Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Dev Dyn ; 252(1): 61-80, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35770940

RESUMEN

The glycoprotein dystroglycan was first identified in muscle, where it functions as part of the dystrophin glycoprotein complex to connect the extracellular matrix to the actin cytoskeleton. Mutations in genes involved in the glycosylation of dystroglycan cause a form of congenital muscular dystrophy termed dystroglycanopathy. In addition to its well-defined role in regulating muscle integrity, dystroglycan is essential for proper central and peripheral nervous system development. Patients with dystroglycanopathy can present with a wide range of neurological perturbations, but unraveling the complex role of Dag1 in the nervous system has proven to be a challenge. Over the past two decades, animal models of dystroglycanopathy have been an invaluable resource that has allowed researchers to elucidate dystroglycan's many roles in neural circuit development. In this review, we summarize the pathways involved in dystroglycan's glycosylation and its known interacting proteins, and discuss how it regulates neuronal migration, axon guidance, synapse formation, and its role in non-neuronal cells.


Asunto(s)
Distroglicanos , Distrofias Musculares , Animales , Distroglicanos/genética , Distroglicanos/metabolismo , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Neurogénesis , Glicoproteínas
2.
J Stroke Cerebrovasc Dis ; 31(11): 106725, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36116218

RESUMEN

BACKGROUND: Cerebral ischemic stroke can induce the proliferation of subventricular zone (SVZ) neural stem cells (NSCs) in the adult brain. However, this reparative process is restricted because of NSCs' death shortly after injury or disability of them to reach the infarct boundary. In the present study, we investigated the ability of cerebral dopamine neurotrophic factor (CDNF) on the attraction of SVZ-resident NSCs toward the lesioned area and neurological recovery in a photothrombotic (PT) stroke model of mice METHODS: The mice were assigned to three groups stroke, stroke+phosphate buffered saline (PBS), and stroke+CDNF. Migration of SVZ NSCs were evaluated by BrdU/doublecortin (DCX) double immunofluorescence method on days 7 and 14 and their differentiation were evaluated by BrdU/ Neuronal Nuclei (NeuN) double immunofluorescence method 28 days after intra-SVZ CDNF injection. Serial coronal sections were stained with cresyl violet to detect the infarct volume and a modified neurological severity score (mNSS) was performed to assess the neurological performance RESULTS: Injection of CDNF increased the proliferation of SVZ NSCs and the number of DCX-expressing neuroblasts migrated from the SVZ toward the ischemic site. It also enhanced the differentiation of migrated neuroblasts into the mature neurons in the lesioned site. Along with this, the infarct volume was significantly decreased and the neurological performance was improved as compared to other groups CONCLUSION: These results demonstrate that CDNF is capable of enhancing the proliferation of NSCs residing in the SVZ and their migration toward the ischemia region and finally, differentiation of them in stroke mice, concomitantly decreased infarct volume and improved neurological abilities were revealed.


Asunto(s)
Células-Madre Neurales , Accidente Cerebrovascular , Animales , Ratones , Ventrículos Laterales , Dopamina , Bromodesoxiuridina , Proliferación Celular , Factores de Crecimiento Nervioso , Proteínas de Dominio Doblecortina , Infarto , Fosfatos , Neurogénesis/fisiología
3.
Am J Med Genet A ; 185(4): 1113-1119, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33506645

RESUMEN

Cortical dysplasia, complex, with other brain malformations 3 (CDCBM3) is a rare autosomal dominant syndrome caused by Kinesin family Member 2A (KIF2A) gene mutation. Patients with CDCBM3 exhibit posterior dominant agyria/pachygyria with severe motor dysfunction. Here, we report an 8-year-old boy with CDCBM3 showing a typical, but relatively mild, clinical presentation of CDCBM3 features. Whole-exome sequencing identified a heterozygous mutation of NM_001098511.2:c.1298C>A [p.(Ser433Tyr)]. To our knowledge, the mutation has never been reported previously. The variant was located distal to the nucleotide binding domain (NBD), in which previously-reported variants in CDCBM3 patients have been located. The computational structural analysis showed the p.433 forms the pocket with NBD. Variants in KIF2A have been reported in the NBD for CDCBM3, in the kinesin motor 3 domain, but not in the NBD in epilepsy, and outside of the kinesin motor domain in autism spectrum syndrome, respectively. Our patient has a variant, that is not in the NBD but at the pocket with the NBD, resulting in a clinical features of CDCBM3 with mild symptoms. The clinical findings of patients with KIF2A variants appear restricted to the central nervous system and facial anomalies. We can call this spectrum "KIF2A syndrome" with variable severity.


Asunto(s)
Epilepsia/genética , Cinesinas/genética , Malformaciones del Desarrollo Cortical/genética , Proteínas Asociadas a Microtúbulos/genética , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Niño , Epilepsia/diagnóstico , Epilepsia/diagnóstico por imagen , Epilepsia/patología , Heterocigoto , Humanos , Cinesinas/ultraestructura , Masculino , Malformaciones del Desarrollo Cortical/diagnóstico , Malformaciones del Desarrollo Cortical/diagnóstico por imagen , Malformaciones del Desarrollo Cortical/patología , Proteínas Asociadas a Microtúbulos/ultraestructura , Mutación Missense/genética , Conformación Proteica , Tubulina (Proteína)/genética , Secuenciación del Exoma
4.
J Histochem Cytochem ; 69(1): 61-80, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32936033

RESUMEN

The orderly development of the nervous system is characterized by phases of cell proliferation and differentiation, neural migration, axonal outgrowth and synapse formation, and stabilization. Each of these processes is a result of the modulation of genetic programs by extracellular cues. In particular, chondroitin sulfate proteoglycans (CSPGs) have been found to be involved in almost every aspect of this well-orchestrated yet delicate process. The evidence of their involvement is complex, often contradictory, and lacking in mechanistic clarity; however, it remains obvious that CSPGs are key cogs in building a functional brain. This review focuses on current knowledge of the role of CSPGs in each of the major stages of neural development with emphasis on areas requiring further investigation.


Asunto(s)
Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Sistema Nervioso/crecimiento & desarrollo , Neurogénesis , Animales , Encéfalo/citología , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Movimiento Celular , Humanos , Sistema Nervioso/citología , Sistema Nervioso/embriología , Sistema Nervioso/metabolismo , Neuronas/citología , Neuronas/metabolismo , Sinapsis/metabolismo
5.
Polymers (Basel) ; 12(12)2020 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-33260420

RESUMEN

Biomaterials, especially when coated with adhesive polymers, are a key tool for restorative medicine, being biocompatible and supportive for cell adherence, growth, and function. Aragonite skeletons of corals are biomaterials that support survival and growth of a range of cell types, including neurons and glia. However, it is not known if this scaffold affects neural cell migration or elongation of neuronal and astrocytic processes, prerequisites for initiating repair of damage in the nervous system. To address this, hippocampal cells were aggregated into neurospheres and cultivated on aragonite skeleton of the coral Trachyphyllia geoffroyi (Coral Skeleton (CS)), on naturally occurring aragonite (Geological Aragonite (GA)), and on glass, all pre-coated with the oligomer poly-D-lysine (PDL). The two aragonite matrices promoted equally strong cell migration (4.8 and 4.3-fold above glass-PDL, respectively) and axonal sprouting (1.96 and 1.95-fold above glass-PDL, respectively). However, CS-PDL had a stronger effect than GA-PDL on the promotion of astrocytic processes elongation (1.7 vs. 1.2-fold above glass-PDL, respectively) and expression of the glial fibrillary acidic protein (3.8 vs. and 1.8-fold above glass-PDL, respectively). These differences are likely to emerge from a reaction of astrocytes to the degree of roughness of the surface of the scaffold, which is higher on CS than on GA. Hence, CS-PDL and GA-PDL are scaffolds of strong capacity to derive neural cell movements and growth required for regeneration, while controlling the extent of astrocytic involvement. As such, implants of PDL-aragonites have significant potential as tools for damage repair and the reduction of scar formation in the brain following trauma or disease.

6.
Cells ; 9(12)2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33287330

RESUMEN

Background: Mucopolysaccharidosis type I-Hurler (MPS1-H) is a severe genetic lysosomal storage disorder due to loss-of-function mutations in the IDUA gene. The subsequent complete deficiency of alpha l-iduronidase enzyme is directly responsible of a progressive accumulation of glycosaminoglycans (GAG) in lysosomes which affects the functions of many tissues. Consequently, MPS1 is characterized by systemic symptoms (multiorgan dysfunction) including respiratory and cardiac dysfunctions, skeletal abnormalities and early fatal neurodegeneration. Methods: To understand mechanisms underlying MPS1 neuropathology, we generated induced pluripotent stem cells (iPSC) from a MPS1-H patient with loss-of-function mutations in both IDUA alleles. To avoid variability due to different genetic background of iPSC, we established an isogenic control iPSC line by rescuing IDUA expression by a lentivectoral approach. Results: Marked differences between MPS1-H and IDUA-corrected isogenic controls were observed upon neural differentiation. A scratch assay revealed a strong migration defect of MPS1-H cells. Also, there was a massive impact of IDUA deficiency on gene expression (340 genes with an FDR <0.05). Conclusions: Our results demonstrate a hitherto unknown connection between lysosomal degradation, gene expression and neural motility, which might account at least in part for the phenotype of MPS1-H patients.


Asunto(s)
Movimiento Celular/genética , Células Madre Pluripotentes Inducidas/metabolismo , Mucopolisacaridosis I/metabolismo , Neuronas/metabolismo , Diferenciación Celular/genética , Células Cultivadas , Expresión Génica/genética , Glicosaminoglicanos/genética , Glicosaminoglicanos/metabolismo , Humanos , Iduronidasa/genética , Iduronidasa/metabolismo , Lisosomas/genética , Lisosomas/metabolismo , Mucopolisacaridosis I/genética , Mutación/genética , Fenotipo
7.
Front Cell Dev Biol ; 8: 549353, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33042990

RESUMEN

Primary microcephaly genes (MCPH) are required for the embryonic expansion of the mammalian cerebral cortex. However, MCPH mutations may spare growth in other regions of the developing forebrain which reinforces context-dependent functions for distinct MCPH genes in neurodevelopment. Mutations in the MCPH2 gene, WD40-repeat protein 62 (WDR62), are causative of primary microcephaly and cortical malformations in humans. WDR62 is a spindle microtubule-associated phosphoprotein that is required for timely and oriented cell divisions. Recent studies in rodent models confirm that WDR62 loss or mutation causes thinning of the neocortex and disrupted proliferation of apical progenitors reinforcing critical requirements in the maintenance of radial glia. However, potential contributions for WDR62 in hippocampal development had not been previously defined. Using CRISPR/Cas9 gene editing, we generated mouse models with patient-derived non-synonymous missense mutations (WDR62V66M and WDR62R439H) and a null mutation (herein referred to as WDR62Stop) for comparison. We find that WDR62 deletion or mutation resulted in a significant reduction in the thickness of the hippocampal ventricular zone and the area of the dentate gyrus (DG). This was associated with the mitotic arrest and depletion of radial glia and intermediate progenitors in the ammonic neuroepithelium. As a consequence, we find that the number of mitotic dentate precursors in the migratory stream and granule neurons in the DG was reduced with WDR62 mutation. These findings reveal that WDR62 is required for neurogenesis and the growth of the hippocampus during embryonic development.

8.
Vet Sci ; 7(2)2020 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-32408548

RESUMEN

The SET and MYND domain-containing (SMYD) family of lysine methyltransferases are essential in several mammalian developmental pathways. Although predominantly expressed in the heart, the role of SMYD2 in heart development has yet to be fully elucidated and has even been shown to be dispensable in a murine Nkx2-5-associated conditional knockout. Additionally, SMYD2 was recently shown to be necessary not only for lymphocyte development but also for the viability of hematopoietic leukemias. Based on the broad expression pattern of SMYD2 in mammalian tissues, it is likely that it plays pivotal roles in a host of additional normal and pathological processes. In this brief review, we consider what is currently known about the normal and pathogenic functions of SMYD2 and propose specific future directions for characterizing its role in embryogenesis.

10.
Front Pharmacol ; 8: 770, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29118714

RESUMEN

miR-132 is an endogenous small RNA and controls post-transcriptional regulation of gene expression via controlled degradation of mRNA or transcription inhibition. In the nervous system, miR-132 is significant for regulating neuronal differentiation, maturation and functioning, and widely participates in axon growth, neural migration, and plasticity. The miR-132 is affected by factors like mRNA expression, functional redundancy, and signaling cascades. It targets multiple downstream molecules to influence physiological and pathological neuronal activities. MiR-132 can influence the pathogenesis of many diseases, especially in the nervous system. The dysregulation of miR-132 results in the occurrence and exacerbation of neural developmental, degenerative diseases, like Alzheimer's disease, Parkinson's disease and epilepsy, neural infection and psychiatric disorders including disturbance of consciousness, cognition and memory, depression and schizophrenia. Regulation of miR-132 expression relieves symptoms, alleviates severity and finally effects a cure. This review aims to discuss the clinical potentials of miR-132 in the nervous system.

11.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 33(5): 445-449, 2017 May 08.
Artículo en Chino | MEDLINE | ID: mdl-29926591

RESUMEN

OBJECTIVE: To explore a simply feasible and affordable method to establish neuritis migration model induced by Slit 2N and silk fibroin mixture in the rat hippocampal neurons in vitro. METHODS: Neurons were derived from SD rat hippocampal tissues and cultured with a special cell culture-plate in vitro. The cultured neurons were divided into four groups, named as control group, pure silk fibroin, pure Slit 2N and Slit 2N mixture with silk fibroin (mixture group), and 50 different neurons were randomly selected in each group. Moreover, we photographed and recorded the soma coordinate and added the silk fibroin, Slit 2N and mixture to each neurite with a distance of 100 µm, except control group. Record again after 30 min. Property and positive rate of cells were identified by immunofluorescence staining. RESULTS: Neurites of the pure Slit 2N group and the mixture group became shorter, and there was no significant change in the pure silk fibroin and control groups. The results showed that the average duration and length difference before and after changed were in descending order of mixture group, Slit 2N group, silk fibroin group (P<0.05), and the silk fibroin and control groups were no significant change (P>0.05). The positive rate of MAP-2 in four groups was more than 90%. CONCLUSIONS: There were no significant effects of Silk fibroin on induced by Slit 2N in rat hippocampal neuron migration. It had an effect on reducing Slit 2N diffusion rate and extending its working time. It provides an advantageous construction method in vitro on based 3D directed neural repair for the treatment of central nervous system diseases.


Asunto(s)
Movimiento Celular , Fibroínas , Hipocampo/citología , Neuronas/citología , Andamios del Tejido , Animales , Células Cultivadas , Neuritas , Ratas , Ratas Sprague-Dawley
12.
Front Pharmacol ; 7: 449, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27965576

RESUMEN

We have recently generated a novel medulloblastoma (MB) mouse model with activation of the Shh pathway and lacking the MB suppressor Tis21 (Patched1+/-/Tis21KO ). Its main phenotype is a defect of migration of the cerebellar granule precursor cells (GCPs). By genomic analysis of GCPs in vivo, we identified as drug target and major responsible of this defect the down-regulation of the promigratory chemokine Cxcl3. Consequently, the GCPs remain longer in the cerebellum proliferative area, and the MB frequency is enhanced. Here, we further analyzed the genes deregulated in a Tis21-dependent manner (Patched1+/-/Tis21 wild-type vs. Ptch1+/-/Tis21 knockout), among which are a number of down-regulated tumor inhibitors and up-regulated tumor facilitators, focusing on pathways potentially involved in the tumorigenesis and on putative new drug targets. The data analysis using bioinformatic tools revealed: (i) a link between the Shh signaling and the Tis21-dependent impairment of the GCPs migration, through a Shh-dependent deregulation of the clathrin-mediated chemotaxis operating in the primary cilium through the Cxcl3-Cxcr2 axis; (ii) a possible lineage shift of Shh-type GCPs toward retinal precursor phenotype, i.e., the neural cell type involved in group 3 MB; (iii) the identification of a subset of putative drug targets for MB, involved, among the others, in the regulation of Hippo signaling and centrosome assembly. Finally, our findings define also the role of Tis21 in the regulation of gene expression, through epigenetic and RNA processing mechanisms, influencing the fate of the GCPs.

13.
Open Biol ; 6(5)2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27249642

RESUMEN

The vertebrate-specific proteins astrotactin-1 and 2 (ASTN-1 and ASTN-2) are integral membrane perforin-like proteins known to play critical roles in neurodevelopment, while ASTN-2 has been linked to the planar cell polarity pathway in hair cells. Genetic variations associated with them are linked to a variety of neurodevelopmental disorders and other neurological pathologies, including an advanced onset of Alzheimer's disease. Here we present the structure of the majority endosomal region of ASTN-2, showing it to consist of a unique combination of polypeptide folds: a perforin-like domain, a minimal epidermal growth factor-like module, a unique form of fibronectin type III domain and an annexin-like domain. The perforin-like domain differs from that of other members of the membrane attack complex-perforin (MACPF) protein family in ways that suggest ASTN-2 does not form pores. Structural and biophysical data show that ASTN-2 (but not ASTN-1) binds inositol triphosphates, suggesting a mechanism for membrane recognition or secondary messenger regulation of its activity. The annexin-like domain is closest in fold to repeat three of human annexin V and similarly binds calcium, and yet shares no sequence homology with it. Overall, our structure provides the first atomic-resolution description of a MACPF protein involved in development, while highlighting distinctive features of ASTN-2 responsible for its activity.


Asunto(s)
Membrana Celular/metabolismo , Glicoproteínas/química , Glicoproteínas/metabolismo , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis , Vertebrados/metabolismo , Animales , Cristalografía por Rayos X , Células HEK293 , Humanos , Fosfatos de Inositol/metabolismo , Modelos Moleculares , Filogenia , Unión Proteica , Dominios Proteicos , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Vertebrados/genética
15.
Biomed Rep ; 2(1): 29-33, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24649064

RESUMEN

Serotonin (5-HT) functions as a chemoattractant that modulates neural migration during prenatal and early postnatal development. However, its molecular mechanism remains to be elucidated. The effect of 5-HT on neural cell migration was examined using PC12 neuron-like cell line. Transwell migration assay was used to determine the effect of 5-HT on PC12 cell migration. The results demonstrated that 5-HT and nerve growth factor (NGF) induced PC12 cell migration in a dose-dependent manner. Additionally, 5-HT receptor antagonists suggest that 5-HT-induced migration was mediated by serotonin receptor 6 (5-HT6), a Gs-protein coupled receptor that elevates the intercellular cAMP level. By contrast, antagonists of serotonin receptor 3 (5-HT3) did not show any effects on PC12 cell migration. Clozapine, an inhibitor of cAMP accumulation mediated by 5-HT6, significantly reduced the effect of 5-HT on the PC12 cell migration. An inhibitor of extracellular signal-regulated kinase (ERK) also suppressed migration. These results suggest that 5-HT induces PC12 cell migration by activating cAMP/ERK signaling pathways, which is mediated by 5-HT6 receptor.

16.
Front Cell Neurosci ; 7: 60, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23720610

RESUMEN

The schizophrenia brain is differentiated from the normal brain by subtle changes, with significant overlap in measures between normal and disease states. For the past 25 years, schizophrenia has increasingly been considered a neurodevelopmental disorder. This frame of reference challenges biological researchers to consider how pathological changes identified in adult brain tissue can be accounted for by aberrant developmental processes occurring during fetal, childhood, or adolescent periods. To place schizophrenia neuropathology in a neurodevelopmental context requires solid, scrutinized evidence of changes occurring during normal development of the human brain, particularly in the cortex; however, too often data on normative developmental change are selectively referenced. This paper focuses on the development of the prefrontal cortex and charts major molecular, cellular, and behavioral events on a similar time line. We first consider the time at which human cognitive abilities such as selective attention, working memory, and inhibitory control mature, emphasizing that attainment of full adult potential is a process requiring decades. We review the timing of neurogenesis, neuronal migration, white matter changes (myelination), and synapse development. We consider how molecular changes in neurotransmitter signaling pathways are altered throughout life and how they may be concomitant with cellular and cognitive changes. We end with a consideration of how the response to drugs of abuse changes with age. We conclude that the concepts around the timing of cortical neuronal migration, interneuron maturation, and synaptic regression in humans may need revision and include greater emphasis on the protracted and dynamic changes occurring in adolescence. Updating our current understanding of post-natal neurodevelopment should aid researchers in interpreting gray matter changes and derailed neurodevelopmental processes that could underlie emergence of psychosis.

17.
Clin Med Pathol ; 1: 99-103, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-21876658

RESUMEN

Autism is well known as a complex developmental disorder with a seemingly confusing and uncertain pathogenesis. The definitive mechanisms that promote autism are poorly understood and mostly unknown, yet available theories do appear to focus on the disruption of normal cerebral development and its subsequent implications on the functional brain unit. This mini-review aims solely to discuss and evaluate the most prominent current theories regarding the pathogenesis of autism. The main conclusion is that although there is not a clear pathway of mechanisms directed towards a simple pathogenesis and an established link to autism on the symptomatic level; there are however several important theories (neural connectivity, neural migration, excitatory-inhibitory neural activity, dendritic morphology, neuroimmune; calcium signalling and mirror neurone) which appear to offer an explanation to how autism develops. It seems probable that autism's neurodevelopmental defect is 'multi-domain' in origin (rather than a single anomaly) and is hence distributed across numerous levels of study (genetic, immunopathogenic, etc.). A more definitive understanding of the pathogenesis could facilitate the development of better treatments for this complex psychiatric disorder.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA