Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
FEMS Microbiol Rev ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39231808

RESUMEN

Infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes widespread changes in epigenetic modifications and chromatin architecture in the host cell. Recent evidence suggests that SARS-CoV-2 non-structural protein 1 (nsp1) plays an important role in driving these changes. Previously thought to be primarily involved in host translation shutoff and cellular mRNA degradation, nsp1 has now been shown to be a truly multifunctional protein that affects host gene expression at multiple levels. The functions of nsp1 are surprisingly diverse and include not only the downregulation of cellular mRNA translation and stability, but also the inhibition of mRNA export from the nucleus, the suppression of host immune signaling, and, most recently, the epigenetic regulation of host gene expression. In this review, we first summarize the current knowledge on SARS-CoV-2-induced changes in epigenetic modifications and chromatin structure. We then focus on the role of nsp1 in epigenetic reprogramming, with a particular emphasis on the silencing of immune-related genes. Finally, we discuss potential molecular mechanisms underlying the epigenetic functions of nsp1 based on evidence from SARS-CoV-2 interactome studies.

2.
Microb Pathog ; 195: 106873, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39173850

RESUMEN

As one of the most important swine enteropathogenic coronavirus, porcine epidemic diarrhea virus (PEDV) is the causative agent of an acute and devastating enteric disease that causes lethal watery diarrhea in suckling piglets. Recent progress in studying PEDV has revealed many intriguing findings on its prevalence and genetic evolution, rapid diagnosis, suppression of host gene expression, and suppression of the host innate immune system. Due to the continuous mutation of the PEDV genome, viral evasions from innate immune defenses and mixed infection with other coronaviruses, the spread of the virus is becoming wider and faster, making it even more necessary to prevent the infections caused by wild-type PEDV variants. It has also been reported that PEDV nsp1 is an essential virulence determinant and is critical for inhibiting host gene expression by structural and biochemical analyses. The inhibition of host protein synthesis employed by PEDV nsp1 may contribute to the regulation of host cell proliferation and immune evasion-related biological functions. In this review, we critically evaluate the recent studies on these aspects of PEDV and assess prospects in understanding the function of PEDV proteins in regulating host innate immune response and viral virulence.


Asunto(s)
Infecciones por Coronavirus , Evasión Inmune , Inmunidad Innata , Virus de la Diarrea Epidémica Porcina , Enfermedades de los Porcinos , Virus de la Diarrea Epidémica Porcina/genética , Virus de la Diarrea Epidémica Porcina/inmunología , Virus de la Diarrea Epidémica Porcina/patogenicidad , Animales , Porcinos , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/inmunología , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/virología , Virulencia/genética , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/inmunología , Proteínas no Estructurales Virales/metabolismo , Interacciones Huésped-Patógeno/inmunología , Factores de Virulencia/genética
3.
PNAS Nexus ; 3(8): pgae321, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39161732

RESUMEN

Myc is a major driver of tumor initiation, progression, and maintenance. Up-regulation of Myc protein level rather than acquisition of neomorphic properties appears to underlie most Myc-driven cancers. Cellular mechanisms governing Myc expression remain incompletely defined. In this study, we show that ribosome-associated quality control (RQC) plays a critical role in maintaining Myc protein level. Ribosomes stall during the synthesis of the N-terminal portion of cMyc, generating aberrant cMyc species and necessitating deployment of the early RQC factor ZNF598 to handle translational stress and restore cMyc translation. ZNF598 expression is up-regulated in human glioblastoma (GBM), and its expression positively correlates with that of cMyc. ZNF598 knockdown inhibits human GBM neurosphere formation in cell culture and Myc-dependent tumor growth in vivo in Drosophila. Intriguingly, the SARS-COV-2-encoded translational regulator Nsp1 impinges on ZNF598 to restrain cMyc translation and consequently cMyc-dependent cancer growth. Remarkably, Nsp1 exhibits synthetic toxicity with the translation and RQC-related factor ATP-binding cassette subfamily E member 1, which, despite its normally positive correlation with cMyc in cancer cells, is co-opted by Nsp1 to down-regulate cMyc and inhibit tumor growth. Ribosome stalling during c-myc translation thus offers actionable cancer cell vulnerability.

4.
Arch Biochem Biophys ; 759: 110111, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39111614

RESUMEN

Chikungunya virus (CHIKV), transmitted by mosquitoes, poses a significant global health threat. Presently, no effective treatment options are available to reduce the disease burden. The lack of approved therapeutics against CHIKV and the complex spectrum of chronic musculoskeletal and neurological manifestations raise significant concerns, and repurposing drugs could offer swift avenues in the development of effective treatment strategies. RNA capping is a crucial step meditated by non-structural protein 1 (nsP1) in CHIKV replication. In this study, FDA-approved antivirals targeting CHIKV nsP1 methyltransferase (MTase) have been identified by structure-based virtual screening. Berbamine Hydrochloride (BH), ABT199/Venetoclax (ABT), and Ponatinib (PT) were the top-hits, which exhibited robust binding energies. Tryptophan fluorescence spectroscopy-based assay confirmed binding of BH-, ABT-, and PT to purified nsP1 with KD values ∼5.45 µM, ∼161.3 µM, and ∼3.83 µM, respectively. In a capillary electrophoresis-based assay, a decrease in CHIKV nsP1 MTase activity was observed in a dose-dependent manner. Treatment with BH, ABT, and PT lead to a dose-dependent reduction in the virus titer with IC50 < 100, ∼6.75, and <3.9 nM, respectively, and reduced viral mRNA levels. The nsP1 MTases are highly conserved among alphaviruses; therefore, BH, ABT, and PT, as expected, inhibited replication machinery in Sindbis virus (SINV) replicon assay with IC50 ∼1.94, ∼0.23, and >1.25 µM, respectively. These results highlight the potential of repurposing drugs as rapid and effective antiviral therapeutics against CHIKV.


Asunto(s)
Antivirales , Virus Chikungunya , Metiltransferasas , Antivirales/farmacología , Antivirales/química , Metiltransferasas/antagonistas & inhibidores , Metiltransferasas/metabolismo , Virus Chikungunya/efectos de los fármacos , Animales , Sulfonamidas/farmacología , Sulfonamidas/química , Humanos , Piridazinas/farmacología , Piridazinas/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Replicación Viral/efectos de los fármacos , Imidazoles/farmacología , Imidazoles/química , Bencilisoquinolinas
5.
Vet Microbiol ; 296: 110173, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38971119

RESUMEN

Porcine reproductive and respiratory syndrome (PRRS) is the most economically significant disease caused by porcine reproductive and respiratory syndrome virus (PRRSV). Type I interferon (IFN) induces a large number of interferon-stimulated genes (ISGs) expression to inhibit PRRSV infection. To survive in the host, PRRSV has evolved multiple strategies to antagonize host innate immune response. Previous studies have reported that PRRSV N protein decreases the expression of TRIM25 and TRIM25-mediated RIG-I ubiquitination to suppress IFN-ß production. However, whether other PRRSV proteins inhibit the antiviral function of TRIM25 is less well understood. In this study, we first found that PRRSV NSP1α decreased ISGylation of TRIM25. Meanwhile, NSP1α significantly suppressed TRIM25-mediated IFN-ß production to promote PRRSV replication. Further studies demonstrated that PRRSV NSP1α reduced the protein level of TRIM25 in proteasome system but did not regulate the transcription level of TRIM25. In addition, the function of NSP1α in TRIM25 degradation did not rely on its papain-like cysteine protease activity. Taken together, PRRSV NSP1α antagonizes the antiviral response of TRIM25 by mediating TRIM25 degradation to promote PRRSV replication. Our data identify TRIM25 as a natural target of PRRSV NSP1α and reveal a novel mechanism that PRRSV induces TRIM25 degradation and inhibits host antiviral immune response.


Asunto(s)
Inmunidad Innata , Virus del Síndrome Respiratorio y Reproductivo Porcino , Complejo de la Endopetidasa Proteasomal , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas , Proteínas no Estructurales Virales , Replicación Viral , Virus del Síndrome Respiratorio y Reproductivo Porcino/inmunología , Animales , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Porcinos , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/inmunología , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/metabolismo , Síndrome Respiratorio y de la Reproducción Porcina/inmunología , Síndrome Respiratorio y de la Reproducción Porcina/virología , Interferón beta/genética , Interferón beta/metabolismo , Interferón beta/inmunología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Línea Celular , Ubiquitinación , Humanos , Células HEK293 , Interacciones Huésped-Patógeno/inmunología
6.
J Virol ; 98(7): e0036824, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38940586

RESUMEN

Chikungunya virus (CHIKV) is a mosquito-borne pathogen responsible for an acute musculoskeletal disease in humans. Replication of the viral RNA genome occurs in specialized membranous replication organelles (ROs) or spherules, which contain the viral replication complex. Initially generated by RNA synthesis-associated plasma membrane deformation, alphavirus ROs are generally rapidly endocytosed to produce type I cytopathic vacuoles (CPV-I), from which nascent RNAs are extruded for cytoplasmic translation. By contrast, CHIKV ROs are poorly internalized, raising the question of their fate and functionality at the late stage of infection. Here, using in situ cryogenic-electron microscopy approaches, we investigate the outcome of CHIKV ROs and associated replication machinery in infected human cells. We evidence the late persistence of CHIKV ROs at the plasma membrane with a crowned protein complex at the spherule neck similar to the recently resolved replication complex. The unexpectedly heterogeneous and large diameter of these compartments suggests a continuous, dynamic growth of these organelles beyond the replication of a single RNA genome. Ultrastructural analysis of surrounding cytoplasmic regions supports that outgrown CHIKV ROs remain dynamically active in viral RNA synthesis and export to the cell cytosol for protein translation. Interestingly, rare ROs with a homogeneous diameter are also marginally internalized in CPV-I near honeycomb-like arrangements of unknown function, which are absent in uninfected controls, thereby suggesting a temporal regulation of this internalization. Altogether, this study sheds new light on the dynamic pattern of CHIKV ROs and associated viral replication at the interface with cell membranes in infected cells.IMPORTANCEThe Chikungunya virus (CHIKV) is a positive-stranded RNA virus that requires specialized membranous replication organelles (ROs) for its genome replication. Our knowledge of this viral cycle stage is still incomplete, notably regarding the fate and functional dynamics of CHIKV ROs in infected cells. Here, we show that CHIKV ROs are maintained at the plasma membrane beyond the first viral cycle, continuing to grow and be dynamically active both in viral RNA replication and in its export to the cell cytosol, where translation occurs in proximity to ROs. This contrasts with the homogeneous diameter of ROs during internalization in cytoplasmic vacuoles, which are often associated with honeycomb-like arrangements of unknown function, suggesting a regulated mechanism. This study sheds new light on the dynamics and fate of CHIKV ROs in human cells and, consequently, on our understanding of the Chikungunya viral cycle.


Asunto(s)
Virus Chikungunya , ARN Viral , Replicación Viral , Virus Chikungunya/fisiología , Humanos , ARN Viral/metabolismo , ARN Viral/genética , Fiebre Chikungunya/virología , Compartimentos de Replicación Viral/metabolismo , Orgánulos/virología , Orgánulos/ultraestructura , Orgánulos/metabolismo , Membrana Celular/virología , Membrana Celular/metabolismo , Línea Celular , Microscopía por Crioelectrón , Animales , Genoma Viral
7.
Acta Crystallogr D Struct Biol ; 80(Pt 6): 451-463, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38841886

RESUMEN

Fragment-based drug design using X-ray crystallography is a powerful technique to enable the development of new lead compounds, or probe molecules, against biological targets. This study addresses the need to determine fragment binding orientations for low-occupancy fragments with incomplete electron density, an essential step before further development of the molecule. Halogen atoms play multiple roles in drug discovery due to their unique combination of electronegativity, steric effects and hydrophobic properties. Fragments incorporating halogen atoms serve as promising starting points in hit-to-lead development as they often establish halogen bonds with target proteins, potentially enhancing binding affinity and selectivity, as well as counteracting drug resistance. Here, the aim was to unambiguously identify the binding orientations of fragment hits for SARS-CoV-2 nonstructural protein 1 (nsp1) which contain a combination of sulfur and/or chlorine, bromine and iodine substituents. The binding orientations of carefully selected nsp1 analogue hits were focused on by employing their anomalous scattering combined with Pan-Dataset Density Analysis (PanDDA). Anomalous difference Fourier maps derived from the diffraction data collected at both standard and long-wavelength X-rays were compared. The discrepancies observed in the maps of iodine-containing fragments collected at different energies were attributed to site-specific radiation-damage stemming from the strong X-ray absorption of I atoms, which is likely to cause cleavage of the C-I bond. A reliable and effective data-collection strategy to unambiguously determine the binding orientations of low-occupancy fragments containing sulfur and/or halogen atoms while mitigating radiation damage is presented.


Asunto(s)
Halógenos , SARS-CoV-2 , Azufre , Halógenos/química , Cristalografía por Rayos X/métodos , Azufre/química , SARS-CoV-2/química , Proteínas no Estructurales Virales/química , Humanos , Electrones , Modelos Moleculares , Diseño de Fármacos , Unión Proteica , Sitios de Unión , COVID-19
8.
Proc Natl Acad Sci U S A ; 121(22): e2314166121, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38768348

RESUMEN

The nonstructural protein 1 (Nsp1) of SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) is a virulence factor that targets multiple cellular pathways to inhibit host gene expression and antiviral response. However, the underlying mechanisms of the various Nsp1-mediated functions and their contributions to SARS-CoV-2 virulence remain unclear. Among the targets of Nsp1 is the mRNA (messenger ribonucleic acid) export receptor NXF1-NXT1, which mediates nuclear export of mRNAs from the nucleus to the cytoplasm. Based on Nsp1 crystal structure, we generated mutants on Nsp1 surfaces and identified an acidic N-terminal patch that is critical for interaction with NXF1-NXT1. Photoactivatable Nsp1 probe reveals the RNA Recognition Motif (RRM) domain of NXF1 as an Nsp1 N-terminal binding site. By mutating the Nsp1 N-terminal acidic patch, we identified a separation-of-function mutant of Nsp1 that retains its translation inhibitory function but substantially loses its interaction with NXF1 and reverts Nsp1-mediated mRNA export inhibition. We then generated a recombinant (r)SARS-CoV-2 mutant on the Nsp1 N-terminal acidic patch and found that this surface is key to promote NXF1 binding and inhibition of host mRNA nuclear export, viral replication, and pathogenicity in vivo. Thus, these findings provide a mechanistic understanding of Nsp1-mediated mRNA export inhibition and establish the importance of this pathway in the virulence of SARS-CoV-2.


Asunto(s)
Transporte Activo de Núcleo Celular , COVID-19 , Proteínas de Transporte Nucleocitoplasmático , ARN Mensajero , Proteínas de Unión al ARN , SARS-CoV-2 , Proteínas no Estructurales Virales , Humanos , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , SARS-CoV-2/genética , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Proteínas de Transporte Nucleocitoplasmático/genética , Animales , COVID-19/virología , COVID-19/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Replicación Viral , Núcleo Celular/metabolismo , Células Vero , Virulencia , Chlorocebus aethiops , Células HEK293
9.
Viruses ; 16(5)2024 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-38793572

RESUMEN

Non-structural protein 1 (Nsp1) represents one of the most crucial SARS-CoV-2 virulence factors by inhibiting the translation of host mRNAs and promoting their degradation. We selected naturally occurring virus lineages with specific Nsp1 deletions located at both the N- and C-terminus of the protein. Our data provide new insights into how Nsp1 coordinates these functions on host and viral mRNA recognition. Residues 82-85 in the N-terminal part of Nsp1 likely play a role in docking the 40S mRNA entry channel, preserving the inhibition of host gene expression without affecting cellular mRNA decay. Furthermore, this domain prevents viral mRNAs containing the 5'-leader sequence to escape translational repression. These findings support the presence of distinct domains within the Nsp1 protein that differentially modulate mRNA recognition, translation and turnover. These insights have implications for the development of drugs targeting viral proteins and provides new evidences of how specific mutations in SARS-CoV-2 Nsp1 could attenuate the virus.


Asunto(s)
ARN Viral , SARS-CoV-2 , Proteínas no Estructurales Virales , Replicación Viral , Animales , Humanos , Chlorocebus aethiops , COVID-19/virología , Biosíntesis de Proteínas , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , SARS-CoV-2/genética , Eliminación de Secuencia , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
10.
Proc Natl Acad Sci U S A ; 121(20): e2402653121, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38722808

RESUMEN

The intrinsically disordered C-terminal peptide region of severe acute respiratory syndrome coronavirus 2 nonstructural protein-1 (Nsp1-CT) inhibits host protein synthesis by blocking messenger RNA (mRNA) access to the 40S ribosome entrance tunnel. Aqueous copper(II) ions bind to the disordered peptide with micromolar affinity, creating a possible strategy to restore protein synthesis during host infection. Electron paramagnetic resonance (EPR) and tryptophan fluorescence measurements on a 10-residue model of the disordered protein region (Nsp1-CT10), combined with advanced quantum mechanics calculations, suggest that the peptide binds to copper(II) as a multidentate ligand. Two optimized computational models of the copper(II)-peptide complexes were derived: One corresponding to pH 6.5 and the other describing the complex at pH 7.5 to 8.5. Simulated EPR spectra based on the calculated model structures are in good agreement with experimental spectra.


Asunto(s)
Cobre , Proteínas Intrínsecamente Desordenadas , SARS-CoV-2 , Proteínas no Estructurales Virales , Cobre/química , Cobre/metabolismo , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/química , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Humanos , Unión Proteica , Modelos Moleculares , COVID-19/virología
11.
Vet Res ; 55(1): 45, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589958

RESUMEN

Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a novel porcine enteric coronavirus that causes acute watery diarrhea, vomiting, and dehydration in newborn piglets. The type III interferon (IFN-λ) response serves as the primary defense against viruses that replicate in intestinal epithelial cells. However, there is currently no information available on how SADS-CoV modulates the production of IFN-λ. In this study, we utilized IPI-FX cells (a cell line of porcine ileum epithelium) as an in vitro model to investigate the potential immune evasion strategies employed by SADS-CoV against the IFN-λ response. Our results showed that SADS-CoV infection suppressed the production of IFN-λ1 induced by poly(I:C). Through screening SADS-CoV-encoded proteins, nsp1, nsp5, nsp10, nsp12, nsp16, E, S1, and S2 were identified as antagonists of IFN-λ1 production. Specifically, SADS-CoV nsp1 impeded the activation of the IFN-λ1 promoter mediated by MAVS, TBK1, IKKε, and IRF1. Both SADS-CoV and nsp1 obstructed poly(I:C)-induced nuclear translocation of IRF1. Moreover, SADS-CoV nsp1 degraded IRF1 via the ubiquitin-mediated proteasome pathway without interacting with it. Overall, our study provides the first evidence that SADS-CoV inhibits the type III IFN response, shedding light on the molecular mechanisms employed by SADS-CoV to evade the host immune response.


Asunto(s)
Alphacoronavirus , Infecciones por Coronavirus , Enfermedades de los Porcinos , Animales , Porcinos , Complejo de la Endopetidasa Proteasomal , Interferón lambda , Alphacoronavirus/fisiología , Ubiquitinas , Infecciones por Coronavirus/veterinaria
12.
Virology ; 595: 110068, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38593595

RESUMEN

Coronavirus disease 19 is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) enveloped virus with a single-stranded positive-sense ribonucleic acid (RNA) genome. The CoV non-structural protein (nsp) 1 is a multifunctional protein that undergoes translation shutoff, messenger RNA (mRNA) cleavage, and RNA binding. The C-terminal region is involved in translational shutoff and RNA cleavage. The N-terminal region of SARS-CoV-2 nsp1 is highly conserved among isolated SARS-CoV-2 variants. However, the I-004 variant, isolated during the early SARS-CoV-2 pandemic, lost eight amino acids in the nsp1 region. In this study, we showed that the eight amino acids are important for viral replication in infected interferon-incompetent cells and that the recombinant virus that lost these amino acids had low pathogenicity in the lungs of hamster models. The loss of eight amino acids-induced mutations occurred in the 5' untranslated region (UTR), suggesting that nsp1 contributes to the stability of the viral genome during replication.


Asunto(s)
Genoma Viral , SARS-CoV-2 , Proteínas no Estructurales Virales , Replicación Viral , Animales , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/química , SARS-CoV-2/genética , SARS-CoV-2/fisiología , SARS-CoV-2/metabolismo , Humanos , Cricetinae , COVID-19/virología , Chlorocebus aethiops , ARN Viral/genética , ARN Viral/metabolismo , Células Vero , Secuencia de Aminoácidos , Mutación , Mesocricetus , Regiones no Traducidas 5'
13.
Cell Rep ; 43(3): 113891, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38427561

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) hinders host gene expression, curbing defenses and licensing viral protein synthesis and virulence. During SARS-CoV-2 infection, the virulence factor non-structural protein 1 (Nsp1) targets the mRNA entry channel of mature cytoplasmic ribosomes, limiting translation. We show that Nsp1 also restrains translation by targeting nucleolar ribosome biogenesis. SARS-CoV-2 infection disrupts 18S and 28S ribosomal RNA (rRNA) processing. Expression of Nsp1 recapitulates the processing defects. Nsp1 abrogates rRNA production without altering the expression of critical processing factors or nucleolar organization. Instead, Nsp1 localizes to the nucleolus, interacting with precursor-rRNA and hindering its maturation separately from the viral protein's role in restricting mature ribosomes. Thus, SARS-CoV-2 Nsp1 limits translation by targeting ribosome biogenesis and mature ribosomes. These findings revise our understanding of how SARS-CoV-2 Nsp1 controls human protein synthesis, suggesting that efforts to counter Nsp1's effect on translation should consider the protein's impact from ribosome manufacturing to mature ribosomes.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , ARN Ribosómico/metabolismo , COVID-19/metabolismo , Ribosomas/metabolismo , Proteínas Virales/metabolismo , Proteínas no Estructurales Virales/metabolismo
14.
mBio ; 15(4): e0039224, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38411085

RESUMEN

SARS-CoV-2, the causative agent of COVID-19, has been intensely studied in search of effective antiviral treatments. The immunosuppressant cyclosporine A (CsA) has been suggested to be a pan-coronavirus inhibitor, yet its underlying mechanism remained largely unknown. Here, we found that non-structural protein 1 (Nsp1) of SARS-CoV-2 usurped CsA-suppressed nuclear factor of activated T cells (NFAT) signaling to drive the expression of cellular DEAD-box helicase 5 (DDX5), which facilitates viral replication. Nsp1 interacted with calcineurin A (CnA) to displace the regulatory protein regulator of calcineurin 3 (RCAN3) of CnA for NFAT activation. The influence of NFAT activation on SARS-CoV-2 replication was also validated by using the Nsp1-deficient mutant virus. Calcineurin inhibitors, such as CsA and VIVIT, inhibited SARS-CoV-2 replication and exhibited synergistic antiviral effects when used in combination with nirmatrelvir. Our study delineated the molecular mechanism of CsA-mediated inhibition of SARS-CoV-2 replication and the anti-SARS-CoV-2 action of calcineurin inhibitors. IMPORTANCE: Cyclosporine A (CsA), commonly used to inhibit immune responses, is also known to have anti-SARS-CoV-2 activity, but its mode of action remains elusive. Here, we provide a model to explain how CsA antagonizes SARS-CoV-2 through three critical proteins: DDX5, NFAT1, and Nsp1. DDX5 is a cellular facilitator of SARS-CoV-2 replication, and NFAT1 controls the production of DDX5. Nsp1 is a viral protein absent from the mature viral particle and capable of activating the function of NFAT1 and DDX5. CsA and similar agents suppress Nsp1, NFAT1, and DDX5 to exert their anti-SARS-CoV-2 activity either alone or in combination with Paxlovid.


Asunto(s)
COVID-19 , SARS-CoV-2 , Transducción de Señal , Proteínas no Estructurales Virales , Humanos , Antivirales , Calcineurina/metabolismo , Inhibidores de la Calcineurina/farmacología , COVID-19/virología , Ciclosporina/farmacología , Factores de Transcripción NFATC/metabolismo , SARS-CoV-2/fisiología , Proteínas no Estructurales Virales/metabolismo
15.
Front Cell Infect Microbiol ; 14: 1357866, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38375361

RESUMEN

Following virus recognition of host cell receptors and viral particle/genome internalization, viruses replicate in the host via hijacking essential host cell machinery components to evade the provoked antiviral innate immunity against the invading pathogen. Respiratory viral infections are usually acute with the ability to activate pattern recognition receptors (PRRs) in/on host cells, resulting in the production and release of interferons (IFNs), proinflammatory cytokines, chemokines, and IFN-stimulated genes (ISGs) to reduce virus fitness and mitigate infection. Nevertheless, the game between viruses and the host is a complicated and dynamic process, in which they restrict each other via specific factors to maintain their own advantages and win this game. The primary role of the non-structural protein 1 (NS1 and Nsp1) of influenza A viruses (IAV) and the pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), respectively, is to control antiviral host-induced innate immune responses. This review provides a comprehensive overview of the genesis, spatial structure, viral and cellular interactors, and the mechanisms underlying the unique biological functions of IAV NS1 and SARS-CoV-2 Nsp1 in infected host cells. We also highlight the role of both non-structural proteins in modulating viral replication and pathogenicity. Eventually, and because of their important role during viral infection, we also describe their promising potential as targets for antiviral therapy and the development of live attenuated vaccines (LAV). Conclusively, both IAV NS1 and SARS-CoV-2 Nsp1 play an important role in virus-host interactions, viral replication, and pathogenesis, and pave the way to develop novel prophylactic and/or therapeutic interventions for the treatment of these important human respiratory viral pathogens.


Asunto(s)
COVID-19 , Virus de la Influenza A , Humanos , Inmunidad Innata , Virus de la Influenza A/genética , Interferones/inmunología , SARS-CoV-2/metabolismo , Replicación Viral
16.
Biochem Soc Trans ; 52(1): 481-490, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38385526

RESUMEN

Non-structural protein 1 (Nsp1) is one of the first proteins produced during coronaviral infections. It plays a pivotal role in hijacking and rendering the host gene expression under the service of the virus. With a focus on SARS-CoV-2, this review presents how Nsp1 selectively inhibits host protein synthesis and induces mRNA degradation of host but not viral mRNAs and blocks nuclear mRNA export. The clinical implications of this protein are highlighted by showcasing the pathogenic role of Nsp1 through the repression of interferon expression pathways and the features of viral variants with mutations in the Nsp1 coding sequence. The ability of SARS-CoV-2 Nsp1 to hinder host immune responses at an early step, the absence of homology to any human proteins, and the availability of structural information render this viral protein an ideal drug target with therapeutic potential.


Asunto(s)
Biosíntesis de Proteínas , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Estabilidad del ARN
17.
Adv Sci (Weinh) ; 11(12): e2306389, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38225717

RESUMEN

Vanadium (V) pollution potentially threatens human health. Here, it is found that nsp1 and nsp2, Rhizobium symbiosis defective mutants of Medicago truncatula, are sensitive to V. Concentrations of phosphorus (P), iron (Fe), and sulfur (S) with V are negatively correlated in the shoots of wild-type R108, but not in mutant nsp1 and nsp2 shoots. Mutations in the P transporter PHT1, PHO1, and VPT families, Fe transporter IRT1, and S transporter SULTR1/3/4 family confer varying degrees of V tolerance on plants. Among these gene families, MtPT1, MtZIP6, MtZIP9, and MtSULTR1; 1 in R108 roots are significantly inhibited by V stress, while MtPHO1; 2, MtVPT2, and MtVPT3 are significantly induced. Overexpression of Arabidopsis thaliana VPT1 or M. truncatula MtVPT3 increases plant V tolerance. However, the response of these genes to V is weakened in nsp1 or nsp2 and influenced by soil microorganisms. Mutations in NSPs reduce rhizobacterial diversity under V stress and simplify the V-responsive operational taxonomic unit modules in co-occurrence networks. Furthermore, R108 recruits more beneficial rhizobacteria related to V, P, Fe, and S than does nsp1 or nsp2. Thus, NSPs can modulate the accumulation and tolerance of legumes to V through P, Fe, and S transporters, ion homeostasis, and rhizobacterial community responses.


Asunto(s)
Medicago truncatula , Vanadio , Humanos , Vanadio/metabolismo , Mutación , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Medicago truncatula/genética , Medicago truncatula/metabolismo , Medicago truncatula/microbiología , Transducción de Señal
18.
Virus Res ; 340: 199302, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38104946

RESUMEN

Tripartite motif (TRIM)-containing proteins are a family of regulatory proteins that can participate in the induction of antiviral cytokines and antagonize viral replication. Promyelocytic leukemia (PML) protein is known as TRIM19 and is a major scaffold protein organizing the PML nuclear bodies (NBs). PML NBs are membrane-less organelles in the nucleus and play a diverse role in maintaining cellular homeostasis including antiviral response. Porcine reproductive and respiratory syndrome virus (PRRSV), a member virus of the family Arteriviridae, inhibits type I interferon (IFN) response during infection, and nonstructural protein 1 (nsp1) of the virus has been identified as a potent IFN antagonist. We report that the numbers of PML NBs per nucleus were significantly downregulated during infection of PRRSV. The overexpression of all six isoforms of PML suppressed the PRRSV replication, and conversely, the silencing of PML gene expression enhanced the PRRSV replication. The suppression of PML NBs by the nsp1 protein was common in other member viruses of the family, represented by equine arteritis virus, lactate dehydrogenase elevating virus of mice, and simian hemorrhagic fever virus. Our study unveils a conserved viral strategy in arteriviruses for innate immune evasion.


Asunto(s)
Arterivirus , Virus del Síndrome Respiratorio y Reproductivo Porcino , Porcinos , Caballos , Animales , Ratones , Arterivirus/genética , Línea Celular , Factores de Transcripción , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Proteínas de Motivos Tripartitos , Replicación Viral , Antivirales
19.
Int J Mol Sci ; 24(24)2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38139170

RESUMEN

We describe an investigation using structural mass spectrometry (MS) of the impact of two antibodies, 15497 and 15498, binding the highly flexible SARS-CoV-2 Nsp1 protein. We determined the epitopes and paratopes involved in the antibody-protein interactions by using hydrogen-deuterium exchange MS (HDX-MS). Notably, the Fab (Fragment antigen binding) for antibody 15498 captured a high energy form of the antigen exhibiting significant conformational changes that added flexibility over most of the Nsp1 protein. The Fab for antibody 15497, however, showed usual antigen binding behavior, revealing local changes presumably including the binding site. These findings illustrate an unusual antibody effect on an antigen and are consistent with the dynamic nature of the Nsp1 protein. Our studies suggest that this interaction capitalizes on the high flexibility of Nsp1 to undergo conformational change and be trapped in a higher energy state by binding with a specific antibody.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Deuterio/química , Medición de Intercambio de Deuterio/métodos , Espectrometría de Masas/métodos , Proteínas
20.
Viruses ; 15(12)2023 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-38140685

RESUMEN

Porcine reproductive and respiratory syndrome viruses (PRRSV-1 and -2) are the causative agents of one of the most important infectious diseases affecting the global pig industry. Previous studies, largely focused on PRRSV-2, have shown that non-structural protein-1α (NSP1α) and NSP1ß modulate host cell responses; however, the underlying molecular mechanisms remain to be fully elucidated. Therefore, we aimed to identify novel PRRSV-1 NSP1-host protein interactions to improve our knowledge of NSP1-mediated immunomodulation. NSP1α and NSP1ß from a representative western European PRRSV-1 subtype 1 field strain (215-06) were used to screen a cDNA library generated from porcine alveolar macrophages (PAMs), the primary target cell of PRRSV, using the yeast-2-hybrid system. This identified 60 putative binding partners for NSP1α and 115 putative binding partners for NSP1ß. Of those taken forward for further investigation, 3 interactions with NSP1α and 27 with NSP1ß were confirmed. These proteins are involved in the immune response, ubiquitination, nuclear transport, or protein expression. Increasing the stringency of the system revealed NSP1α interacts more strongly with PIAS1 than PIAS2, whereas NSP1ß interacts more weakly with TAB3 and CPSF4. Our study has increased our knowledge of the PRRSV-1 NSP1α and NSP1ß interactomes, further investigation of which could provide detailed insight into PRRSV immunomodulation and aid vaccine development.


Asunto(s)
Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Animales , Porcinos , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Línea Celular , Macrófagos Alveolares/metabolismo , Ubiquitinación , Técnicas del Sistema de Dos Híbridos , Proteínas no Estructurales Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA