Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(34): 23684-23701, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39158142

RESUMEN

The nanodrug delivery system-based nasal spray (NDDS-NS) can bypass the blood-brain barrier and deliver drugs directly to the brain, offering unparalleled advantages in the treatment of central nervous system (CNS) diseases. However, the current design of NNDS-NS is excessively focused on mucosal absorption while neglecting the impact of nasal deposition on nose-to-brain drug delivery, resulting in an unsatisfactory nose-to-brain delivery efficiency. In this study, the effect of the dispersion medium viscosity on nasal drug deposition and nose-to-brain delivery in NDDS-NS was elucidated. The optimized formulation F5 (39.36 mPa·s) demonstrated significantly higher olfactory deposition fraction (ODF) of 23.58%, and a strong correlation between ODF and intracerebral drug delivery (R2 = 0.7755) was observed. Building upon this understanding, a borneol-modified lipid nanoparticle nasal spray (BLNP-NS) that combined both nasal deposition and mucosal absorption was designed for efficient nose-to-brain delivery. BLNP-NS exhibited an accelerated onset of action and enhanced brain targeting efficiency, which could be attributed to borneol modification facilitating the opening of tight junction channels. Furthermore, BLNP-NS showed superiority in a chronic migraine rat model. It not only provided rapid relief of migraine symptoms but also reversed neuroinflammation-induced hyperalgesia. The results revealed that borneol modification could induce the polarization of microglia, regulate the neuroinflammatory microenvironment, and repair the neuronal damage caused by neuroinflammation. This study highlights the impact of dispersion medium viscosity on the nose-to-brain delivery process of NDDS-NS and serves as a bridge between the formulation development and clinical transformation of NDDS-NS for the treatment of CNS diseases.


Asunto(s)
Encéfalo , Canfanos , Lípidos , Nanopartículas , Rociadores Nasales , Ratas Sprague-Dawley , Animales , Nanopartículas/química , Ratas , Lípidos/química , Encéfalo/metabolismo , Canfanos/química , Canfanos/administración & dosificación , Canfanos/farmacología , Masculino , Administración Intranasal , Sistemas de Liberación de Medicamentos , Enfermedades del Sistema Nervioso Central/tratamiento farmacológico , Mucosa Nasal/metabolismo , Mucosa Nasal/efectos de los fármacos , Tamaño de la Partícula
2.
Expert Opin Drug Deliv ; 21(7): 1081-1101, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39086086

RESUMEN

INTRODUCTION: Glucagon-like peptide-1 receptor agonists (GLP-1 RAs), approved by the US FDA for obesity treatment, are typically administered subcutaneously, an invasive method leading to suboptimal patient adherence and peripheral side effects. Additionally, this route requires the drug to cross the restrictive blood-brain barrier (BBB), limiting its safety and effectiveness in weight management and cognitive addiction disorders. Delivering the drug intranasally could overcome these drawbacks. AREAS COVERED: This review summarizes GLP-1 RAs used as anti-obesity agents, focusing on the intranasal route as a potential pathway to deliver these biomolecules to the brain. It also discusses strategies to overcome challenges associated with nasal delivery. EXPERT OPINION: Nose-to-brain (N2B) pathways can address limitations of the subcutaneous route for GLP-1 RAs. However, peptide delivery to the brain is challenging due to nasal physiological barriers and the drug's physicochemical properties. Innovative approaches, such as cell permeation enhancers, mucoadhesive systems, and nanocarriers in nasal formulations, along with efficient drug delivery devices, show promising preclinical results. Despite this, successful preclinical data does not guarantee clinical effectiveness, highlighting the need for comprehensive clinical investigations to optimize formulations and fully utilize the nose-to-brain interface for peptide delivery.


Asunto(s)
Administración Intranasal , Fármacos Antiobesidad , Barrera Hematoencefálica , Encéfalo , Sistemas de Liberación de Medicamentos , Péptido 1 Similar al Glucagón , Receptor del Péptido 1 Similar al Glucagón , Obesidad , Humanos , Obesidad/tratamiento farmacológico , Animales , Barrera Hematoencefálica/metabolismo , Péptido 1 Similar al Glucagón/administración & dosificación , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Fármacos Antiobesidad/administración & dosificación , Fármacos Antiobesidad/uso terapéutico , Fármacos Antiobesidad/farmacocinética , Fármacos Antiobesidad/farmacología , Receptor del Péptido 1 Similar al Glucagón/agonistas
3.
Pharmaceutics ; 16(6)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38931844

RESUMEN

Direct nose-to-brain drug delivery, a promising approach for treating neurological disorders, faces challenges due to anatomical variations between adults and children. This study aims to investigate the spatial particle deposition of micron-sized particles in the nasal cavity among adult and pediatric subjects. This study focuses on the olfactory region considering the effect of intrasubject parameters and particle properties. Two child and two adult nose models were developed based on computed tomography (CT) images, in which the olfactory region of the four nasal cavity models comprises 7% to 10% of the total nasal cavity area. Computational Fluid Dynamics (CFD) coupled with a discrete phase model (DPM) was implemented to simulate the particle transport and deposition. To study the deposition of micrometer-sized drugs in the human nasal cavity during a seated posture, particles with diameters ranging from 1 to 100 µm were considered under a flow rate of 15 LPM. The nasal cavity area of adults is approximately 1.2 to 2 times larger than that of children. The results show that the regional deposition fraction of the olfactory region in all subjects was meager for 1-100 µm particles, with the highest deposition fraction of 5.7%. The deposition fraction of the whole nasal cavity increased with the increasing particle size. Crucially, we identified a correlation between regional deposition distribution and nasal cavity geometry, offering valuable insights for optimizing intranasal drug delivery.

4.
Pharmaceutics ; 15(12)2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38140002

RESUMEN

Nose-to-brain delivery is a promising way to improve the treatment of central nervous system disorders, as it allows the bypassing of the blood-brain barrier. However, it is still largely unknown how the anatomy of the nose can influence the treatment outcome. In this work, we used 3D printing to produce nasal replicas based on 11 different CT scans presenting various anatomical features. Then, for each anatomy and using the Design of Experiments methodology, we characterised the amount of a powder deposited in the olfactory region of the replica as a function of multiple parameters (choice of the nostril, device, orientation angle, and the presence or not of a concomitant inspiration flow). We found that, for each anatomy, the maximum amount of powder that can be deposited in the olfactory region is directly proportional to the total area of this region. More precisely, the results show that, whatever the instillation strategy, if the total area of the olfactory region is below 1500 mm2, no more than 25% of an instilled powder can reach this region. On the other hand, if the total area of the olfactory region is above 3000 mm2, the deposition efficiency reaches 50% with the optimal choice of parameters, whatever the other anatomical characteristics of the nasal cavity. Finally, if the relative difference between the areas of the two sides of the internal nasal valve is larger than 20%, it becomes important to carefully choose the side of instillation. This work, by predicting the amount of powder reaching the olfactory region, provides a tool to evaluate the adequacy of nose-to-brain treatment for a given patient. While the conclusions should be confirmed via in vivo studies, it is a first step towards personalised treatment of neurological pathologies.

5.
Comput Biol Med ; 167: 107587, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37890422

RESUMEN

To understand inhaled nanoparticle transport and deposition characteristics in pediatric nasal airways with adenoid hypertrophy (AH), with a specific emphasis on the olfactory region, virtual nanoparticle inhalation studies were conducted on anatomically accurate child nasal airway models. The computational fluid-particle dynamics (CFPD) method was employed, and numerical simulations were performed to compare the airflow and nanoparticle deposition patterns between nasal airways with nasopharyngeal obstruction before adenoidectomy and healthy nasal airways after virtual adenoidectomy. The influence of different inhalation rates and exhalation phase on olfactory regional nanoparticle deposition features was systematically analyzed. We found that nasopharyngeal obstruction resulted in significant uneven airflow distribution in the nasal cavity. The deposited nanoparticles were concentrated in the middle meatus, septum, inferior meatus and nasal vestibule. The deposition efficiency (DE) in the olfactory region decreases with increasing nanoparticle size (1-10 nm) during inhalation. After adenoidectomy, the pediatric olfactory region DE increased significantly while nasopharynx DE dramatically decreased. When the inhalation rate decreased, the deposition pattern in the olfactory region significantly altered, exhibiting an initial rise followed by a subsequent decline, reaching peak deposition at 2 nm. During exhalation, the pediatric olfactory region DE was substantially lower than during inhalation, and the olfactory region DE in the pre-operative models were found to be significantly higher than that of the post-operative models. In conclusions, ventilation and particle deposition in the olfactory region were significantly improved in post-operative models. Inhalation rate and exhalation process can significantly affect nanoparticle deposition in the olfactory region.


Asunto(s)
Tonsila Faríngea , Nanopartículas , Humanos , Niño , Cavidad Nasal , Olfato , Hipertrofia , Simulación por Computador
6.
J Control Release ; 359: 384-399, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37315691

RESUMEN

The nose-to-brain (N2B) pathway has garnered attention because it transports drugs directly into the brain. Although recent studies have suggested the necessity of selective drug administration to the olfactory region for effective N2B drug delivery, the importance of delivering the formulation to the olfactory region and the detailed pathway involved in drug uptake in primates brain remain unclear. Here, we developed a combination system for N2B drug delivery comprising a proprietary mucoadhesive powder formulation and a dedicated nasal device (N2B-system) and evaluated it for nasal drug delivery to the brain in cynomolgus monkeys. This N2B-system demonstrated a much greater formulation distribution ratio in the olfactory region in an in vitro experiment using a 3D-printed nasal cast and in vivo experiment using cynomolgus monkeys, as compared to that in other nasal drug delivery systems that comprise of a proprietary nasal powder device developed for nasal absorption and vaccination and a commercially available liquid spray. Additionally, Texas Red-labeled dextran (TR-DEX, 3 kDa) was administered using the N2B-system to estimate the drug transition pathway from the nasal cavity to the brain. TR-DEX preferentially localized to the olfactory epithelium and reached the olfactory bulb through the cribriform foramina. Moreover, domperidone, a model drug with poor blood-brain barrier permeability, was administered to assess the brain uptake of medicine after olfactory region-selective administration by using the N2B-system. Domperidone accumulation in the brain was evaluated using positron emission tomography with intravenously administered [18F]fallypride based on competitive inhibition of the dopamine D2 receptor (D2R). Compared to other systems, the N2B-system significantly increased D2R occupancy and domperidone uptake in the D2R-expressing brain regions. The current study reveals that the olfactory region of the nasal cavity is a suitable target for efficient nasal drug delivery to the brain in cynomolgus monkeys. Thus, the N2B-system, which targets the olfactory region, provides an efficient approach for developing effective technology for nasal drug delivery to the brain in humans.


Asunto(s)
Encéfalo , Domperidona , Humanos , Animales , Administración Intranasal , Polvos , Domperidona/metabolismo , Domperidona/farmacología , Macaca fascicularis , Encéfalo/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Preparaciones Farmacéuticas/metabolismo
7.
Pharmaceutics ; 16(1)2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38276480

RESUMEN

Currently, nasal administration of active pharmaceutical ingredients is most commonly performed using swirl-nozzle-based pump devices or pressurized syringes. However, they lead to limited deposition in the more active regions of the nasal cavity, especially the olfactory region, which is crucial for nose-to-brain drug delivery. This research proposes to improve deposition in the olfactory region by replacing the swirl nozzle with a nanoengineered nozzle chip containing micrometer-sized holes, which generates smaller droplets of 10-50 µm travelling at a lower plume velocity. Two nanotech nozzle chips with different hole sizes were tested at different inhalation flow rates to examine the deposition patterns of theophylline, a hyposmia treatment formulation, using a nasal cavity model. A user study was also conducted and showed that the patient instructions influenced the inhalation flow rate characteristics. Targeted flow rates of between 0 and 25 L/min were used for the in vitro deposition study, yielding 21.5-31.5% olfactory coverage. In contrast, the traditional swirl nozzle provided only 10.8% coverage at a similar flow rate. This work highlights the potential of the nanotech soft mist nozzle for improved intranasal drug delivery, particularly to the olfactory region.

8.
Front Pharmacol ; 12: 746420, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34887754

RESUMEN

The nasal olfactory region is a potential route for non-invasive delivery of drugs directly from the nasal epithelium to the brain, bypassing the often impermeable blood-brain barrier. However, efficient aerosol delivery to the olfactory region is challenging due to its location in the nose. Here we explore aerosol delivery with bi-directional pulsatile flow conditions for targeted drug delivery to the olfactory region using a computational fluid dynamics (CFD) model on the patient-specific nasal geometry. Aerosols with aerodynamic diameter of 1 µm, which is large enough for delivery of large enough drug doses and yet potentially small enough for non-inertial aerosol deposition due to, e.g., particle diffusion and flow oscillations, is inhaled for 1.98 s through one nostril and exhaled through the other one. The bi-directional aerosol delivery with steady flow rate of 4 L/min results in deposition efficiencies (DEs) of 50.9 and 0.48% in the nasal cavity and olfactory region, respectively. Pulsatile flow with average flow rate of 4 L/min (frequency: 45 Hz) reduces these values to 34.4 and 0.12%, respectively, and it mitigates the non-uniformity of right-left deposition in both the cavity (from 1.77- to 1.33-fold) and the olfactory region (from 624- to 53.2-fold). The average drug dose deposited in the nasal cavity and the olfactory epithelium region is very similar in the right nasal cavity independent of pulsation conditions (inhalation side). In contrast, the local aerosol dose in the olfactory region of the left side is at least 100-fold lower than that in the nasal cavity independent of pulsation condition. Hence, while pulsatile flow reduces the right-left (inhalation-exhalation) imbalance, it is not able to overcome it. However, the inhalation side (even with pulsation) allows for relatively high olfactory epithelium drug doses per area reaching the same level as in the total nasal cavity. Due to the relatively low drug deposition in olfactory region on the exhalation side, this allows either very efficient targeting of the inhalation side, or uniform drug delivery by performing bidirectional flow first from the one and then from the other side of the nose.

9.
J Clin Med ; 10(11)2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34199479

RESUMEN

The acute treatment of migraine requires effective drugs that are well tolerated and provide rapid and consistent pain relief. Oral tablets are the most commonly used acute treatment for migraine; however, their effectiveness is limited by the rate of gastrointestinal (GI) tract absorption and first-pass hepatic metabolism, and they may not be ideal for patients experiencing GI motility issues. Nasal delivery is an attractive alternative route as it may circumvent GI tract absorption, avoid first-pass metabolism in the liver, and potentially reduce the frequency of GI adverse events. The large surface area and high vascularity within the nose may permit rapid absorption of therapeutics into the systemic circulation, allowing for rapid onset of action. However, the site of drug deposition (upper versus lower nasal cavity) may influence drug pharmacokinetics. Most approved nasal migraine therapies target the lower nasal space where the epithelium is less permeable, and they may be quickly cleared away due to increased ciliary function or dripping from the nose or swallowing, resulting in variable absorption and limited bioavailability. Together with its abundant vascularization, relative mucosal thickness stability, and low clearance rates, the upper nasal space harnesses the benefits of nasal delivery to potentially maximize drug efficacy.

10.
Adv Drug Deliv Rev ; 175: 113826, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34119575

RESUMEN

This review aims to cement three hot topics in drug delivery: (a) the pre-formulation of new products intended for nose-to-brain delivery; (b) the development of nasal casts for studying the efficacy of potential new nose-to-brain delivery systems at the early of their development (pre-formulation); (c) the use of 3D printing based on a wide variety of materials (transparent, biocompatible, flexible) providing an unprecedented fabrication tool towards personalized medicine by printing nasal cast on-demand based on CT scans of patients. This review intends to show the links between these three subjects. Indeed, the pathway selected to administrate the drug to the brain not only influence the formulation strategies to implement but also the design of the cast, to get the most convincing measures from it. Moreover, the design of the cast himself influences the choice of the 3D-printing technology, which, in its turn, bring more constraints to the nasal replica design. Consequently, the formulation of the drug, the cast preparation and its realisation should be thought of as a whole and not separately.


Asunto(s)
Administración Intranasal/métodos , Encéfalo/efectos de los fármacos , Composición de Medicamentos/métodos , Cavidad Nasal/anatomía & histología , Impresión Tridimensional , Animales , Encefalopatías/tratamiento farmacológico , Humanos
11.
Curr Pharm Des ; 27(12): 1482-1497, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33183191

RESUMEN

BACKGROUND: Many drugs are delivered intranasally for local or systemic effect, typically in the form of droplets or aerosols. Due to the high cost of in vivo studies, drug developers and researchers often turn to in vitro or in silico testing when first evaluating the behavior and properties of intranasal drug delivery devices and formulations. Recent advances in manufacturing and computer technologies have allowed for increasingly realistic and sophisticated in vitro and in silico reconstructions of the human nasal airways. OBJECTIVE: The study aims to perform a summary of advances in the understanding of intranasal drug delivery based on recent in vitro and in silico studies. CONCLUSION: The turbinates are a common target for local drug delivery applications, and while nasal sprays are able to reach this region, there is currently no broad consensus across the in vitro and in silico literature concerning optimal parameters for device design, formulation properties and patient technique which would maximize turbinate deposition. Nebulizers can more easily target the turbinates, but come with the disadvantage of significant lung deposition. Targeting of the olfactory region of the nasal cavity has been explored for the potential treatment of central nervous system conditions. Conventional intranasal devices, such as nasal sprays and nebulizers, deliver very little dose to the olfactory region. Recent progress in our understanding of intranasal delivery will be useful in the development of the next generation of intranasal drug delivery devices.


Asunto(s)
Rociadores Nasales , Nebulizadores y Vaporizadores , Administración Intranasal , Aerosoles , Simulación por Computador , Sistemas de Liberación de Medicamentos , Humanos
12.
Eur J Pharm Sci ; 102: 46-54, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28238945

RESUMEN

The delivery of drugs to the brain is a constant challenge due to limitations imposed by the blood-brain barrier (BBB). Various methods of bypassing the BBB are under investigation. One approach is intranasal administration, where the olfactory region of the nasal cavity extends up to the cranial cavity and provides direct access to the brain. The pharmacokinetics of this transport and factors that determine transport rates and capacity is of vital importance for evaluating the clinical value of this route. Here, the pharmacokinetics of intranasally administered imatinib has been explored. Imatinib is distributed into the brain following intravenous administration, and then rapidly removed. Following intravenous administration, the brain/plasma ratio for imatinib was calculated to be 2% and remained at this ratio for 30min. The brain/plasma ratio following intranasal administration, however, was found to be 5.3% and remained at this ratio for up to 90min. Imatinib was found to be rapidly transported into the brain via the olfactory region, by shutting down the nose-to-blood-to-brain transport with epinephrine. The increased brain concentration of imatinib (0.33µg/g tissue) achieved by intranasal administration, compared with an IV injection, is likely to provide a model for developing a wide range of CNS active molecules that were previously removed from consideration as drug candidates due to their lack of CNS access. Furthermore, brain imatinib levels were increased by co-administration of the p-gp substrates, elacridar and pantoprazole, showing that both compounds were able to inhibit the elimination of imatinib from the brain.


Asunto(s)
Antineoplásicos/farmacocinética , Encéfalo/metabolismo , Mesilato de Imatinib/farmacocinética , Mucosa Nasal/metabolismo , Inhibidores de Proteínas Quinasas/farmacocinética , 2-Piridinilmetilsulfinilbencimidazoles/farmacología , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/antagonistas & inhibidores , Acridinas/farmacología , Administración Intranasal , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/sangre , Transporte Biológico , Epinefrina/farmacología , Femenino , Mesilato de Imatinib/administración & dosificación , Mesilato de Imatinib/sangre , Inyecciones Intravenosas , Masculino , Ratones Endogámicos BALB C , Pantoprazol , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/sangre , Tetrahidroisoquinolinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA