Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Magn Reson Med ; 92(4): 1363-1375, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38860514

RESUMEN

PURPOSE: Hyperpolarized 129Xe MRI benefits from non-Cartesian acquisitions that sample k-space efficiently and rapidly. However, their reconstructions are complex and burdened by decay processes unique to hyperpolarized gas. Currently used gridded reconstructions are prone to artifacts caused by magnetization decay and are ill-suited for undersampling. We present a compressed sensing (CS) reconstruction approach that incorporates magnetization decay in the forward model, thereby producing images with increased sharpness and contrast, even in undersampled data. METHODS: Radio-frequency, T1, and T 2 * $$ {\mathrm{T}}_2^{\ast } $$ decay processes were incorporated into the forward model and solved using iterative methods including CS. The decay-modeled reconstruction was validated in simulations and then tested in 2D/3D-spiral ventilation and 3D-radial gas-exchange MRI. Quantitative metrics including apparent-SNR and sharpness were compared between gridded, CS, and twofold undersampled CS reconstructions. Observations were validated in gas-exchange data collected from 15 healthy and 25 post-hematopoietic-stem-cell-transplant participants. RESULTS: CS reconstructions in simulations yielded images with threefold increases in accuracy. CS increased sharpness and contrast for ventilation in vivo imaging and showed greater accuracy for undersampled acquisitions. CS improved gas-exchange imaging, particularly in the dissolved-phase where apparent-SNR improved, and structure was made discernable. Finally, CS showed repeatability in important global gas-exchange metrics including median dissolved-gas signal ratio and median angle between real/imaginary components. CONCLUSION: A non-Cartesian CS reconstruction approach that incorporates hyperpolarized 129Xe decay processes is presented. This approach enables improved image sharpness, contrast, and overall image quality in addition to up-to threefold undersampling. This contribution benefits all hyperpolarized gas MRI through improved accuracy and decreased scan durations.


Asunto(s)
Algoritmos , Simulación por Computador , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Isótopos de Xenón , Imagen por Resonancia Magnética/métodos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Masculino , Relación Señal-Ruido , Femenino , Imagenología Tridimensional/métodos , Adulto , Fantasmas de Imagen , Artefactos , Compresión de Datos/métodos , Reproducibilidad de los Resultados , Pulmón/diagnóstico por imagen , Medios de Contraste/química
2.
Magn Reson Med ; 92(5): 1913-1932, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38923009

RESUMEN

PURPOSE: Quantitative T1 mapping has the potential to replace biopsy for noninvasive diagnosis and quantitative staging of chronic liver disease. Conventional T1 mapping methods are confounded by fat and B 1 + $$ {B}_1^{+} $$ inhomogeneities, resulting in unreliable T1 estimations. Furthermore, these methods trade off spatial resolution and volumetric coverage for shorter acquisitions with only a few images obtained within a breath-hold. This work proposes a novel, volumetric (3D), free-breathing T1 mapping method to account for multiple confounding factors in a single acquisition. THEORY AND METHODS: Free-breathing, confounder-corrected T1 mapping was achieved through the combination of non-Cartesian imaging, magnetization preparation, chemical shift encoding, and a variable flip angle acquisition. A subspace-constrained, locally low-rank image reconstruction algorithm was employed for image reconstruction. The accuracy of the proposed method was evaluated through numerical simulations and phantom experiments with a T1/proton density fat fraction phantom at 3.0 T. Further, the feasibility of the proposed method was investigated through contrast-enhanced imaging in healthy volunteers, also at 3.0 T. RESULTS: The method showed excellent agreement with reference measurements in phantoms across a wide range of T1 values (200 to 1000 ms, slope = 0.998 (95% confidence interval (CI) [0.963 to 1.035]), intercept = 27.1 ms (95% CI [0.4 54.6]), r2 = 0.996), and a high level of repeatability. In vivo imaging studies demonstrated moderate agreement (slope = 1.099 (95% CI [1.067 to 1.132]), intercept = -96.3 ms (95% CI [-82.1 to -110.5]), r2 = 0.981) compared to saturation recovery-based T1 maps. CONCLUSION: The proposed method produces whole-liver, confounder-corrected T1 maps through simultaneous estimation of T1, proton density fat fraction, and B 1 + $$ {B}_1^{+} $$ in a single, free-breathing acquisition and has excellent agreement with reference measurements in phantoms.


Asunto(s)
Tejido Adiposo , Algoritmos , Procesamiento de Imagen Asistido por Computador , Hígado , Imagen por Resonancia Magnética , Fantasmas de Imagen , Respiración , Humanos , Hígado/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Tejido Adiposo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Masculino , Adulto , Femenino , Simulación por Computador , Interpretación de Imagen Asistida por Computador/métodos , Reproducibilidad de los Resultados
3.
MAGMA ; 37(3): 429-438, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38743377

RESUMEN

OBJECT: To enable high-quality physics-guided deep learning (PG-DL) reconstruction of large-scale 3D non-Cartesian coronary MRI by overcoming challenges of hardware limitations and limited training data availability. MATERIALS AND METHODS: While PG-DL has emerged as a powerful image reconstruction method, its application to large-scale 3D non-Cartesian MRI is hindered by hardware limitations and limited availability of training data. We combine several recent advances in deep learning and MRI reconstruction to tackle the former challenge, and we further propose a 2.5D reconstruction using 2D convolutional neural networks, which treat 3D volumes as batches of 2D images to train the network with a limited amount of training data. Both 3D and 2.5D variants of the PG-DL networks were compared to conventional methods for high-resolution 3D kooshball coronary MRI. RESULTS: Proposed PG-DL reconstructions of 3D non-Cartesian coronary MRI with 3D and 2.5D processing outperformed all conventional methods both quantitatively and qualitatively in terms of image assessment by an experienced cardiologist. The 2.5D variant further improved vessel sharpness compared to 3D processing, and scored higher in terms of qualitative image quality. DISCUSSION: PG-DL reconstruction of large-scale 3D non-Cartesian MRI without compromising image size or network complexity is achieved, and the proposed 2.5D processing enables high-quality reconstruction with limited training data.


Asunto(s)
Vasos Coronarios , Aprendizaje Profundo , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional , Imagen por Resonancia Magnética , Redes Neurales de la Computación , Humanos , Imagenología Tridimensional/métodos , Vasos Coronarios/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos , Física
4.
Tomography ; 10(4): 493-503, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38668396

RESUMEN

Quantifying an imaging modality's ability to reproduce results is important for establishing its utility. In magnetic resonance spectroscopic imaging (MRSI), new acquisition protocols are regularly introduced which improve upon their precursors with respect to signal-to-noise ratio (SNR), total acquisition duration, and nominal voxel resolution. This study has quantified the within-subject and between-subject reproducibility of one such new protocol (reduced-field-of-view density-weighted concentric ring trajectory (rFOV-DW-CRT) MRSI) by calculating the coefficient of variance of data acquired from a test-retest experiment. The posterior cingulate cortex (PCC) and the right superior corona radiata (SCR) were selected as the regions of interest (ROIs) for grey matter (GM) and white matter (WM), respectively. CVs for between-subject and within-subject were consistently around or below 15% for Glx, tCho, and Myo-Ins, and below 5% for tNAA and tCr.


Asunto(s)
Imagen por Resonancia Magnética , Humanos , Reproducibilidad de los Resultados , Masculino , Femenino , Adulto , Imagen por Resonancia Magnética/métodos , Sustancia Gris/diagnóstico por imagen , Relación Señal-Ruido , Espectroscopía de Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Adulto Joven
5.
J Cardiovasc Magn Reson ; 26(1): 101003, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38290615

RESUMEN

BACKGROUND: Non-Cartesian magnetic resonance imaging trajectories at golden angle increments have the advantage of allowing motion correction and gating using intermediate real-time reconstructions. However, when the acquired data are cardiac binned for cine imaging, trajectories can cluster together at certain heart rates (HR) causing image artifacts. Here, we demonstrate an approach to reduce clustering by inserting additional angular increments within the trajectory, and optimizing them while still allowing for intermediate reconstructions. METHODS: Three acquisition models were simulated under constant and variable HR: golden angle (Mtrd), random additional angles (Mrnd), and optimized additional angles (Mopt). The standard deviations of trajectory angular differences (STAD) were compared through their interquartile ranges (IQR) and the Kolmogorov-Smirnov test (significance level: p = 0.05). Agreement between an image reconstructed with uniform sampling and images from Mtrd, Mrnd, and Mopt was analyzed using the structural similarity index measure (SSIM). Mtrd and Mopt were compared in three adults at high, low, and no HR variability. RESULTS: STADs from Mtrd were significantly different (p < 0.05) from Mopt and Mrnd. STAD (IQR × 10-2 rad) showed that Mopt (0.5) and Mrnd (0.5) reduced clustering relative to Mtrd (1.9) at constant HR. For variable HR, Mopt (0.5) and Mrnd (0.5) outperformed Mtrd (0.9). The SSIM (IQR) showed that Mopt (0.011) produced the best image quality, followed by Mrnd (0.014), and Mtrd (0.030). Mopt outperformed Mtrd at reduced HR variability in in-vivo studies. At high HR variability, both models performed well. CONCLUSION: This approach reduces clustering in k-space and improves image quality.


Asunto(s)
Artefactos , Frecuencia Cardíaca , Interpretación de Imagen Asistida por Computador , Imagen por Resonancia Cinemagnética , Valor Predictivo de las Pruebas , Humanos , Reproducibilidad de los Resultados , Adulto , Masculino , Femenino , Técnicas de Imagen Sincronizada Cardíacas
6.
Magn Reson Imaging ; 107: 33-46, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38184093

RESUMEN

Acquiring fully-sampled MRI k-space data is time-consuming, and collecting accelerated data can reduce the acquisition time. Employing 2D Cartesian-rectilinear subsampling schemes is a conventional approach for accelerated acquisitions; however, this often results in imprecise reconstructions, even with the use of Deep Learning (DL), especially at high acceleration factors. Non-rectilinear or non-Cartesian trajectories can be implemented in MRI scanners as alternative subsampling options. This work investigates the impact of the k-space subsampling scheme on the quality of reconstructed accelerated MRI measurements produced by trained DL models. The Recurrent Variational Network (RecurrentVarNet) was used as the DL-based MRI-reconstruction architecture. Cartesian, fully-sampled multi-coil k-space measurements from three datasets were retrospectively subsampled with different accelerations using eight distinct subsampling schemes: four Cartesian-rectilinear, two Cartesian non-rectilinear, and two non-Cartesian. Experiments were conducted in two frameworks: scheme-specific, where a distinct model was trained and evaluated for each dataset-subsampling scheme pair, and multi-scheme, where for each dataset a single model was trained on data randomly subsampled by any of the eight schemes and evaluated on data subsampled by all schemes. In both frameworks, RecurrentVarNets trained and evaluated on non-rectilinearly subsampled data demonstrated superior performance, particularly for high accelerations. In the multi-scheme setting, reconstruction performance on rectilinearly subsampled data improved when compared to the scheme-specific experiments. Our findings demonstrate the potential for using DL-based methods, trained on non-rectilinearly subsampled measurements, to optimize scan time and image quality.


Asunto(s)
Algoritmos , Imagen por Resonancia Magnética , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos , Cintigrafía , Fantasmas de Imagen , Procesamiento de Imagen Asistido por Computador/métodos
7.
Magn Reson Med ; 91(4): 1434-1448, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38156952

RESUMEN

PURPOSE: Static and dynamic B 0 $$ {\mathrm{B}}_0 $$ field imperfections are detrimental to functional MRI (fMRI) applications, especially at ultra-high magnetic fields (UHF). In this work, a field camera is used to assess the benefits of retrospectively correcting B 0 $$ {\mathrm{B}}_0 $$ field perturbations on Blood Oxygen Level Dependent (BOLD) sensitivity in non-Cartesian three-dimensional (3D)-SPARKLING fMRI acquisitions. METHODS: fMRI data were acquired at 1 mm 3 $$ {}^3 $$ and for a 2.4s-TR while concurrently monitoring in real-time field perturbations using a Skope Clip-on field camera in a novel experimental setting involving a shorter TR than the required minimal TR of the field probes. Measurements of the dynamic field deviations were used along with a static Δ B 0 $$ \Delta {\mathrm{B}}_0 $$ map to retrospectively correct static and dynamic field imperfections, respectively. In order to evaluate the impact of such a correction on fMRI volumes, a comparative study was conducted on healthy volunteers. RESULTS: Correction of B 0 $$ {\mathrm{B}}_0 $$ deviations improved image quality and yielded between 20% and 30% increase in median temporal signal-to-noise ratio (tSNR).Using fMRI data collected during a retinotopic mapping experiment, we demonstrated a significant increase in sensitivity to the BOLD contrast and improved accuracy of the BOLD phase maps: 44% (resp., 159%) more activated voxels were retrieved when using a significance control level based on a p-value of 0.001 without correcting for multiple comparisons (resp., 0.05 with a false discovery rate correction). CONCLUSION: 3D-SPARKLING fMRI hugely benefits from static and dynamic B 0 $$ {\mathrm{B}}_0 $$ imperfections correction. However, the proposed experimental protocol is flexible enough to be deployed on a large spectrum of encoding schemes, including arbitrary non-Cartesian readouts.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Estudios Retrospectivos , Relación Señal-Ruido
8.
Magn Reson Med ; 90(5): 1905-1918, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37392415

RESUMEN

PURPOSE: To present the validation of a new Flexible Ultra-Short Echo time (FUSE) pulse sequence using a short-T2 phantom. METHODS: FUSE was developed to include a range of RF excitation pulses, trajectories, dimensionalities, and long-T2 suppression techniques, enabling real-time interchangeability of acquisition parameters. Additionally, we developed an improved 3D deblurring algorithm to correct for off-resonance artifacts. Several experiments were conducted to validate the efficacy of FUSE, by comparing different approaches for off-resonance artifact correction, variations in RF pulse and trajectory combinations, and long-T2 suppression techniques. All scans were performed on a 3 T system using an in-house short-T2 phantom. The evaluation of results included qualitative comparisons and quantitative assessments of the SNR and contrast-to-noise ratio. RESULTS: Using the capabilities of FUSE, we demonstrated that we could combine a shorter readout duration with our improved deblurring algorithm to effectively reduce off-resonance artifacts. Among the different RF and trajectory combinations, the spiral trajectory with the regular half-inc pulse achieves the highest SNRs. The dual-echo subtraction technique delivers better short-T2 contrast and superior suppression of water and agar signals, whereas the off-resonance saturation method successfully suppresses water and lipid signals simultaneously. CONCLUSION: In this work, we have validated the use of our new FUSE sequence using a short T2 phantom, demonstrating that multiple UTE acquisitions can be achieved within a single sequence. This new sequence may be useful for acquiring improved UTE images and the development of UTE imaging protocols.


Asunto(s)
Imagen por Resonancia Magnética , Técnica de Sustracción , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen , Artefactos , Agua , Imagenología Tridimensional/métodos
9.
Magn Reson Med ; 90(5): 1949-1957, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37317635

RESUMEN

PURPOSE: To demonstrate the feasibility of high-resolution morphologic lung MRI at 0.55 T using a free-breathing balanced steady-state free precession half-radial dual-echo imaging technique (bSTAR). METHODS: Self-gated free-breathing bSTAR (TE1 /TE2 /TR of 0.13/1.93/2.14 ms) lung imaging in five healthy volunteers and a patient with granulomatous lung disease was performed using a 0.55 T MR-scanner. A wobbling Archimedean spiral pole (WASP) trajectory was used to ensure a homogenous coverage of k-space over multiple breathing cycles. WASP uses short-duration interleaves randomly tilted by a small polar angle and rotated by a golden angle about the polar axis. Data were acquired continuously over 12:50 min. Respiratory-resolved images were reconstructed off-line using compressed sensing and retrospective self-gating. Reconstructions were performed with a nominal resolution of 0.9 mm and a reduced isotropic resolution of 1.75 mm corresponding to shorter simulated scan times of 8:34 and 4:17 min, respectively. Analysis of apparent SNR was performed in all volunteers and reconstruction settings. RESULTS: The technique provided artifact-free morphologic lung images in all subjects. The short TR of bSTAR in conjunction with a field strength of 0.55 T resulted in a complete mitigation of off-resonance artifacts in the chest. Mean SNR values in healthy lung parenchyma for the 12:50 min scan were 3.6 ± 0.8 and 24.9 ± 6.2 for 0.9 mm and 1.75 mm reconstructions, respectively. CONCLUSION: This study demonstrates the feasibility of morphologic lung MRI with a submillimeter isotropic spatial resolution in human subjects with bSTAR at 0.55 T.


Asunto(s)
Imagen por Resonancia Magnética , Respiración , Humanos , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos , Pulmón/diagnóstico por imagen
10.
MAGMA ; 36(3): 465-475, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37306784

RESUMEN

OBJECTIVE: Diagnostic-quality neuroimaging methods are vital for widespread clinical adoption of low field MRI. Spiral imaging is an efficient acquisition method that can mitigate the reduced signal-to-noise ratio at lower field strengths. As concomitant field artifacts are worse at lower field, we propose a generalizable quadratic gradient-field nulling as an echo-to-echo compensation and apply it to spiral TSE at 0.55 T. MATERIALS AND METHODS: A spiral in-out TSE acquisition was developed with a compensation for concomitant field variation between spiral interleaves, by adding bipolar gradients around each readout to minimize phase differences at each refocusing pulse. Simulations were performed to characterize concomitant field compensation approaches. We demonstrate our proposed compensation method in phantoms and (n = 8) healthy volunteers at 0.55 T. RESULTS: Spiral read-outs with integrated spoiling demonstrated strong concomitant field artifacts but were mitigated using the echo-to-echo compensation. Simulations predicted a decrease of concomitant field phase RMSE between echoes of 42% using the proposed compensation. Spiral TSE improved SNR by 17.2 ± 2.3% compared to reference Cartesian acquisition. DISCUSSION: We demonstrated a generalizable approach to mitigate concomitant field artifacts for spiral TSE acquisitions via the addition of quadratic-nulling gradients, which can potentially improve neuroimaging at low-field through increased acquisition efficiency.


Asunto(s)
Encéfalo , Aumento de la Imagen , Humanos , Aumento de la Imagen/métodos , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Relación Señal-Ruido , Artefactos
11.
Magn Reson Med ; 90(4): 1431-1445, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37345701

RESUMEN

PURPOSE: Patient-induced inhomogeneities in the static magnetic field cause distortions and blurring (off-resonance artifacts) during acquisitions with long readouts such as in SWI. Conventional versatile correction methods based on extended Fourier models are too slow for clinical practice in computationally demanding cases such as 3D high-resolution non-Cartesian multi-coil acquisitions. THEORY: Most reconstruction methods can be accelerated when performing off-resonance correction by reducing the number of iterations, compressed coils, and correction components. Recent state-of-the-art unrolled deep learning architectures could help but are generally not adapted to corrupted measurements as they rely on the standard Fourier operator in the data consistency term. The combination of correction models and neural networks is therefore necessary to reduce reconstruction times. METHODS: Hybrid pipelines using UNets were trained stack-by-stack over 99 SWI 3D SPARKLING 20-fold accelerated acquisitions at 0.6 mm isotropic resolution using different off-resonance correction methods. Target images were obtained using slow model-based corrections based on self-estimated Δ B 0 $$ \Delta {B}_0 $$ field maps. The proposed strategies, tested over 11 volumes, are compared to model-only and network-only pipelines. RESULTS: The proposed hybrid pipelines achieved scores competing with two to three times slower baseline methods, and neural networks were observed to contribute both as pre-conditioner and through inter-iteration memory by allowing more degrees of freedom over the model design. CONCLUSION: A combination of model-based and network-based off-resonance correction was proposed to significantly accelerate conventional methods. Different promising synergies were observed between acceleration factors (iterations, coils, correction) and model/network that could be expanded in the future.


Asunto(s)
Aprendizaje Profundo , Procesamiento de Imagen Asistido por Computador , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Encéfalo , Redes Neurales de la Computación , Algoritmos
12.
Magn Reson Med ; 90(3): 1069-1085, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37213029

RESUMEN

PURPOSE: Non-Cartesian MRI with long arbitrary readout directions are susceptible to off-resonance artifacts due to patient induced B 0 $$ {B}_0 $$ inhomogeneities. This results in degraded image quality with strong signal losses and blurring. Current solutions to address this issue involve correcting the off-resonance artifacts during image reconstruction or reducing inhomogeneities through improved shimming. THEORY: The recently developed SPARKLING algorithm is extended to drastically diminish off-resonance artifacts by generating temporally smooth k-space sampling patterns. For doing so, the cost function which is optimized in SPARKLING is modified using a temporal weighting factor. Additionally, oversampling of the center of k-space beyond the Nyquist criteria is prevented through the use of gridded sampling in the region, enforced with affine constraints. METHODS: Prospective k-space data was acquired at 3 T on new trajectories, and we show robustness to B 0 $$ {\mathrm{B}}_0 $$ inhomogeneities through in silico experiments by adding Δ B 0 $$ \Delta {\mathrm{B}}_0 $$  through artificial degradation of system B 0 $$ {\mathrm{B}}_0 $$ shimming. Later on, in vivo experiments were carried out to optimize parameters of the new improvements and benchmark the gain in performance. RESULTS: The improved trajectories allowed for the recovery of signal dropouts observed on original SPARKLING acquisitions at larger B 0 $$ {\mathrm{B}}_0 $$ field inhomogeneities. Furthermore, imposing gridded sampling at the center of k-space provided improved reconstructed image quality with limited artifacts. CONCLUSION: These advancements allowed us for nearly 4 . 62 × $$ 4.62\times $$ shorter scan time compared to GRAPPA-p4x1, allowing us to reach 600 µm isotropic resolution in 3D T 2 ∗ $$ {\mathrm{T}}_2^{\ast } $$ -w imaging in just 3.3 min at 3 T with negligible degradation in image quality.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Humanos , Estudios Prospectivos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Algoritmos , Artefactos , Fantasmas de Imagen
13.
Magn Reson Med ; 90(2): 417-431, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37066854

RESUMEN

PURPOSE: Optimizing three-dimensional (3D) k-space sampling trajectories is important for efficient MRI yet presents a challenging computational problem. This work proposes a generalized framework for optimizing 3D non-Cartesian sampling patterns via data-driven optimization. METHODS: We built a differentiable simulation model to enable gradient-based methods for sampling trajectory optimization. The algorithm can simultaneously optimize multiple properties of sampling patterns, including image quality, hardware constraints (maximum slew rate and gradient strength), reduced peripheral nerve stimulation (PNS), and parameter-weighted contrast. The proposed method can either optimize the gradient waveform (spline-based freeform optimization) or optimize properties of given sampling trajectories (such as the rotation angle of radial trajectories). Notably, the method can optimize sampling trajectories synergistically with either model-based or learning-based reconstruction methods. We proposed several strategies to alleviate the severe nonconvexity and huge computation demand posed by the large scale. The corresponding code is available as an open-source toolbox. RESULTS: We applied the optimized trajectory to multiple applications including structural and functional imaging. In the simulation studies, the image quality of a 3D kooshball trajectory was improved from 0.29 to 0.22 (NRMSE) with Stochastic optimization framework for 3D NOn-Cartesian samPling trajectorY (SNOPY) optimization. In the prospective studies, by optimizing the rotation angles of a stack-of-stars (SOS) trajectory, SNOPY reduced the NRMSE of reconstructed images from 1.19 to 0.97 compared to the best empirical method (RSOS-GR). Optimizing the gradient waveform of a rotational EPI trajectory improved participants' rating of the PNS from "strong" to "mild." CONCLUSION: SNOPY provides an efficient data-driven and optimization-based method to tailor non-Cartesian sampling trajectories.


Asunto(s)
Imagenología Tridimensional , Imagen por Resonancia Magnética , Humanos , Imagenología Tridimensional/métodos , Estudios Prospectivos , Imagen por Resonancia Magnética/métodos , Algoritmos , Rotación
14.
Magn Reson Med ; 90(2): 615-623, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37036384

RESUMEN

PURPOSE: The expanded encoding model incorporates spatially- and time-varying field perturbations for correction during reconstruction. To date, these reconstructions have used the conjugate gradient method with early stopping used as implicit regularization. However, this approach is likely suboptimal for low-SNR cases like diffusion or high-resolution MRI. Here, we investigate the extent that ℓ 1 $$ {\ell}_1 $$ -wavelet regularization, or equivalently compressed sensing (CS), combined with expanded encoding improves trade-offs between spatial resolution, readout time and SNR for single-shot spiral DWI at 7T. The reconstructions were performed using our open-source graphics processing unit-enabled reconstruction toolbox, "MatMRI," that allows inclusion of the different components of the expanded encoding model, with or without CS. METHODS: In vivo accelerated single-shot spirals were acquired with five acceleration factors (R) (2×-6×) and three in-plane spatial resolutions (1.5, 1.3, and 1.1 mm). From the in vivo reconstructions, we estimated diffusion tensors and computed fractional anisotropy maps. Then, simulations were used to quantitatively investigate and validate the impact of CS-based regularization on image quality when compared to a known ground truth. RESULTS: In vivo reconstructions revealed improved image quality with retainment of small features when CS was used. Simulations showed that the joint use of the expanded encoding model and CS improves accuracy of image reconstructions (reduced mean-squared error) over the range of R investigated. CONCLUSION: The expanded encoding model and CS regularization are complementary tools for single-shot spiral diffusion MRI, which enables both higher spatial resolutions and higher R.


Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador , Procesamiento de Imagen Asistido por Computador/métodos , Imagen de Difusión por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/métodos , Anisotropía
15.
Bioengineering (Basel) ; 10(2)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36829652

RESUMEN

Compressed sensing in magnetic resonance imaging essentially involves the optimization of (1) the sampling pattern in k-space under MR hardware constraints and (2) image reconstruction from undersampled k-space data. Recently, deep learning methods have allowed the community to address both problems simultaneously, especially in the non-Cartesian acquisition setting. This work aims to contribute to this field by tackling some major concerns in existing approaches. Particularly, current state-of-the-art learning methods seek hardware compliant k-space sampling trajectories by enforcing the hardware constraints through additional penalty terms in the training loss. Through ablation studies, we rather show the benefit of using a projection step to enforce these constraints and demonstrate that the resulting k-space trajectories are more flexible under a projection-based scheme, which results in superior performance in reconstructed image quality. In 2D studies, our novel method trajectories present an improved image reconstruction quality at a 20-fold acceleration factor on the fastMRI data set with SSIM scores of nearly 0.92-0.95 in our retrospective studies as compared to the corresponding Cartesian reference and also see a 3-4 dB gain in PSNR as compared to earlier state-of-the-art methods. Finally, we extend the algorithm to 3D and by comparing optimization as learning-based projection schemes, we show that data-driven joint learning-based method trajectories outperform model-based methods such as SPARKLING through a 2 dB gain in PSNR and 0.02 gain in SSIM.

16.
Magn Reson Med ; 89(3): 977-989, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36346081

RESUMEN

PURPOSE: To develop a free-breathing (FB) 2D radial balanced steady-state free precession cine cardiac MRI method with 100% respiratory gating efficiency using respiratory auto-calibrated motion correction (RAMCO) based on a motion-sensing camera. METHODS: The signal from a respiratory motion-sensing camera was recorded during a FB retrospectively electrocardiogram triggered 2D radial balanced steady-state free precession acquisition using pseudo-tiny-golden-angle ordering. With RAMCO, for each acquisition the respiratory signal was retrospectively auto-calibrated by applying different linear translations, using the resulting in-plane image sharpness as a criterium. The auto-calibration determines the optimal magnitude of the linear translations for each of the in-plane directions to minimize motion blurring caused by bulk respiratory motion. Additionally, motion-weighted density compensation was applied during radial gridding to minimize through-plane and non-bulk motion blurring. Left ventricular functional parameters and sharpness scores of FB radial cine were compared with and without RAMCO, and additionally with conventional breath-hold Cartesian cine on 9 volunteers. RESULTS: FB radial cine with RAMCO had similar sharpness scores as conventional breath-hold Cartesian cine and the left ventricular functional parameters agreed. For FB radial cine, RAMCO reduced respiratory motion artifacts with a statistically significant difference in sharpness scores (P < 0.05) compared to reconstructions without motion correction. CONCLUSION: 2D radial cine imaging with RAMCO allows evaluation of left ventricular functional parameters in FB with 100% respiratory efficiency. It eliminates the need for breath-holds, which is especially valuable for patients with no or impaired breath-holding capacity. Validation of the proposed method on patients is warranted.


Asunto(s)
Interpretación de Imagen Asistida por Computador , Imagen por Resonancia Cinemagnética , Función Ventricular Izquierda , Humanos , Contencion de la Respiración , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Cinemagnética/métodos , Respiración , Estudios Retrospectivos , Función Ventricular Izquierda/fisiología
17.
Magn Reson Med ; 89(2): 536-549, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36198001

RESUMEN

PURPOSE: Through-time spiral GRAPPA is a real-time imaging technique that enables ungated, free-breathing evaluation of the left ventricle. However, it requires a separate fully-sampled calibration scan to calculate GRAPPA weights. A self-calibrated through-time spiral GRAPPA method is proposed that uses a specially designed spiral trajectory with interleaved arm ordering such that consecutive undersampled frames can be merged to form calibration data, eliminating the separate fully-sampled acquisition. THEORY AND METHODS: The proposed method considers the time needed to acquire data at all points in a GRAPPA calibration kernel when using interleaved arm ordering. Using this metric, simulations were performed to design a spiral trajectory for self-calibrated GRAPPA. Data were acquired in healthy volunteers using the proposed method and a comparison electrocardiogram-gated and breath-held cine scan. Left ventricular functional values and image quality are compared. RESULTS: A 12-arm spiral trajectory was designed with a temporal resolution of 32.72 ms/cardiac phase with an acceleration factor of 3. Functional values calculated using the proposed method and the gold-standard method were not statistically significantly different (paired t-test, p < 0.05). Image quality ratings were lower for the proposed method, with statistically significantly different ratings (Wilcoxon signed rank test, p < 0.05) for two of five image quality aspects rated (level of artifact, blood-myocardium contrast). CONCLUSIONS: A self-calibrated through-time spiral GRAPPA reconstruction can enable ungated, free-breathing evaluation of the left ventricle in 71 s. Functional values are equivalent to a gold-standard cine technique, although some aspects of image quality may be inferior due to the real-time nature of the data collection.


Asunto(s)
Respiración , Función Ventricular Izquierda , Humanos , Artefactos , Contencion de la Respiración , Corazón , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Cinemagnética/métodos , Reproducibilidad de los Resultados
18.
Magn Reson Med ; 89(2): 721-728, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36161333

RESUMEN

PURPOSE: Real-time monitoring of dynamic magnetic fields has recently become a commercially available option for measuring MRI k-space trajectories and magnetic fields induced by eddy currents in real time. However, for accurate image reconstructions, sub-microsecond synchronization between the MRI data and field dynamics (ie, k-space trajectory plus other spatially varying fields) is required. In this work, we introduce a new model-based algorithm to automatically perform this synchronization using only the MRI data and field dynamics. METHODS: The algorithm works by enforcing consistency among the MRI data, field dynamics, and receiver sensitivity profiles by iteratively alternating between convex optimizations for (a) the image and (b) the synchronization delay. A healthy human subject was scanned at 7 T using a transmit-receive coil with integrated field probes using both single-shot spiral and EPI, and reconstructions with various synchronization delays were compared with the result of the proposed algorithm. The accuracy of the algorithm was also investigated using simulations, in which the acquisition delays for simulated acquisitions were determined using the proposed algorithm and compared with the known ground truth. RESULTS: In the in vivo scans, the proposed algorithm minimized artifacts related to synchronization delay for both spiral and EPI acquisitions, and the computation time required was less than 30 s. The simulations demonstrated accuracy to within tens of nanoseconds. CONCLUSIONS: The proposed algorithm can automatically determine synchronization delays between MRI data and field dynamics measured using a field probe system.


Asunto(s)
Artefactos , Imagen por Resonancia Magnética , Humanos , Fantasmas de Imagen , Imagen por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos
19.
Magn Reson Med ; 89(2): 508-521, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36161728

RESUMEN

PURPOSE: This study aimed to develop a new 3D dual-echo rosette k-space trajectory, specifically designed for UTE MRI applications. The imaging of the ultra-short transverse relaxation time (uT2 ) of brain was acquired to test the performance of the proposed UTE sequence. THEORY AND METHODS: The rosette trajectory was developed based on rotations of a "petal-like" pattern in the kx -ky plane, with oscillated extensions in the kz -direction for 3D coverage. Five healthy volunteers underwent 10 dual-echo 3D rosette UTE scans with various TEs. Dual-exponential complex model fitting was performed on the magnitude data to separate uT2 signals, with the output of uT2 fraction, uT2 value, and long-T2 value. RESULTS: The 3D rosette dual-echo UTE sequence showed better performance than a 3D radial UTE acquisition. More significant signal intensity decay in white matter than gray matter was observed along with the TEs. The white matter regions had higher uT2 fraction values than gray matter (10.9% ± 1.9% vs. 5.7% ± 2.4%). The uT2 value was approximately 0.10 ms in white matter . CONCLUSION: The higher uT2 fraction value in white matter compared to gray matter demonstrated the ability of the proposed sequence to capture rapidly decaying signals.


Asunto(s)
Imagen por Resonancia Magnética , Sustancia Blanca , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Sustancia Gris/diagnóstico por imagen , Voluntarios Sanos , Imagenología Tridimensional
20.
Z Med Phys ; 33(2): 220-229, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-35190223

RESUMEN

PURPOSE: To demonstrate free-breathing thoracic MRI with a minimal-TR balanced steady-state free precession (bSSFP) technique using wobbling Archimedean spiral pole (WASP) trajectories. METHODS: Phantom and free-breathing in vivo chest imaging in healthy volunteers was performed at 1.5T with a half-radial, dual-echo, bSSFP sequence, termed bSTAR. For maximum sampling efficiency, a single analog-to-digital converter window along the full bipolar readout was used. To ensure a homogeneous coverage of the k-space over multiple breathing cycles, radial k-space sampling followed short-duration Archimedean spiral interleaves that were randomly titled by a small polar angle and rotated by a golden angle about the polar axis; depticting a wobbling Archimedean spiral pole (WASP) trajectory. In phantom and in vivo experiments, WASP trajectories were compared to spiral phyllotaxis sampling in terms of eddy currents and were used to generate in vivo thorax images at different respiratory phases. RESULTS: WASP trajectories provided artifact-free bSTAR imaging in both phantom and in vivo and respiratory self-gated reconstruction was successfully performed in all subjects. The amount of the acquired data allowed the reconstruction of 10 volumes at different respiratory levels with isotropic resolution of 1.77mm from a scan of 5.5minutes (using a TR of 1.32ms), and one high-resolution 1.16mm end-expiratory volume from a scan of 4.7minutes (using a TR of 1.42ms). The very short TR of bSTAR mitigated off-resonance artifacts despite the large field-of-view. CONCLUSION: We have demonstrated the feasibility of high-resolution free-breathing thoracic imaging with bSTAR using the wobbling Archimedean spiral pole in healthy subjects at 1.5T.


Asunto(s)
Imagen por Resonancia Magnética , Respiración , Humanos , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen , Tórax/diagnóstico por imagen , Artefactos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA