materials, the failure process has the characteristics of gradual, multi-scale and multi-stage damage. In order to delay the multi-stage damage process of cement-matrix composites, the defects of different scales are suppressed by using different scales of fibres and fly ash (FA), and the overall performance of cement-matrix composites is improved, a new multi-scale fibre-reinforced cement-based composite composed of millimetre-scale polyvinyl alcohol fibre (PVA), micron-scale calcium carbonate whisker (CW), and nano-scale carbon nanotubes (CNTs) was designed in this study. The compressive strength, flexural strength, splitting tensile strength, and chloride ion permeability coefficient were used as assessment indices by the orthogonal test design. The impacts of the three fibre scales and fly ash on each individual index were examined, and the overall performance of the multi-scale fibre-reinforced cementitious materials (MSFRCC) was then optimized using grey correlation analysis. The optimized mix ratio for overall performance was PVA: 1.5%, CW: 2%, CNTs: 0.1%, FA: 40%. Compared with the optimal results for each group, the compressive strength of the final optimized MSFRCC group decreased by 8.9%, the flexural strength increased by 28.4%, the splitting tensile strength increased by 10%, and the chloride ion permeability coefficient decreased by 5.7%. The results show that the compressive performance and resistance to chloride ion penetration of the optimized group are slightly worse than those of the optimal group in the orthogonal test, but its flexural performance and splitting tensile performance are significantly improved.

7.
Materials (Basel) ; 16(12)2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37374559

RESUMEN

Pure self-compacting concrete has many disadvantages, such as early shrinkage and cracking. The addition of fibers can effectively improve the properties of resistance to tension and cracking of self-compacting concrete, thereby the effect of improving its strength and toughness can be achieved. Basalt fiber is a "new green industrial material" that has unique advantages, such as high crack resistance and being lightweight compared with other fiber materials. In order to study the mechanical properties and crack resistance of basalt fiber self-compacting high-strength concrete intensively, the self-compacting high-strength concrete of C50 was designed and obtained using the absolute volume method with multiple proportions. Orthogonal experimental methods were used to study the influence of the water binder ratio, fiber volume fraction, fiber length, and fly ash content on the mechanical properties of the basalt fiber self-compacting high-strength concrete. Meanwhile, the efficiency coefficient method was used to determine the best experiment plan (water binder ratio 0.3, fiber volume ratio 0.2%, fiber length 12 mm, fly ash content 30%), and the effect of fiber volume fraction and fiber length on the crack resistance of the self-compacting high-performance concrete was investigated using improved plate confinement experiments. The results show that (1) the water binder ratio had the greatest impact on the compressive strength of basalt fiber self-compacting high-strength concrete, and as the fiber volume fraction increased, the splitting tensile strength and flexural strength both increased; (2) there was an optimal value for the effect of the fiber length on the mechanical properties; (3) with the increase in fiber volume fraction, the total crack area of the fiber self-compacting high-strength concrete significantly decreased. When the fiber length increased, the maximum crack width first decreased and then slowly increased. The best crack resistance effect was achieved when the fiber volume fraction was 0.3% and the fiber length was 12 mm. Therefore, basalt fiber self-compacting high-strength concrete can be widely used in engineering fields, such as national defense construction, transportation, and building structure reinforcement and repair, due to its excellent mechanical and crack resistance properties.

8.
Polymers (Basel) ; 15(8)2023 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-37112053

RESUMEN

With the increasing environmental pollution caused by disposable masks, it is crucial to develop new degradable filtration materials for medical masks. ZnO-PLLA/PLLA (L-lactide) copolymers prepared from nano ZnO and L-lactide were used to prepare fiber films for air filtration by electrospinning technology. Structural characterization of ZnO-PLLA by H-NMR, XPS, and XRD demonstrated that ZnO was successfully grafted onto PLLA. An L9(43) standard orthogonal array was employed to evaluate the effects of the ZnO-PLLA concentration, ZnO-PLLA/PLLA content, DCM(dichloromethane) to DMF(N,N-dimethylformamide) ratio, and spinning time on the air filtration capacity of ZnO-PLLA/PLLA nanofiber films. It is noteworthy that the introduction of ZnO is important for the enhancement of the quality factor (QF). The optimal group obtained was sample No. 7, where the QF was 0.1403 Pa-1, the particle filtration efficiency (PFE) was 98.3%, the bacteria filtration efficiency (BFE) was 98.42%, and the airflow resistance (Δp) was 29.2 Pa. Therefore, the as-prepared ZnO-PLLA/PLLA film has potential for the development of degradable masks.

9.
Micromachines (Basel) ; 14(2)2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36837934

RESUMEN

In this study, the water-jet-guided laser (WJGL) method was used to cut Inconel 718 alloy with high temperature resistance. The effect of critical parameters of the water-jet-guided laser machining method on the cutting depth was studied by a Taguchi orthogonal experiment. Furthermore, the mathematical prediction model of cutting depth was established by the response surface method (RSM). The validation experiments showed that the mathematical model had a high predictive ability for cutting depth. The optimal cutting depth was obtained by model prediction, and the error was 5.5% compared with the experimental results. Compared with the traditional dry laser cutting, the water conducting laser method reduced the thermal damage and improved the cutting quality. This study provides a reference for the precision machining of Inconel 718 with a water-jet-guided laser.

10.
Environ Sci Pollut Res Int ; 30(18): 52157-52168, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36823462

RESUMEN

This paper aims to prepare an adsorbent based on MXene material for adsorbing diclofenac sodium (DCF). In this paper, Ti3C2-MXene was prepared by etching Ti3AlC2 with hydrofluoric acid (HF). Ti3C2 was subjected to a convenient and simple solvothermal treatment. TiO2 and Ti2C were formed during the solvothermal process. According to the results of FT-IR and XRD, the formation of TiO2 and Ti2C will increase the interlayer spacing of the prepared Ti3C2-12 h, thereby improving the adsorption performance of MXenes. The main factors affecting the adsorbent, the maximum adsorption capacity, and the interaction between the two factors were analyzed by single-factor experiment, orthogonal experiment, and response surface analysis. The maximum DCF adsorption capacities of Ti3C2 and Ti3C2-12 h are 201 mg/g and 395 mg/g, respectively. MXene made from HF can absorb DCF under various pH conditions and maintain a high adsorption rate, which has important applications in environmental protection.


Asunto(s)
Diclofenaco , Titanio , Adsorción , Espectroscopía Infrarroja por Transformada de Fourier , Ácido Fluorhídrico
11.
Materials (Basel) ; 15(22)2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36431617

RESUMEN

Ultrasonic-magnetic field coaxial hybrid GTAW(U-M-GTAW) is a new non-melting electrode welding method proposed by combining ultrasonic assisted GTAW(U-GTAW) and magnetic assisted GTAW(M-GTAW) on the regulation characteristics of the GTAW arc. U-M-GTAW introduces ultrasonic and magnetic field effects into GTAW to improve arc characteristics. The orthogonal experiment was designed to investigate the degree of influence of different process parameters on the arc. The degree of influence of ultrasonic power P, radiator height H, magnetic field current CW, welding current CW and tungsten electrode height HT on ΔL1 (degree of arc root diameter change), ΔL2 (degree of maximum diameter change) and ΔS (degree of area change) were analyzed. In the parameter range, P has the greatest degree of influence on ΔL1 and ΔL2. As all process parameters increase, L1 shows a tendency to decrease, indicating an increase in the compression of the arc root. ΔL2 with the increase in P and CW shows a trend of first decreasing and then increasing. ΔL2 with the increase in H decreases, indicating that the acoustic radiation force increases, the arc energy increases, and the dark region decreases. The magnetic field current increases, the bottom of the arc expands, and the height of the tungsten electrode increases, the arc dispersion and thus the difference between the dark and luminous regions at the bottom increases, resulting in ΔL2 with the increase in CM and HT increases. CW has the greatest degree of influence on ΔS. ΔS decreases and then increases as P and H increase, which indicates that the force on acoustic radiation increases and then decreases in the range. An increase in the magnetic field current increases the rotation of the arc, leading to an increase in the arc area. An increase in welding current leads to an increase in arc energy, expansion of the arc morphology, and an increase in ΔS. The tungsten electrode height increases, the arc diverges, the dark region increases, the luminous area decreases, and ΔS increases. Finally, combined with the analysis of ultrasonic field and magnetic field theory, changes in process parameters will affect the force of the arc and thus the arc morphology. The U-M-GTAW arc under the action of acoustic radiation force, the plasma flow is shifted in the direction of the arc axis, and the arc contraction, under the action of magnetic field force to generate circumferential current, the arc undergoes periodic rotation, which improves GTAW arc characteristics.

12.
Math Biosci Eng ; 19(11): 11657-11674, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-36124607

RESUMEN

Bone cutting is a complicated surgical operation. It is very important to establish a kind of gradient porous bone model in vitro which is close to human bone for the research of bone cutting. Due to the existing bone cutting researches are based on solid bone model, which is quite different from human bone tissue structure. Therefore, Voronoi method was used to establish a gradient porous bone model similar to real bone tissue to simulate the process of bone drilling in this paper. High temperature and large cutting force during bone drilling can cause serious damage to bone tissue. Urgent research on bone drilling parameters is necessary to reduce cutting temperature and cutting force. The finite element analysis (FEA) of Voronoi bone models with different gradients is carried out, and a Voronoi model which is similar to real bone tissue is obtained and verified by combining the cutting experiment of pig bone. Then orthogonal experiments are designed to optimize the cutting parameters of Voronoi bone model. The range method is used to analyze the influence weights of cutting speed, feed speed and tip angle on cutting temperature and cutting force, and the least square method was used to predict the cutting temperature and cutting force, respectively. The gradient porous bone model constructed by Voronoi method was studied in detail in this paper. This study can provide theoretical guidance for clinical bone drilling surgery, and the prediction model of bone drilling has practical significance.


Asunto(s)
Hueso Esponjoso , Procedimientos Ortopédicos , Animales , Huesos , Análisis de Elementos Finitos , Humanos , Procedimientos Ortopédicos/métodos , Porcinos , Temperatura
13.
Materials (Basel) ; 15(9)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35591544

RESUMEN

To determine the Gurson-Tvergaard-Needleman (GTN)damage model parameters of 6061 aluminum alloy after secondary heat treatment, the uniaxial tensile test was carried out on the aluminum alloy circular arc specimen, and the mechanical properties parameters and the load-displacement curve of aluminum alloy tube were obtained. With the help of the finite element reverse method, scanning electron microscope and a orthogonal test method, the GTN damage model parameters (f0, fN, fC, and fF) were calibrated, and their values were 0.004535, 0.04, 0.1, and 0.2135, respectively. Then the shear specimen and notch specimen were designed to verify the damage model, the results show that the obtained GTN damage model parameters can effectively predict the fracture failure of 6061 aluminum alloy after secondary heat treatment during the tensile process.

14.
Polymers (Basel) ; 14(10)2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35631849

RESUMEN

Cost-effective, practical, and efficiently performing photosensitive resin composite materials are essential, as the current materials are expensive, lack better alternatives, and do not meet 3D printing standards. In this study, based on orthogonal experiments for photosensitive resin curing, we prepared a free-radical/cationic hybrid photosensitive UV cured resin (UVR) using acrylic ester and epoxy resin as the prepolymers, tripropylenediol diacrylate (TPGDA) as the active diluent, and triaryl sulfonium salt (I-160) and 2,2-dimethyl-α-hydroxy acetophenone (1173) as the photoinitiators, in the optimized formula of acrylic-ester:epoxy-resin:TPGDA:I-160:1173 = 37.5:37.5:20:2.5:2.5. Further, we investigated the effects of polyurethane acrylates (PUA) and Graphene oxide (GO) on the surface morphology, chemical structure, hydrophobicity, mechanical strength, and gelation rate of the hybrid resin. We observed that 20% PUA improved tensile strength to the maximum of 36.89 MPa from 16.42 MPa of the unmodified hybrid resin, whereas 1% GO reduced volume shrinkage to the minimum of 2.89% from 3.73% of the unmodified hybrid resin. These photosensitive resins with higher tensile strength and lower volume shrinkage can be used to synthesize high performance functional materials in the future.

15.
China Pharmacy ; (12): 950-956, 2022.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-923597

RESUMEN

OBJECTIVE To opti mize the supercritical CO 2 extraction technology of volatile oil from Blumea balsamifera ,and compare the components of the volatile oil from B. balsamifera obtained by supercritical CO 2 extraction and steam distillation. METHODS The volatile oil of B. balsamifera was extracted by supercritical CO 2 extraction. Using extraction rate of volatile oil as index,extraction temperature ,extraction pressure and extraction time as factors ,based on single-factor experiment ,orthogonal experiment was used to optimize the supercritical CO 2 extraction technology. Gas chromatography-mass spectrometry was used to identify the components of volatile oil from B. balsamifera . Peak area normalization was used to calculate the relative contents of each component. Taking the volatile oil obtained by steam distillation as a reference ,the extraction rates ,components and contents of volatile oil by the two methods were compared. RESULTS The optimal supercritical CO 2 extraction technology of volatile oil from B. balsamifera included extraction pressure of 30 MPa,extraction temperature of 50 ℃ and extracting for 50 min. After 3 times of validation tests ,average extraction rate of volatile oil was 4.64%(RSD=0.54%,n=3). Thirty-nine components such as tritriacontane,stigmasterol,squalene were identified in the volatile oil of B. balsamifera obtained by supercritical CO 2 extraction; and 51 components such as triacontane ,ledol,humulene epoxide Ⅰ were identified by steam distillation. The extraction rate of volatile oil from B. balsamifera obtained by 2 methods were 4.64% and 0.99%. A total of 26 common components were obtained , such as xanthoxylin ,L-borneol,β-caryophyllene. Except for xanthoxyline (34.829% by supercritical CO 2 extraction,30.676% by steam distillation method )and phytol (2.401% by supercritical CO 2 extraction,1.273% by steam distillation ),the relative contents of the components of volatile oil obtained by supercritical CO 2 extraction were lower than those of steam distillation. CONCLUSIONS The optimal supercritical CO 2 extraction technology is stable and feasible ;the components and contents of volatile oil obtained by two methods varies greatly ,and main compounds are aldehydes and ketones ,alkenes,alcohols and other components.

16.
Polymers (Basel) ; 12(11)2020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-33172008

RESUMEN

The effects of chitosan (CTS) as the reinforcing phase on the properties of potato starch (PS)-based foams were studied in this work. The formic acid solutions of CTS and PS were uniformly mixed in a particular ratio by blending and then placed in a mold made of polytetrafluoroethylene for microwave treatment to form starch foam. The results showed that the molecular weight and concentration of CTS could effectively improve the density and compressive properties of starch-based foams. Furthermore, orthogonal experiments were designed, and the results showed that when the molecular weight of CTS in foams is 4.4 × 105, the mass fraction is 4 wt%, and the mass ratio of CTS-PS is 3/4.2; the compressive strength of foams is the highest at approximately 1.077 mPa. Furthermore, Fourier transform infrared spectroscopy analysis demonstrated the interaction between starch and CTS, which confirmed that the compatibility between CTS and PS is excellent.

17.
Sci Total Environ ; 731: 139157, 2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32428753

RESUMEN

This study investigated the interplay effects of key operational factors on maturity, gaseous emissions, and energy efficiency during composting of livestock manure digestate. Orthogonal experiments were conducted with three factors: digestion duration (15, 30, 45 days), corn stalk addition (15%, 25%, 35%, wet weight based), and aeration rate (0.12, 0.24, 0.48 L kg-1 dry matter (DM) min-1). Results showed that digestion duration was the main factor influencing the compost germination index (GI), greenhouse gases (GHGs) emission, and net energy. Digestion duration of 30 days was favored for compost GI and GHG reduction, while digestion duration of 45 days exhibited 18% higher daily net energy. Increasing corn stalk addition and aeration rates improved compost GI, but increased energy consumption. Corn stalk addition of 25% and aeration rate of 0.24 L kg-1 DM min-1 could ensure desirable compost maturity and save energy consumption. Thus, digestion for 30 days, 25% corn stalk addition, and aeration rates of 0.24 L kg-1 DM min-1 can be potentially implemented in industry for environmental and cost efficient composting of digestate.


Asunto(s)
Compostaje , Animales , Gases , Ganado , Estiércol , Nitrógeno/análisis , Suelo
18.
Polymers (Basel) ; 12(1)2020 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-31936062

RESUMEN

In this work, the thermo-sensitive materials N-isopropylacrylamide (NIPAM) and acrylic acid (AA) were crosslinked with carboxymethyl cellulose (CMC) (CMC/P (NIPAM-co-AA)) via a free radical polymerization method for the removal of U(VI) from aqueous solution. The L16 (45) orthogonal experiments were designed for the optimization of the synthesis condition. The chemical structures of the crosslinking hydrogel were confirmed by FTIR spectroscopy. The microstructural analyses were conducted though scanning electron microscopy (SEM) to show the pore structure of the hydrogel. The adsorption performance of the CMC/P (NIPAM-co-AA) hydrogel for the uptake of U(VI) from simulated wastewater was also investigated. The adsorption reached equilibrium within 1 h. Under the reaction of pH = 6 and a temperature of 298 K, an initial concentration of U(VI) of 5 mg·L-1, and 10 mg of the CMC/P(NIPAM-co-AA) hydrogel, the maximum adsorption capacity was 14.69 mg g-1. The kinetics fitted perfectly with the pseudo-second-order model, and the isotherms for the composite hydrogel adsorption of U(VI) was in accordance with the Langmuir model. The chemical modification confirmed that the acylamino group played an important role in uranium adsorption. The desorption and reusability study revealed that the resolution rate was still available at approximately 77.74% after five alternate heating cycles at 20 and 50 °C of adsorption-desorption.

19.
Bioresour Technol ; 297: 122419, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31761629

RESUMEN

The influences of operating temperature, catalyst types and mixing ratios on co-pyrolysis of camellia shell (CS) and take-out solid waste (TSW) were investigated through orthogonal experiments design. The target was to gain more aliphatic hydrocarbons and monocyclic aromatic hydrocarbons (MAHs) and reduce the production of acids. According to orthogonal experiments results, higher temperature contributed to generate aliphatic hydrocarbons and inhibit formation of acids. Combined utilization of HZSM-5 and CaO was effective to obtain more MAHs and reduce acids. With the improvement of proportion of TSW, the yield of aliphatic hydrocarbons increased and acids decreased. The mixing ratio of CS and TSW was 3:7, 700 °C was chosen as operating temperature and combined utilization of HZSM-5 and CaO were identified. The apparent activation energy (Eave) of CS, TSW and their blends were calculated. 3CS7TSW had the lowest Eave which were 165.33 kJ/mol (by OFW) and 163.14 kJ/mol (by KAS).


Asunto(s)
Camellia , Residuos Sólidos , Catálisis , Calor , Cinética , Pirólisis
20.
Chemosphere ; 220: 1200-1207, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33395805

RESUMEN

Washing water containing poorly degradable heavy metal-EDTA complexes is produced by ethylenediaminetetraacetic acid (EDTA) washing of heavy metal-contaminated soil. A series of batch experiments were performed to explore the dechelation of heavy metal-EDTA complexes and the recovery of EDTA from simulated soil-washing solution using sulfide precipitation with Na2S. The results showed that the effect of Na2S dosage on the dechelation of Cd-EDTA solution was greater than that of other factors (reaction temperature, time, and pH) and excess EDTA suppressed cadmium removal. Additionally, the Cd removal efficiency reached 99.99 ±â€¯0.001%, and the residual amount of Cd-EDTA was below the detection limit of ion chromatography (IC) measurements under the following optimal conditions: an initial Cd-EDTA solution pH of 6, a sodium sulfide-to-Cd-EDTA ratio of 2:1, a reaction temperature of 25 °C, and a contact time of 20 min. Furthermore, the results of analysis using inductively coupled plasma optical emission spectroscopy (ICP-OES), Fourier transform infrared (FT-IR) spectroscopy, and ion chromatography (IC) confirmed that the dechelation process could be completed in less than 20 min and that EDTA was completely recovered as trisodium EDTA (HNa3EDTA). The mechanism for the dechelation of Cd-EDTA and recovery of EDTA using sulfide precipitation with Na2S was also proposed. The recovered EDTA with acidification had the same ability to extract heavy metals from soil with fresh EDTA. This study may facilitate the recycling of soil-washing wastewater and reduce the cost of extracting heavy metals from soil using EDTA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA