Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Pathogens ; 13(7)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39057803

RESUMEN

Wildlife may represent an important source of infectious diseases for humans and other wild and domestic animals. Wild ruminants can harbour and transmit Shiga toxin-producing Escherichia coli (STEC) to humans, and some strains even carry important antimicrobial resistance. In this study, 289 livers of wild roe deer, fallow deer, red deer and chamois collected in Liguria, north-west Italy, from 2019 to 2023 were analysed. Overall, 44 STEC strains were isolated from 28 samples. The characterisation of serogroups showed the presence of O104, O113, O145 and O146 serogroups, although for 28 colonies, the serogroup could not be determined. The most prevalent Shiga toxin gene in isolated strains was Stx2, and more specifically the subtype Stx2b. The other retrieved subtypes were Stx1a, Stx1c, Stx1d and Stx2g. The isolated strains generally proved to be susceptible to the tested antimicrobials. However, multi-drug resistances against highly critical antimicrobials were found in one strain isolated from a roe deer. This study highlights the importance of wildlife monitoring in the context of a "One Health" approach.

2.
J Med Microbiol ; 73(2)2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38299580

RESUMEN

Introduction. Shiga toxin-producing Escherichia coli (STEC) belong to a diverse group of gastrointestinal pathogens. The pathogenic potential of STEC is enhanced by the presence of the pathogenicity island called the Locus of Enterocyte Effacement (LEE), including the intimin encoding gene eae.Gap statement. STEC serotypes O128:H2 (Clonal Complex [CC]25), O91:H14 (CC33), and O146:H21 (CC442) are consistently in the top five STEC serotypes isolated from patients reporting gastrointestinal symptoms in England. However, they are eae/LEE-negative and perceived to be a low risk to public health, and we know little about their microbiology and epidemiology.Aim. We analysed clinical outcomes and genome sequencing data linked to patients infected with LEE-negative STEC belonging to CC25 (O128:H2, O21:H2), CC33 (O91:H14) and, and CC442 (O146:H21, O174:H21) in England to assess the risk to public health.Results. There was an almost ten-fold increase between 2014 and 2022 in the detection of all STEC belonging to CC25, CC33 and CC442 (2014 n=38, 2022 n=336), and a total of 1417 cases. There was a higher proportion of female cases (55-70 %) and more adults than children, with patients aged between 20-40 and >70 most at risk across the different serotypes. Symptoms were consistent across the three dominant serotypes O91:H14 (CC33), O146:H21 (CC442) and O128:H2 (CC25) (diarrhoea >75 %; bloody diarrhoea 25-32 %; abdominal pain 64-72 %; nausea 37-45 %; vomiting 10-24 %; and fever 27-30 %). Phylogenetic analyses revealed multiple events of acquisition and loss of different stx-encoding prophage. Additional putative virulence genes were identified including iha, agn43 and subA.Conclusions. Continued monitoring and surveillance of LEE-negative STEC infections is essential due to the increasing burden of infectious intestinal disease, and the risk that highly pathogenic strains may emerge following acquisition of the Shiga toxin subtypes associated with the most severe clinical outcomes.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Shiga-Toxigénica , Adulto , Niño , Humanos , Femenino , Adulto Joven , Salud Pública , Filogenia , Enterocitos , Proteínas de Escherichia coli/genética , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/microbiología , Toxina Shiga/genética , Diarrea , Fosfoproteínas
3.
Food Res Int ; 174(Pt 1): 113481, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37986491

RESUMEN

A mathematical model to predict the thermal inactivation of non-O157 Shiga toxin-producing Escherichia coli (STEC) in ground beef was developed, with temperature and fat content of ground beef as controlling factors. Survival curves for a cocktail of non-O157 STEC strains in ground beef at four temperatures (55, 60, 65, and 68 °C) and six fat levels (5, 10, 15, 20, 25, and 30%) were generated. Nine primary models-log-linear, log-linear with tail, biphasic, sigmoidal, four-factor sigmoidal, Baranyi, Weibull, mixed Weibull, and Gompertz-were tested for fitting the survival curves. Primary modeling analysis showed the Weibull model had the highest accuracy factor and Akaike's weight, making it the best-fitting model. The parameters of the Weibull model were estimated using a nonlinear mixed, and response surface modeling was used to develop a second-order polynomial regression to estimate the impact of fat in ground beef and cooking temperature on the heat resistance of non-O157 STEC strains. The secondary model was successfully validated by comparing predicted lethality (log10 CFU/g) with the observed values for ground beef containing 10 and 27% fat at 58 and 62 °C. Process lethality obtained from experimental data was within the prediction interval of the predictive model. The developed model will assist the food industry in estimating the appropriate time and temperature required for cooking ground beef to provide adequate protection against STEC contaminants.


Asunto(s)
Carne , Escherichia coli Shiga-Toxigénica , Animales , Bovinos , Recuento de Colonia Microbiana , Microbiología de Alimentos , Culinaria
4.
Microbiol Resour Announc ; 12(11): e0042923, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37850755

RESUMEN

Non-O157 Shiga toxin-producing Escherichia coli (STEC) are recognized as an important group of bacterial enteropathogens. Here, we report the draft genome sequence of nine strains of non-O157 STEC isolated from ready-to-eat foods in Argentina. The whole-genome sequence data provide a better understanding of these isolates and will aid epidemiological investigation during outbreaks.

5.
Prev Vet Med ; 205: 105681, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35691135

RESUMEN

In South Africa, there is a shortage of epidemiologic data on Shiga toxin-producing Escherichia coli (STEC) in the beef production chain. This study was conducted to characterise STEC isolates originating from three studies conducted in a cattle feedlot, beef abattoirs and retail outlets in Gauteng province, South Africa. Polymerase chain reaction was used to detect virulence genes, the Epsilometer test to assess antimicrobial susceptibility, pulsed-field gel electrophoresis (PFGE) to investigate genetic relatedness of isolates, and conventional serotyping for phenotypic identification. Amongst the 86 STEC isolates, the eaeA gene was detected in 20 (23%), and 26 different serogroups were identified, including the clinically important O8, O174, O2, 020 and O117. The majority of the isolates (95%; 82/86) exhibited resistance to one or more antimicrobial agents, and 30 of the isolates (35%) exhibited multi-drug resistance (MDR), being resistant to at least three antimicrobial classes. The PFGE patterns showed a highly diverse but related STEC population, with 45 distinct patterns and evidence of horizontal transmission along the beef production chain. This is significant because it demonstrates continual environmental contamination and risk of contamination along the beef production chain and the food chain. To our knowledge, this is the first study that provides evidence of horizontal transmission of STEC along the beef production chain in South Africa. This epidemiological information could facilitate the development of a proactive strategy for reducing potential foodborne outbreaks and transmission of antimicrobial resistant pathogens in the food chain.


Asunto(s)
Enfermedades de los Bovinos , Infecciones por Escherichia coli , Escherichia coli Shiga-Toxigénica , Mataderos , Animales , Bovinos , Enfermedades de los Bovinos/epidemiología , Electroforesis en Gel de Campo Pulsado/veterinaria , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/veterinaria , Serotipificación/veterinaria , Escherichia coli Shiga-Toxigénica/genética , Sudáfrica/epidemiología
6.
Food Microbiol ; 102: 103902, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34809934

RESUMEN

This study investigated the impact of meat processing surface bacteria (MPB) on biofilm formation by non-O157 Shiga toxin-producing Escherichia coli (STEC), and potential links between biofilm formation by STEC and biofilm-related genes in their genomes. Biofilm development by 50 MPB and 6 STEC strains in mono- and co-cultures was assessed by the crystal violet staining method, and their expression of curli and cellulose was determined using the Congo red agar method. Genes (n = 141) associated with biofilm formation in the STEC strains were profiled. Biofilm formation in general correlated with cellulose and curli expression in both mono- and co-cultures. Most MPB strains had antagonistic effects on the biofilm formation of the STEC strains. Of the genes investigated, 81% were common among the STEC strains and there seems to be a gene-redundancy in biofilm formation. The inability of the O26 strain to form biofilms could be due to mutations in the rpoS gene. Truncation in the mlrA gene in the O145 strain seems not affecting its biofilm formation alone or with MPB. The O45 strain, despite having the greatest number of biofilm-related genes, did not form measurable biofilms. Overall, biofilm formation of STEC was affected by curli-cellulose expression and companion strains.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Carne/microbiología , Escherichia coli Shiga-Toxigénica , Celulosa , Técnicas de Cocultivo , Genes Bacterianos , Escherichia coli Shiga-Toxigénica/crecimiento & desarrollo
7.
Appl Environ Microbiol ; 87(24): e0138421, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34644161

RESUMEN

Shiga toxin-producing Escherichia coli (STEC) organisms are a diverse group of pathogenic bacteria capable of causing serious human illness, and serogroups O157 and O26 are frequently implicated in human disease. Ruminant hosts are the primary STEC reservoir, and small ruminants are important contributors to STEC transmission. This study investigated the prevalence, serotypes, and shedding dynamics of STEC, including the supershedding of serogroups O157 and O26, in Irish sheep. Recto-anal mucosal swab samples (n = 840) were collected over 24 months from two ovine slaughtering facilities. Samples were plated on selective agars and were quantitatively and qualitatively assessed via real-time PCR (RT-PCR) for Shiga toxin prevalence and serogroup. A subset of STEC isolates (n = 199) were selected for whole-genome sequencing and analyzed in silico. In total, 704/840 (83.8%) swab samples were Shiga toxin positive following RT-PCR screening, and 363/704 (51.6%) animals were subsequently culture positive for STEC. Five animals were shedding STEC O157, and three of these were identified as supershedders. No STEC O26 was isolated. Post hoc statistical analysis showed that younger animals are more likely to harbor STEC and that STEC carriage is most prevalent during the summer months. Following sequencing, 178/199 genomes were confirmed as STEC. Thirty-five different serotypes were identified, 15 of which were not yet reported for sheep. Serotype O91:H14 was the most frequently reported. Eight Shiga toxin gene variants were reported, two stx1 and six stx2, and three novel Shiga-toxin subunit combinations were observed. Variant stx1c was the most prevalent, while many strains also harbored stx2b. IMPORTANCE Shiga toxin-producing Escherichia coli (STEC) bacteria are foodborne, zoonotic pathogens of significant public health concern. All STEC organisms harbor stx, a critical virulence determinant, but it is not expressed in most serotypes. Sheep shed the pathogen via fecal excretion and are increasingly recognized as important contributors to the dissemination of STEC. In this study, we have found that there is high prevalence of STEC circulating within sheep and that prevalence is related to animal age and seasonality. Further, sheep harbor a variety of non-O157 STEC, whose prevalence and contribution to human disease have been underinvestigated for many years. A variety of Stx variants were also observed, some of which are of high clinical importance.


Asunto(s)
Ovinos/microbiología , Toxinas Shiga , Escherichia coli Shiga-Toxigénica , Canal Anal/microbiología , Animales , Irlanda , Prevalencia , Recto/microbiología , Estaciones del Año , Escherichia coli Shiga-Toxigénica/genética , Escherichia coli Shiga-Toxigénica/aislamiento & purificación , Secuenciación Completa del Genoma
8.
Foodborne Pathog Dis ; 18(12): 867-872, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34415781

RESUMEN

Non-O157 Shiga toxin (stx)-producing Escherichia coli (STEC) is recognized as an important human diarrheal pathogen. Cattle are the principal reservoirs of STEC, although other animals can be carriers. Humans are mainly infected by consuming contaminated drinking water or food. This study aimed to evaluate the virulence potential of isolated bovine non-O157 STEC to humans in Xinjiang. During 2015-2017, 978 rectal swab samples collected from cattle of 5 farms were screened for the presence of Shiga toxin-encoding genes by polymerase chain reaction. Strains identified as STEC were isolated from rectal swab samples, and were characterized for stx subtype, virulence genes, O serogroup, phylogenetic group, and hemolytic phenotype. Among 125 non-O157 STEC isolates, the prevalence percentages of stx1 and stx2 were 22 and 21, respectively, and 57% of the isolates carried both Shiga toxins. The stx subtypes were mainly found in the combination of stx1a/stx2a (57%), stx2a (20%), stx1a (22%), stx1a/stx2a/stx2c (1%), and stx2a/stx2c (1%). The enterohemolysin (ehxA) gene was found in 94% of the isolates. No intimin (eae) was detected. Hemolysis was observed in 33% of the isolates. Two STEC serogroups O145 (17%) and O113 (2%) were found, which were reported to be associated with outbreaks of human disease. Phylotyping assays showed that most strains largely belong to groups A (91%) and B1 (7%). The results of this study can help improve our understanding of the epidemiological aspects of bovine STEC and devise strategies for protection against it.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Shiga-Toxigénica , Animales , Bovinos , China/epidemiología , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/veterinaria , Proteínas de Escherichia coli/genética , Filogenia , Toxina Shiga II/genética , Escherichia coli Shiga-Toxigénica/genética , Virulencia/genética
9.
Foodborne Pathog Dis ; 18(11): 771-777, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34242513

RESUMEN

Environmental survival time is important when evaluating adverse health outcomes from foodborne pathogens. Although outbreaks associated with manure-impacted irrigation or runoff water are relatively infrequent, their broad scope, regulatory importance, and severe health outcomes highlight the need to better understand the environmental survival of manure-borne pathogens. Shiga toxigenic Escherichia coli (STEC) are excreted in feces and persist in the environment until they die or recolonize a new host. Surface waters contaminated with manure-borne STEC can infect humans through drinking and recreational water use or irrigated crops that are minimally cooked. In this study, manure-impacted water microcosms mimicking beef cattle feedlot runoff were used to assess survival of STEC strains representing seven STEC serotypes (O26, O45, O103, O111, O121, O145, and O157) and persistence of target O antigen genes. Microcosms were sampled over the course of 1 year, and the entire experiment was repeated in a second year. Culture and polymerase chain reaction (PCR)-based techniques were used for detection and enumeration. Serotype-specific survival results were observed. Both STEC O26 and O45 declined slowly and remained culturable at 24 months. In contrast, STEC O121 and O145 decreased rapidly (-0.84 and -1.99 log10 abundance per month, respectively) and were unculturable by months 4 and 5, but detectable by PCR for a mean of 4.5 and 8.3 months, respectively. STEC O103, O111, and O157 remained culturable for a mean of 11.6, 5.5, and 15 months and detectable by PCR for a mean of 12, 13.8, and 18.6 months after inoculation, respectively. Results document that some STEC serotypes have the biological potential to survive in manure-impacted waters for extended periods of time when competing microflora are eliminated. Serotype-specific differences in survival of target bacteria and persistence of target genes were observed in this sample set, with STEC O26 and O45 strains appearing the most robust in these microcosm studies.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli Shiga-Toxigénica , Animales , Bovinos , Proteínas de Escherichia coli/genética , Heces , Antígenos O , Serogrupo , Escherichia coli Shiga-Toxigénica/genética
10.
J Med Microbiol ; 70(7)2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34309502

RESUMEN

Introduction. Shiga toxin-producing Escherichia coli (STEC) can cause severe disease and large outbreaks. In England, the incidence and clinical significance of STEC serogroups other than O157 (non-O157) is unknown due to a testing bias for detection of STEC O157. Since 2013, the implementation of PCR to detect all STEC serogroups by an increasing number of diagnostic laboratories has led to an increase in the detection of non-O157 STEC.Hypothesis/Gap statement. Due to a bias in testing methodologies to select for STEC serogroup O157 in frontline diagnostic laboratories in most countries, very little surveillance data have been previously generated on non-O157 STEC.Aim. Five years (2014-2018) of STEC national surveillance data were extracted and descriptive analysis undertaken to assess disease severity of non-O157 STEC strains.Methods. Data from 1 January 2014 to 31 December 2018 were extracted from the National Enhanced Surveillance System for STEC and analysed.Results. The implementation of Gastrointestinal Polymerase Chain Reaction (GI-PCR) has resulted in a four-fold increase in the detection of non-O157 STEC cases between 2014 and 2018. There were 2579 cases infected with 97 different non-O157 serogroups. The gender distribution was similar amongst STEC O157 and non-O157 STEC cases with 57 and 56 % of cases being female respectively, but a significantly higher proportion of cases (P <0.001) under 5 years of age was observed among STEC O157 (22 %) cases compared to non-O157 STEC (14 %). The most common non-O157 serogroups were O26 (16 %), O146 (11 %), O91 (10 %), O128 (7 %), O103 (5 %) and O117 (3 %). Overall, rates of bloody diarrhoea were highest in O26 (44 %) and O103 (48 %) cases and lowest in STEC O117 cases (17 %). Strains harbouring Shiga toxin stx1a caused the highest proportion of diarrhoea (93 %) and caused the same level of bloody diarrhoea as stx2a (39 %). However, stx2a caused the highest proportion of vomiting (46 %), hospitalisation (49 %) and considerably more HUS (29 %) than other stx profiles.Conclusion. The implementation of PCR targeting stx at diagnostic laboratories has shown that non-O157 STEC, most notably STEC O26, are an emerging risk to public health.


Asunto(s)
Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/microbiología , Escherichia coli Shiga-Toxigénica/aislamiento & purificación , Adolescente , Adulto , Distribución por Edad , Niño , Preescolar , Inglaterra/epidemiología , Femenino , Humanos , Masculino , Técnicas de Diagnóstico Molecular , Reacción en Cadena de la Polimerasa , Serogrupo , Distribución por Sexo , Toxina Shiga I/genética , Toxina Shiga II/genética , Escherichia coli Shiga-Toxigénica/clasificación , Escherichia coli Shiga-Toxigénica/genética , Escherichia coli Shiga-Toxigénica/patogenicidad , Virulencia/genética , Adulto Joven
11.
J Food Prot ; 84(11): 1956-1964, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34197587

RESUMEN

ABSTRACT: Shiga toxin-producing Escherichia coli (STEC) O157:H7/nonmotile and some non-O157 STEC strains are foodborne pathogens. In response to pork-associated O157 STEC outbreaks in Canada, we investigated the occurrence of STEC in Canadian retail raw ground pork during the period of 1 November 2014 to 31 March 2016. Isolated STEC strains were characterized to determine the Shiga toxin gene (stx) subtype and the presence of virulence genes encoding intimin (eae) and enterohemorrhagic E. coli hemolysin (hlyA). O157 STEC and non-O157 STEC strains were isolated from 1 (0.11%) of 879 and 13 (2.24%) of 580 pork samples, respectively. STEC virulence gene profiles containing both eae and hlyA were found only in the O157 STEC (stx2a, eae, hlyA) isolate. The eae gene was absent from all non-O157 STEC isolates. Of the 13 non-O157 STEC isolates, two virulence genes of stx1a and hlyA were found in four (30.8%) O91:H14 STEC isolates, whereas one virulence gene of stx2e, stx1a, and stx2a was identified in five (38.5%), two (15.4%), and one (7.7%) STEC isolates, respectively, of various serotypes. The remaining non-O157 STEC isolate carried stx2, but the subtype is unknown because this isolate could not be recovered for sequencing. O91:H14 STEC (stx1a, hlyA) was previously reported in association with diarrheal illnesses, whereas the other non-O157 STEC isolates identified in this study are not known to be associated with severe human illnesses. Virulence gene profiles identified in this study indicate that the occurrence of non-O157 STEC capable of causing severe human illness is rare in Canadian retail pork. However, O157 STEC in ground pork can occasionally occur; therefore, education regarding the potential risks associated with STEC contamination of pork would be beneficial for the public and those in the food industry to help reduce foodborne illnesses.


Asunto(s)
Proteínas de Escherichia coli , Carne de Cerdo , Escherichia coli Shiga-Toxigénica , Animales , Canadá , Proteínas de Escherichia coli/genética , Carne de Cerdo/microbiología , Escherichia coli Shiga-Toxigénica/genética , Escherichia coli Shiga-Toxigénica/aislamiento & purificación , Porcinos , Virulencia/genética
12.
Int J Food Microbiol ; 347: 109191, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-33838477

RESUMEN

Fresh beef and meat products have been implicated in outbreaks of Shiga toxin-producing Escherichia coli (STEC) worldwide. This study investigated the prevalence of E. coli O157: H7 and non-O157 STEC serogroups in fresh beef in the open market and street vended meat products (n = 180) in Lagos metropolis, Nigeria. A combination of culture media and immunomagnetic separation followed by typing for associated virulence factors and serotypes was performed. Antimicrobial susceptibility testing was performed on the isolated STEC serotypes using the disk diffusion method. A total of 72 STEC serogroup isolates were detected from 61 out of 180 samples. The O157 STEC serotypes were detected in fresh beef, suya, minced meat and tsire with prevalence of 20.8% while non-O157 STEC serogroups were detected in all the samples. Molecular typing revealed 25% (n = 18) of the STEC serogroups showed presence of all the stx1, stx2, eaeA, fliCH7 and rfbEO157 virulence factors while 54.2% (n = 39) possessed a combination of two virulence genes. Multidrug resistance was discovered in 23.6% (n = 17) of the total STEC serogroups. Locally processed ready-to-eat meat products in Lagos metropolis, Nigeria harbour potentially pathogenic multi-drug resistant STEC serogroups that can constitute public health hazard.


Asunto(s)
Farmacorresistencia Bacteriana , Carne/microbiología , Escherichia coli Shiga-Toxigénica/aislamiento & purificación , Animales , Antibacterianos/farmacología , Bovinos , Escherichia coli O157/clasificación , Escherichia coli O157/efectos de los fármacos , Escherichia coli O157/genética , Escherichia coli O157/aislamiento & purificación , Proteínas de Escherichia coli/genética , Microbiología de Alimentos , Humanos , Productos de la Carne/microbiología , Nigeria , Prevalencia , Serogrupo , Escherichia coli Shiga-Toxigénica/clasificación , Escherichia coli Shiga-Toxigénica/efectos de los fármacos , Escherichia coli Shiga-Toxigénica/genética , Factores de Virulencia/genética
13.
J Food Prot ; 84(2): 220-232, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32977344

RESUMEN

ABSTRACT: A total of 482 veal cutlet, 555 ground veal, and 540 ground beef samples were purchased from retail establishments in the mid-Atlantic region of the United States over a noncontiguous 2-year period between 2014 and 2017. Samples (325 g each) were individually enriched and screened via real-time PCR for all seven regulated serogroups of Shiga toxin-producing Escherichia coli (STEC). Presumptive STEC-positive samples were subjected to serogroup-specific immunomagnetic separation and plated onto selective media. Up to five isolates typical for STEC from each sample were analyzed via multiplex PCR for both the virulence genes (i.e., eae, stx1 and/or stx2, and ehxA) and serogroup-specific gene(s) for the seven regulated STEC serogroups. The recovery rates of non-O157 STEC from veal cutlets (3.94%, 19 of 482 samples) and ground veal (7.03%, 39 of 555 samples) were significantly higher (P < 0.05) than that from ground beef (0.93%, 5 of 540 samples). In contrast, only a single isolate of STEC O157:H7 was recovered; this isolate originated from 1 (0.18%) of 555 samples of ground veal. Recovery rates for STEC were not associated with state, season, packaging type, or store type (P > 0.05) but were associated with brand and fat content (P < 0.05). Pulsed-field subtyping of the 270 viable and confirmed STEC isolates from the 64 total samples testing positive revealed 78 pulsotypes (50 to 80% similarity) belonging to 39 pulsogroups, with ≥90% similarity among pulsotypes within pulsogroups. Multiple isolates from 43 (67.7%) of 64 samples testing positive had an indistinguishable pulsotype. STEC serotypes O26 and O103 were the most prevalent serogroups in beef and veal, respectively. These findings support related findings from regulatory sampling studies over the past decade and confirm that recovery rates for the regulated STEC serogroups are higher for raw veal than for raw beef samples, as was observed in the present study of meat purchased at food retailers in the mid-Atlantic region of the United States.


Asunto(s)
Proteínas de Escherichia coli , Carne Roja , Escherichia coli Shiga-Toxigénica , Animales , Bovinos , Proteínas de Escherichia coli/genética , Carne , Mid-Atlantic Region , Serogrupo , Estados Unidos
14.
Foods ; 9(9)2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32883030

RESUMEN

This study was carried out to assess the survival of Shiga toxin-producing E. coli (STEC) and atypical enteropathogenic Escherichia coli (aEPEC) during the traditional manufacturing and ripening of Spanish hard cheese from raw cow's milk. Milk samples were spiked with up to 3.1-3.5 log cfu/mL of one strain of STEC (O140:H32 serotype) and one of aEPEC (serotype O25:H2). The first steps of cheesemaking allow for a STEC and aEPEC increase of more than 1 log cfu/mL (up to 4.74 log cfu/g and 4.55 log cfu/g, respectively). After cheese pressing, a steady reduction of both populations was observed, with the STEC strain being more sensitive. The studied pathogenic E. coli populations decreased by 1.32 log cfu/g in STEC and 0.59 log cfu/g in aEPEC in cheese ripened during a minimum period of 60 d. Therefore, a moderate contamination by these diarrhoeagenic E. coli pathotypes, in particular, with aEPEC, on cheese manufactured from raw milk may not be totally controlled through the cheesemaking process and during a maturation of 90 d. These findings remark the importance of improvement in bacteriological quality of raw milk and cross-contamination prevention with diarrhoeagenic E. coli in the dairy industry.

15.
BMC Microbiol ; 19(1): 213, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31488047

RESUMEN

BACKGROUND: Shiga toxin-producing Escherichia coli (STEC) are emerging foodborne pathogens that are public health concern. Cattle have been identified as the major STEC reservoir. In the present study, we investigated the prevalence and characteristics of STEC strains in beef cattle from a commercial farm in Sichuan province, China. RESULTS: Among 120 beef cattle fecal samples, stx genes were positive in 90% of samples, as assessed using TaqMan real-time PCR, and 87 (72.5%) samples were confirmed to yield at least one STEC isolate by culture using four selective agars, MacConkey, CHROMagar™ ECC, modified Rainbow® Agar O157, and CHROMagar™ STEC, from which 31, 32, 91, and 73 STEC strains were recovered, respectively. A total of 126 STEC isolates were selected and further characterized. Seventeen different O:H serotypes were identified, all of which belonged to the non-O157 serotypes. One stx1 subtype (stx1a) and three stx2 subtypes (stx2a, stx2c, and stx2d) were present among these isolates. The intimin encoding gene eae, and other adherence-associated genes (iha, saa, and paa) were present in 37, 125, 74, and 30 STEC isolates, respectively. Twenty-three isolates carried the virulence gene subA, and only one harbored both cnf1 and cnf2 genes. Three plasmid-origin virulence genes (ehxA, espP, and katP) were present in 111, 111, and 7 isolates, respectively. The 126 STEC isolates were divided into 49 pulsed-field gel electrophoresis (PFGE) patterns. CONCLUSIONS: Our study showed that the joint use of the selective MacConkey and modified Rainbow® Agar O157 agars increased the recovery frequency of non-O157 STEC strains in animal feces, which could be applied to other samples and in regular STEC surveillance. Moreover, the results revealed high genetic diversity of non-O157 STEC strains in beef cattle, some of which might have the potential to cause human diseases.


Asunto(s)
Enfermedades de los Bovinos/diagnóstico , Enfermedades de los Bovinos/epidemiología , Infecciones por Escherichia coli/veterinaria , Escherichia coli Shiga-Toxigénica/aislamiento & purificación , Animales , Adhesión Bacteriana/genética , Bovinos , China/epidemiología , Medios de Cultivo , Infecciones por Escherichia coli/diagnóstico , Infecciones por Escherichia coli/epidemiología , Proteínas de Escherichia coli/genética , Granjas , Heces/microbiología , Genoma Bacteriano/genética , Prevalencia , Serogrupo , Escherichia coli Shiga-Toxigénica/genética , Virulencia/genética
16.
Front Microbiol ; 9: 2373, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30364318

RESUMEN

Intestinal infections represent an important public health concern worldwide. Escherichia coli is one of the main bacterial agents involved in the pathogenesis of different diseases. In 2011, an outbreak of hemorrhagic colitis (HC) and hemolytic uremic syndrome (HUS) in Germany was related to a non-O157 STEC strain of O104:H4 serotype. The difficulty in identifying the origin of the bacteria related to the outbreak showed the importance of having epidemiological information from different parts of the world. The aim of this study was to perform a retrospective analysis to determine if E. coli strains isolated from cattle from different locations in Mexico have similar characteristics to those isolated in other countries. Samples obtained in different years from 252 cows belonging to 5 herds were analyzed. A total of 1,260 colonies were selected from the 252 samples, 841 (67%) of which corresponded to E. coli and 419 (33%) to other enterobacteria. In total, 78% (656) of the E. coli strains could be serotyped, of which 393 (59.9%) belonged to 5 diarrheagenic (DEC) pathotypes. Serotyping showed STEC (40.7%) and ETEC (26.7%) strains were more common. PCR assays were used to determine the presence of STEC (eae, stx1, stx2, and ehxA) and EAEC (aatA, aggR, and aapA) genes, and phylogenetic groups. The results showed that 70 strains belonging to 23 serogroups were stx1 and stx2 positive, while 13 strains from the O9 serogroup were ehxA, aggR, and eae positive. Phylogenetic analysis showed 58 (82.9%) strains belonged to A and B1 commensal phylogroups and 12 (17.1%) to B2, D and E virulent phylogroups. An assay to evaluate cross-antigenic reactivity in the serum of cattle between K9 capsular antigen and O104 LPS by ELISA showed similar responses against both antigens (p > 0.05). The antimicrobial sensitivity assay of the strains showed resistance to AM, CEP, CXM, TE, SXT, cephalosporins and fluoroquinolones. The results show that cattle are carriers and potential transmitters of STEC and ETEC strains containing virulence genes. Epidemiological retrospective studies in different countries are of great help for identifying virulent bacterial strains with the potential to cause outbreaks that may have epidemiological impact in susceptible countries.

17.
Food Res Int ; 108: 35-41, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29735067

RESUMEN

Shiga toxin-producing Escherichia coli (STEC) has been associated with illnesses and outbreaks linked to fresh vegetables, prompting a growing public health concern. Most studies regarding interactions of STEC on fresh produce focused on E. coli O157:H7. Limited information is available about survival or fitness of E. coli O104:H4, non-O157 pathogen that was linked to one of the largest outbreaks of hemolytic uremic syndrome in 2011. In this study, survival of E. coli O104:H4 was evaluated on Arabidopsis thaliana plant and lettuce for 5 days compared with E. coli O157:H7, and expression of pathogenesis-realted gene (PR1; induction of plant defense response) was examined by reverse transcription quantitative PCR, and potential influence of capsular polysaccharide (CPS) on the bacterial fitness on plant was investigated. Populations of E. coli O104:H4 strains (RG1, C3493, and LpfA) on Arabidopsis and lettuce were significantly (P < 0.05) greater than those of E. coli O157:H7 strains (7386 and sakai) at day 5 post-inoculation, indicating E. coli O104:H4 may have better survival ability on the plants. In addition, the E. coli O104:H4 strains produced significantly (P < 0.05) higher amounts of CPS compared with the E. coli O157:H7 strains. RG1 strain (1.5-fold) initiated significantly (P < 0.05) lower expression of PR1 gene indicating induction of plant defense response compared with E. coli O157:H7 strains 7386 (2.9-fold) and sakai (2.7-fold). Collectively, the results in this study suggests that different level of CPS production and plant defense response initiated by each STEC strain might influence the bacterial survival or persistence on plants. The present study provides better understanding of survival behavior of STEC, particularly E. coli O104:H4, using a model plant and vegetable under pre-harvest conditions with plant defense response.


Asunto(s)
Arabidopsis/microbiología , Cápsulas Bacterianas/metabolismo , Escherichia coli O104/crecimiento & desarrollo , Escherichia coli O157/crecimiento & desarrollo , Lactuca/microbiología , Polisacáridos Bacterianos/metabolismo , Arabidopsis/inmunología , Cápsulas Bacterianas/inmunología , Infecciones por Escherichia coli/microbiología , Escherichia coli O104/genética , Escherichia coli O104/inmunología , Escherichia coli O104/metabolismo , Escherichia coli O157/genética , Escherichia coli O157/inmunología , Escherichia coli O157/metabolismo , Microbiología de Alimentos/métodos , Enfermedades Transmitidas por los Alimentos/microbiología , Interacciones Huésped-Patógeno , Lactuca/inmunología , Viabilidad Microbiana , Hojas de la Planta/química , Polisacáridos Bacterianos/inmunología , Factores de Tiempo
18.
Int J Food Microbiol ; 266: 295-300, 2018 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-29274486

RESUMEN

Shiga toxin-producing Escherichia coli (STEC) are globally important food-borne pathogens. The isolation of non-O157 STEC is a significant public health challenge due to the dramatic diversity of their phenotypes and genotypes. In the present study, 476 non-O157 STEC strains representing 95 different O-serogroups were used to evaluate tellurite resistance and the performance of 12 different chromogenic agars. Of 476 strains, only 108 (22.7%) strains showed the minimal inhibitory concentration (MIC) values for potassium tellurite being higher than 4µg/ml, and 96 (20.2%) strains harbored intact ter genes cluster. The presence of ter genes was significantly correlated with tellurite resistance. Six commercial chromogenic agars (TBX, MAC, SMAC, Rainbow® Agar O157, CHROMagar™ ECC, and Fluorocult O157) supported the growth of all strains. However, CT-SMAC, CHROMagar™ O157, and CHROMagar™ STEC agars exhibited 12.2%, 31.1%, and 38.0% of growth inhibition, respectively. Furthermore, 4.6%, 33.2%, and 45.0% of strains were inhibited on RBA-USDA, RBA-NT, and BCM O157 agar media. Variations in tellurite resistance and colony appearance might result in discrepant performance of non-O157 STEC recovery from different chromogenic agars. Using inclusive agars or less selective agar in combination with highly selective agar should be suggested to recover most non-O157 STEC strains, which would increase the probability of recovering STECs from complex background microflora.


Asunto(s)
Medios de Cultivo/metabolismo , Farmacorresistencia Bacteriana , Escherichia coli Shiga-Toxigénica/efectos de los fármacos , Escherichia coli Shiga-Toxigénica/aislamiento & purificación , Telurio/farmacología , Agar/metabolismo , Antineoplásicos/farmacología , Escherichia coli O157/aislamiento & purificación , Pruebas de Sensibilidad Microbiana , Serogrupo , Escherichia coli Shiga-Toxigénica/metabolismo
19.
Can Commun Dis Rep ; 44(11): 304-307, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30996693

RESUMEN

Shiga toxin-producing Escherichia coli (STEC) are important enteric pathogens responsible for sporadic cases and outbreaks of gastroenteritis. E.coli O157:H7/NM (STEC O157) are the most commonly known STEC serotypes but it is now increasingly apparent that non-O157 STEC serotypes have been underreported in the past because they were not part of routine screening in many front-line laboratories. The Canadian Public Health Laboratory Network (CPHLN) has identified the need for improved detection and surveillance of non-O157 STEC and has developed the following recommendations to assist in the decision-making process for clinical and reference microbiology laboratories. These recommendations should be followed to the best of a laboratory's abilities based on the availability of technology and resources. The CPHLN recommends that when screening for the agents of bacterial gastroenteritis from a stool sample, front-line laboratories use either a chromogenic agar culture or a culture-independent diagnostic test (CIDT). CIDT options include nucleic acid amplification tests (NAATs) to detect Shiga toxin genes or enzyme immunoassays (EIAs) to detect Shiga toxins. If either CIDT method is positive for possible STEC, laboratories must have a mechanism to culture and isolate STEC in order to support both provincial and national surveillance as well as outbreak investigations and response. These CPHLN recommendations should result in improved detection of STEC in patients presenting with diarrhea, especially when due to the non-O157 serotypes. These measures should enhance the overall quality of healthcare and food safety, and provide better protection of the public via improved surveillance and outbreak detection and response.

20.
Lett Appl Microbiol ; 65(6): 482-488, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28960364

RESUMEN

The aim of this research was to optimize two multiplex polymerase chain reaction (PCR) assays that could simultaneously detect six non-O157 Shiga toxin-producing Escherichia coli (STEC) as well as the three virulence genes. We also investigated the potential of combining the FTA™ card-based DNA extraction with the multiplex PCR assays. Two multiplex PCR assays were optimized using six primer pairs for each non-O157 STEC serogroup and three primer pairs for virulence genes respectively. Each STEC strain specific primer pair only amplified 155, 238, 321, 438, 587 and 750 bp product for O26, O45, O103, O111, O121 and O145 respectively. Three virulence genes were successfully multiplexed: 375 bp for eae, 655 bp for stx1 and 477 bp for stx2. When two multiplex PCR assays were validated with ground beef samples, distinctive bands were also successfully produced. Since the two multiplex PCR examined here can be conducted under the same PCR conditions, the six non-O157 STEC and their virulence genes could be concurrently detected with one run on the thermocycler. In addition, all bands clearly appeared to be amplified by FTA card DNA extraction in the multiplex PCR assay from the ground beef sample, suggesting that an FTA card could be a viable sampling approach for rapid and simple DNA extraction to reduce time and labour and therefore may have practical use for the food industry. SIGNIFICANCE AND IMPACT OF THE STUDY: Two multiplex polymerase chain reaction (PCR) assays were optimized for discrimination of six non-O157 Shiga toxin-producing Escherichia coli (STEC) and identification of their major virulence genes within a single reaction, simultaneously. This study also determined the successful ability of the FTA™ card as an alternative to commercial DNA extraction method for conducting multiplex STEC PCR assays. The FTA™ card combined with multiplex PCR holds promise for the food industry by offering a simple and rapid DNA sample method for reducing time, cost and labour for detection of STEC in food and environmental samples.


Asunto(s)
Adhesinas Bacterianas/genética , Proteínas de Escherichia coli/genética , Análisis de Peligros y Puntos de Control Críticos/métodos , Toxina Shiga I/genética , Toxina Shiga II/genética , Escherichia coli Shiga-Toxigénica/genética , Escherichia coli Shiga-Toxigénica/patogenicidad , Animales , Bovinos , Cartilla de ADN , Microbiología de Alimentos/métodos , Reacción en Cadena de la Polimerasa Multiplex/métodos , Carne Roja/microbiología , Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA